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Abstract. To encode an important property of the “no broken circuit bases” of the Orlik-
Solomon-Terao algebras, András Szenes has introduced a particular type of bases, the so called
“diagonal basis.” We prove that this definition extends naturally to a large class of algebras, the
so called χ-algebras. Our definitions make also use of an “iterative residue formula” based on the
matroidal operation of contraction. This formula can be seen as the combinatorial analogue of
an iterative residue formula introduced by Szenes. As an application we deduce nice formulas to
express a pure element in a diagonal basis.
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1. Introduction

We denote by M = M ([n]) a matroid of rank r on the ground set [n] := {1, 2, . . . , n}.
Let V be a vector space of dimension d over some field K. A (central) arrangement (of
hyperplanes) in V, AK = {H1, . . . , Hn}, is a finite listed set of codimension one vector
subspaces. Given an arrangement AK, we suppose always fixed a family of linear forms{

θHi ∈V ∗ : Hi ∈AK, Ker(θHi ) = Hi
}
, where V ∗ denotes the dual space of V. We denote

by L(AK) the intersection lattice of AK: i.e., the set of intersections of hyperplanes in
AK, partially ordered by reverse inclusion. There is a matroid M (AK) on the ground
set [n] determined by AK: a subset D ⊂ [n] is a dependent set of M (AK) iff there are
scalars ζi ∈ K, i ∈ D, not all nulls, such that ∑i∈D ζiθHi = 0. A circuit is a minimal
dependent set with respect to inclusion.

If K is an ordered field, an additional structure is obtained: to every circuit C,

∑i∈C ζiθHi = 0, we associate a partition (determined up to a factor ±1) C+ = {i ∈
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† Supported by FCT (Portugal) trough the project SAPIENS/36563/99.

1



2 R. Cordovil and D. Forge

C : ζi > 0}, C− = {i∈C : ζi < 0}. With this new structure M (AK) is said a (realizable)
oriented matroid and denoted by M(AK). Set M(AK) = M (AK). Oriented matroids
on a ground set [n], denoted M([n]), are a very natural mathematical concept and can
be seen as the theory of generalized hyperplane arrangements, see [2].

Set M(AK) = V \
⋃

H∈AK
H. The manifold M(AC) plays an important role in the

Aomoto-Gelfand theory of multidimensional hypergeometric functions (see [14] for a
recent introduction from the point of view of arrangement theory). Let K be a commu-
tative ring. In [10–12] the determination of the cohomology K-algebra H∗

(
M(AC); K

)

from the matroid M (AC) is accomplished by first defining the Orlik-Solomon K-algebra
OS(AC) in terms of generators and relators which depends only on the matroid M (AC),
and then by showing that this algebra is isomorphic to H∗

(
M(AC); K

)
. The Orlik-

Solomon algebras have been then intensively studied. Descriptions of developments
from the early 1980’s to the end of 1999, together with the contributions of many au-
thors, can be found in [8, 19].

Aomoto suggested the study of the (graded) K-vector space AO(AK), generated by
the basis {Q(BI)

−1}, where I is an independent set of M (AK), BI := {Hi ∈AK : i ∈ I},
and Q(BI) = ∏i∈I θHi denotes the corresponding defining polynomial. To answer to
a conjecture of Aomoto, Orlik and Terao have introduced in [13] a commutative K-
algebra, OT(AK), isomorphic to AO(AK) as a graded K-vector space in terms of the
equations {θH : H ∈ AK}.

A “combinatorial analogue” of the algebra of Orlik-Terao was introduced in [7]:
to every oriented matroid M was associated a commutative Z-algebra, denoted by
A(M).

Here we consider a large class of algebras, the so called χ-algebras, that contain the
three just mentioned algebras: Orlik-Solomon, Orlik-Terao and the algebras Aχ(M ),
see [9] or Definition 2.1 below. Following Szenes [15], we define a particular type
of bases of Aχ, the so called “diagonal basis”, see Definition 2.7. There is a natural
example of these bases, the “no circuit basis”. We construct the dual bases of these
bases, see Theorem 2.8. Our definitions make also use of an “iterative residue formula”
based on the matroidal operation of contraction, see Equation (2.6). This formula can
be seen as the combinatorial analogue of an iterative residue formula introduced by
Szenes, [15]. As applications we deduce nice formulas to express a pure element in a
diagonal basis. We prove also that the χ-algebras verify a splitting short exact sequence,
see Theorem 2.5. This theorem generalizes for the χ-algebras previous similar theorems
of [7, 12].

We use [17, 18] as a general reference in matroid theory. We refer to [2] and [12]
for good sources of the theory of oriented matroids and arrangements of hyperplanes,
respectively.

2. Diagonal bases

Let IND`(M ) ⊂
([n]

`

)
be the family of independent sets of cardinal ` of the matroid

M and set IND(M ) =
⋃

`∈N IND`(M ). We denote by C = C(M ) the set of circuits
of M . For shortening of the notation the singleton set {x} is denoted by x. When
the smallest element α of a circuit C, |C| > 1, is deleted, the remaining set, C \α, is
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said to be a broken circuit. (Note that our definition is slightly different of the stan-
dard one. In the standard definition C \α can be empty.) A no broken circuit set of
a matroid M is an independent subset of [n] which does not contain any broken cir-
cuit. Let NBC`(M ) ⊂

([n]
`

)
be the set of the no broken circuit sets of cardinal ` of M .

Set NBC(M ) =
⋃

`∈N NBC`(M ). We denote by L(M ) the lattice of flats of M .
(
We

remark that the lattice map φ : L(AK)→ L(M (AK)), determined by the one-to-one cor-
respondence φ′ : Hi←→{i}, i = 1, . . . , n, is a lattice isomorphism.

)
For an independent

set I, let c`(I) be the closure of I in M .
Fix a set E = {e1, . . . , en}. Let E = K⊕E1⊕·· ·⊕En be the graded algebra over

the field K generated by the elements 1, e1, . . . , en and satisfying the relations e2
i = 0

for all ei ∈ E and e j · ei = βi, jei · e j with βi, j ∈ K \ 0 for all i < j. Both the exte-
rior algebra (take βi, j = −1) and the commutative algebra with squares zero (take
βi, j = 1) are such algebras and will be the only ones to be used in the examples.
Let Xσ = (iσ(1), iσ(2), . . . , iσ(m)), σ ∈ Sm, denote the ordered set iσ(1) ≺ ·· · ≺ iσ(m).

When necessary we see the set X = {i1, . . . , im}, as the ordered set X id. Set Xσ \ x :=
(iσ(1), . . . , x̂, . . . , iσ(m)). If Y β = ( jβ(1), . . . , jβ(m′)) and X∩Y = /0, set Xσ∗Y β the concate-
nation (iσ(1), . . . , iσ(m), jβ(1), . . . , jβ(m′)). In the sequel we will denote by eX the (pure)

element ei1ei2 · · ·eim of E . Fix a mapping χ : 2[n]→K. Let us also define χ for ordered
sets by χ(Xσ) = sgn(σ)χ(X), where sgn(σ) denotes the sign of the permutation σ.

The χ-boundary of an element eX ∈ E is given by the equation

∂eX =
m

∑
p=1

(−1)pχ(X \ ip)eX\ip .

We extend ∂ to E by linearity. It is easy to see that for σ ∈S|X| we have

∂eX = sgn(σ)
m

∑
p=1

(−1)pχ(Xσ \ iσ(p))eX\iσ(p)
,

and also for any x /∈ X ,

±∂eX∪x = (−1)m+1χ(X)eX +
m

∑
p=1

(−1)pχ(X \ ip ∗ x)eX\ip∪x.

Given an independent set I, an element a∈ c`(I)\ I is said active in I if a is the minimal
element of the unique circuit contained in I∪a. We say that a subset U ⊂ [n] is a unide-
pendent of M , if it contains a unique circuit, denoted C(U). Note that U is unidepen-
dent iff rk(U) = |U |−1. We say that a unidependent set U is an inactive unidependent
if minC(U) is the minimal active element of U \minC(U). Let us remark that U is a
unidependent of M iff for some (or every) x ∈U, rk(x) 6= 0, U \ x is a unidependent of
M /x.

Definition 2.1. [9] Let ℑχ(M ) be the (right) ideal of E generated by the χ-boundaries
{∂eC : C ∈ C(M ), |C| > 1} and the set {ei : {i} ∈ C(M )}. We say that Aχ(M ) :=
E/ℑχ(M ) is a χ-algebra if χ satisfies the following two properties:

(UC1) χ(I) 6= 0 if and only if I is independent.
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(UC2) For any two unidependents U and U ′ of M with U ′ ⊂U there is a scalar ε
U,U ′
∈

K\0, such that ∂eU = ε
U,U ′

(∂eU ′)eU\U ′ .

Remark 2.1. From (UC2) we conclude that ℑχ(M ) has the basis

{eD : D dependent of M }∪{∂eU : U inactive unidependent of M },

and that nnnbbbccc :=
{
[I]A : I ∈ NBC(M )

}
is a basis of the vector space A = Aχ(M ). This

fundamental property was first discovered for the Orlik-Solomon algebras [12], and
then also for other classes of χ-algebras, see [7,13] and the following example for more
details. Note also that this implies that [X ]A 6= 0 iff X is an independent set of M .

Example 2.1. [9] Recall the three usual χ-algebras. Let E be the graded algebra over
the field K generated by the elements 1, e1, . . . , en and satisfying the relations e2

i = 0
for all ei ∈ E and e j · ei = βi, jei · e j where βi, j denotes a non null scalar fixed for every
pair i < j.

◦ Let E be the exterior algebra (taking βi, j =−1). Setting χ(Iσ) = sgn(σ) for every
independent set I of a matroid M and every permutation σ ∈ S|I|, we obtain the
Orlik-Solomon algebra, OS(M ).

◦ Let AK = {Hi : Hi = Ker(θi), i = 1, 2, . . . , n} be a hyperplane arrangement and
M (AK) its associated matroid. For every flat F := { f1, . . . , fk} ⊂ [n] of M (AK)
we choose a basis BF of the vector subspace of (Kd)∗ generated by {θ f1 , . . . , θ fk}.
By taking for E the free commutative algebra with squares null (taking βi, j = 1) and
taking for any {i1, . . . , i`} = I ∈ IND`, χ(I) = det(θi1 , . . . , θi`), where the vectors
are expressed in the basis Bc`(I), we obtain the algebra OT(AK), defined in [13].

◦ Let M([n]) be an oriented matroid. For every flat F of M([n]), we choose (de-
termined up to a factor ±1) a basis signature in the restriction of M([n]) to F. We
define a signature of the independents of an oriented matroid M([n]) as a mapping,
sgn: IND(M)→{±1}, where sgn(I) is equal to the basis signature of I in the re-
striction of M([n]) to c`(I). By taking for E the free commutative algebra over the
rational field Q with squares zero (take βi, j = 1) and taking χ(I) = sgn(I) (resp.
χ(X) = 0) for every independent (resp. dependent) set of the matroid, we obtain
the algebra A(M)⊕Z Q, where A(M) denotes the Z-algebra defined in [7].

For every X ⊂ [n], we denote by [X ]A or shortly by eX when no confusion will
result, the residue class in Aχ(M ) determined by the element eX . Since ℑχ(M ) is a ho-
mogeneous ideal, Aχ(M ) inherits a grading from E . More precisely we have Aχ(M ) =
K⊕A1⊕·· ·⊕Ar, where A` = E`/E`∩ℑχ(M ) denotes the subspace of Aχ(M ) gen-
erated by the elements

{
[I]A : I ∈ IND`(M )

}
. Set nnnbbbccc` :=

{
[I]A : I ∈ NBC`(M )

}
and

nnnbbbccc :=
⋃

`=0 nnnbbbccc`. From Remark 2.1 we conclude that nnnbbbccc` is a basis of the vector
space A`.

Proposition 2.2. Let Aχ(M ) be a χ-algebra. For any non loop element x of M ([n]),
we define the two maps:

χM \x : 2[n]\x→K by χM \x(I) = χ(I), and (2.1)

χM /x : 2[n]\x→K by χM /x(I) = χ(I ∗ x). (2.2)
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Then AχM /x
(M /x) and AχM \x(M \ x) are χ-algebras.

Proof. The deletion case being trivial, we will just prove the contraction case. We have
to show that χM /x verifies properties (UC1) and (UC2). The first property is verified
since a set I is independent in M /x iff I∪x is independent in M . To see that the second
property is also verified, let U and U ′ be two unidependents of M /x (iff U ∪ x and
U ′ ∪ x are two unidependents of M ). We know that ∂eU∪x = ε

U∪x,U ′∪x
(∂eU ′∪x)eU\U ′ .

We denote ∂′ the boundary defined by χM /x and so we will show that there is a scalar
ε

U,U ′
such that ∂′eU = ε

U,U ′
(∂′eU ′)eU\U ′ . Let X , X ′ ⊂ [n] be two disjoint subsets then

eX eX ′ = β
X ,X ′

eX∪X ′ , where β
X ,X ′

= ∏ei∈X,e j∈X ′, i> j βi, j. We have with U = (i1, . . . , im)

and U ′ = ( j1, . . . , jk):

±∂eU∪x =
m

∑
p=1

(−1)pχ(U \ ip ∗ x)eU∪x\ip +(−1)m+1χ(U)eU ,

∂′eU =
m

∑
p=1

(−1)pχ(U \ ip ∗ x)eU\ip ,

± (∂eU ′∪x)eU\U ′ =
k

∑
p=1

(−1)pχ(U ′ \ jp ∗ x)β
U ′∪x\ jp,U\U ′

eU∪x\ jp

+(−1)k+1χ(U ′)β
U ′,U\U ′

eU ,

(∂′eU ′)eU\U ′ =
k

∑
p=1

(−1)pχ(U ′ \ jp ∗ x)β
U ′\ jp,U\U ′

eU\ jp .

After remarking that β
U ′∪x\ jp,U\U ′

β−1
U ′\ jp,U\U ′

= β
x,U\U ′

does not depend on jp, we can

deduce that ∂′eU = ε
U,U ′

(∂′eU ′)eU\U ′ with ε
U∪x,U ′∪x

=±ε
U,U ′

βx,U\U ′ .

Proposition 2.3. For every non loop element x of M ([n]), there is a unique monomor-
phism of vector spaces, ix : A(M \ x)→ A(M ), such that, for every I ∈ IND(M \ x),
we have ix(eI) = eI .

Proof. By a reordering of the elements of the matroid M we can suppose that x = n. It
is clear that

NBC(M \ x) =
{

X : X ⊂ [n−1] and X ∈ NBC(M )
}
.

So the proposition is a consequence of Equation (2.1).

Proposition 2.4. For every non loop element x of M ([n]), there is a unique epimor-
phism of vector spaces, px : A(M )→ A(M /x), such that, for every eI , I ∈ IND(M ),
we have

px(eI) :=





eI\x, if x ∈ I,

χ(I\y,x)
χ(I\y,y) eI\y, if there is y ∈ I parallel to x,

0, otherwise.

(2.3)
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Proof. From Remark 2.1, it is enough to prove that px(∂eU ) = 0, for all unidependent
U = (i1, . . . , im). We recall that if x ∈U then U \x is a unidependent set of M /x. There
are only the following four cases:

◦ If U contains x but no y parallel to x then:

±px(∂eU ) = px

(
(−1)mχ(U \ x)eU\x + ∑

ip∈U\x

(−1)pχ(U \{ip, x}∗ x)eU\ip)
)

= ∑
ip∈U\x

(−1)pχ(U \{ip, x}∗ x)eU\{ip,x} = 0

from Proposition 2.2.

◦ If U does not contain x but a y parallel to x then:

±px(∂eU ) = px

(
(−1)mχ(U \ y)eU\y + ∑

ip∈U\y

(−1)pχ(U \{ip, y}∗ y)eU\ip

)

= ∑
ip∈U\y

(−1)pχ(U \{ip, y}∗ y)
χ(U \{ip, x}∗ x)
χ(U \{ip, y}∗ y)

eU\{ip,y} = 0

like previously since U \ y is again a unidependent of M /x.

◦ If U contains x and a y parallel to x then:

±px(∂eU ) = px

(
χ(U \{x, y}∗ y)eU\x−χ(U \{x, y}∗ x)eU\y

)

= χ(U \{x, y}∗ y)
χ(U \{x, y}∗ x)
χ(U \{x, y}∗ y)

eU\{x,y}−χ(U \{x, y}∗ x)eU\{x,y}

= 0.

◦ If U does not contain x nor a y parallel to x then:

px(∂eU ) = px

(
∑

ip∈U

(−1)pχ(U \ ip)eU\ip

)
= 0.

Theorem 2.5. For every element x of a simple M ([n]), there is a splitting short exact
sequence of vector spaces

0→ A(M \ x)
ix−→ A(M )

px−→ A(M /x)→ 0. (2.4)

Proof. From the definitions we know that px ◦ ix is the null map, so Im(ix) ⊂ Ker(px).
We will prove the equality dim(Ker(pn)) = dim(Im(in)). By a reordering of the ele-
ments of [n] we can suppose that x = n. The minimal broken circuits of M /n are the
minimal sets X such that either X or X ∪{n} is a broken circuit of M (see [5, Proposi-
tion 3.2.e]). Then

NBC(M /n) =
{

X : X ⊂ [n−1] and X ∪{n} ∈ NBC(M )
}

and
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NBC(M ) = NBC(M \n)
⊎{

I∪n : I ∈ NBC(M /n)
}
. (2.5)

So dim(Ker(pn)) = dim(Im(in)). There is a morphism of modules

p
−1
n : A(M /n)→ A, where p

−1
n ([I]A(M /n)) := [I ∪ n]A,∀ I ∈ NBC(M /n).

It is clear that pn ◦p
−1
n is the identity map. From Equation (2.5) we conclude that the

exact sequence (2.4) splits.

Similarly to [15] (see also [4]), we now construct, making use of iterated contrac-
tions, the dual basis nnnbbbccc∗` = (b∗i ) of the basis nnnbbbccc` = (b j). More precisely nnnbbbccc∗` is the
basis of A∗` the vector space of the linear forms such that b∗i (b j) = δi j (the Kronecker
delta).

We associate to the ordered independent set Iσ := (iσ(1), . . . , iσ(p)) of M the linear
form on A`, pIσ : A`→K,

pIσ := peiσ(1)
◦peiσ(2)

◦ · · · ◦peiσ(p)
. (2.6)

We call pIσ the iterated residue with respect to the ordered independent set Iσ. (It is
clear that the map pIσ depends on the order chosen on Iσ and not only on the underlying
set I.) We associate to Iσ the flag of flats of M ,

Flag(Iσ) := c`
(
{iσ(p)}

)
( c`

(
{iσ(p), iσ(p−1)}

)
( · · ·( c`(I).

Proposition 2.6. Let J ∈ IND`(M ) then we have pIσ (eJ) 6= 0 iff there is a unique per-
mutation τ ∈ S` such that Flag(Jτ) = Flag(Iσ). And in this case we have pIσ(eJ) =
χ(Iσ)/χ(Jτ). In particular we have pIσ (eI) = 1 for any independent set I and any per-
mutation σ.

Proof. The first equivalence is very easy to prove in both direction. To obtain the
expression of pIσ(eJ) we just need to iterate ` times the residue. This gives:

pIσ(eJ) =
χ(J \ jτ(`) ∗ iσ(`))

χ(J \ jτ(`) ∗ jτ(`))
×

χ(J \{ jτ(`), jτ(`−1)}∗ iσ(`−1)∗ iσ(`))

χ(J \{ jτ(`), jτ(`−1)}∗ jτ(`−1)∗ iσ(`))

×·· ·×
χ(Iσ)

χ( jτ(1) ∗ Iσ \ iσ(1))
.

After simplification we obtain the announced formula. And finally the last result comes
from the fact that if I = J then clearly τ = σ.

Remark 2.2. The fact that pIσ(eJ) is null depends on the permutation σ. For exam-
ple, for any simple matroid of rank 2 we have p13(e12) = 0 and p31(e12) 6= 0. But if
pIσ(eJ) 6= 0 then its value does not depend on σ. We mean by this that if there are two
permutations σ and σ′ such that pIσ(eJ) 6= 0 and pIσ′ (eJ) 6= 0 then pIσ(eJ) = pIσ′ (eJ).

Definition 2.7. [15] We say that the subset I` ⊂
{
[I]A : I ∈ IND`(M )} is a diagonal

basis of A` if and only if the following three conditions hold:

(2.7.1) For every [I]A ∈ I` there is a fixed permutation of the set I denoted σI ∈S`;
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(2.7.2)
∣∣I`| ≥ dim(A`);

(2.7.3) For every [I]A, [J]A ∈ I` and every permutation τ∈S`, the equality Flag(Jτ) =
Flag(IσI ) implies J = I.

Theorem 2.8. Suppose that I` is a diagonal basis of A`. Then I` is a basis of A` and
I∗` := {pIσI : [I]A ∈ I`} is the dual basis of I`.

Proof. Pick two elements [I]A, [J]A ∈ I`. Note that pIσI (eJ) = δIJ (the Kronecker delta),
from condition (2.7.2) and Proposition 2.6. The elements of I` are linearly indepen-
dent: suppose that [J] = ∑ζ j[I j], ζ j ∈K\0; then 1 = pJσJ ([J]) = pJσJ

(
∑ζ j[I j]

)
= 0, a

contradiction. It is also clear that I∗` is the dual basis of I`.

The following result gives an interesting explanation of results of [6] and [7].

Corollary 2.9. nnnbbbccc`(M ) is a diagonal basis of A` where σI is the identity for every
[I]A ∈ nnnbbbccc`(M ). For a given [J]A ∈ A`, suppose that

(2.9.2) [J]A = ∑ξ(I, J)[I]A, where [I]A ∈ nnnbbbccc`(M ) and ξ(I, J) ∈K.

Then the following two statements are equivalent:

◦ ξ(I, J) 6= 0,

◦ Flag(I) = Flag(Jτ) for some permutation τ.

If ξ(I, J) 6= 0 we have ξ(I, J) = χ(I)
χ(Jτ) . In particular, if A is the Orlik-Solomon algebra

then ξ(I, J) = sgn(τ).

Proof. By hypothesis (2.7.1) and (2.7.2) are true. We claim that nnnbbbccc`(M ) verifies
(2.7.3). Suppose for a contradiction that J 6= I, [J]A, [I]A ∈ nnnbbbccc`(M ) and there is τ∈S`,
such that Flag(Jτ) = Flag(I). Set I = (i1, . . . , i`) and J = ( jτ(1), . . . , jτ(`)), and suppose
that jτ(m+1) = im+1, . . . , jτ(`) = i` and im 6= jτ(m). Then there is a circuit C of M such
that

im, jτ(m) ∈C ⊂ {im, jτ(m), im+1, im+2, . . . , i`}.

If jτ(m) < im [resp. im < jτ(m)] we conclude that I /∈ NBC`(M ) [resp. J /∈NBC`(M )] a
contradiction. So nnnbbbccc`(M ) is a diagonal basis of A`.

From Theorem 2.8 we conclude that nnnbbbccc∗` :=
{
pI : [I]A ∈ nnnbbbccc} is the dual basis

of nnnbbbccc. Suppose now that [J]A = ∑ξI [I]A, where [I]A ∈ nnnbbbccc`(M ) and ξI ∈ k. Then
ξI = pI(eJ) and the remaining follows from Proposition 2.6.

Making full use of the matroidal notion of iterated residue, see Equation (2.6), we
are able to prove the following result very close to [16, Proposition 2.1].

Proposition 2.10. Consider the set of vectors V := {v1, . . . , vk} in the plane xd = 1 of
Kd. Set AK := {Hi : Hi = Ker(vi) ⊂ (Kd)∗, i = 1, . . . , k} and let OT(AK) be its Orlik-
Terao corresponding algebra. Fix a diagonal basis I` ⊂ {[I]A : I ∈ IND`(M )} of A`

and let I∗` = {pIσI : [I]A ∈ I`} be the corresponding dual basis. Then, for any eJ ∈A`\0,
we have

∑
I∈I`

pIσI (eJ) = ∑
I∈I`

〈
pIσI , eJ

〉
= 1.
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Proof. We have for any ` + 1-subset of V , ∑`+1
p=1(−1)pχ(U \ ip) = 0. (This is the

development of a determinant with two lines of 1.) For any rank ` unidependent
U = {i1, . . . , i`+1} of the matroid M (AK), we have

∂eU =
`+1

∑
p=1

(−1)pχ(U \ ip)eU\ip .

Since the sum of the coefficients in these relations is 0 and that these relations are
generating, see Remark 2.1, we can deduce that the sum of the coefficients in any
relation in OT(AK) is also equal to 0 which concludes the proof.

Example 2.2. Consider the 6 points p1, . . . , p6 in the affine plane z = 1 of R3, whose

coordinates are indicated in Figure 1. Set vi :=
−−−→
(0, pi), i = 1, . . . , 6. And let A be the

corresponding arrangement of (R3)∗, A := {Hi = Ker(vi), i = 1, . . . , 6}. Let M (A)
[resp. M(A)] be the corresponding rank three [resp. oriented] matroid.

p1

p3

p2

p4 p5

p6

u u

u

u

u

u(0, 0, 1)

(0, 1
2 ,1)

(0, 1, 1)

( 1
2 , 0, 1) (1, 0, 1)

( 1
3 , 1

3 , 1)
HHHHHHHHHH

A
A
A
A
A
A
A
A
A
A

Figure 1.

Let Aχ be a χ-algebra on M (A). We know that

nnnbbbccc3 = {e124, e125, e126, e134, e135, e136}

together with σ124 = σ125 = σ134 = σ135 = σ136 = σ156 = id is a diagonal basis of A3,
from Corollary 2.9. Directly from the Definition 2.7 we see that B3 = {e124, e125, e134,
e135, e136, e156} with σ124 = σ134 = σ135 = σ136 = σ156 = id and σ125 = (132) is also
a diagonal basis of A3. We will look at expression on the basis nnnbbbccc3 (resp. B3) of
the vector space A3, of some elements of the type eB, B basis of M (A), for the three
χ-algebras of Example 2.1. Especially, one can verify as stated in Remark 2.2 that
p125id(e235) = p125(132)(e235). Let us also point out that for the Orlik-Terao algebra, we
have ∑I∈B pIσ(eJ) = 1 as proved in Proposition 2.10.

◦ Consider the basis nnnbbbccc3 of the K-vector space A3. So we have:

e235 = sgn(325)e125 + sgn(235)e135 =−e125 + e135 in OS(M (A)),
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e235 =
det(125)

det(325)
e125 +

det(135)

det(235)
e135 =−e125 +2e135 in OT(A),

e235 = χ(125)χ(325)e125 +χ(135)χ(235)e135 =−e125 + e135 in A(M(A)),

e156 = sgn(165)e125 + sgn(156)e126 =−e125 + e126 in OS(M (A)),

e156 =
det(125)

det(165)
e125 +

det(126)

det(156)
e126 =

3
2

e125−
1
2

e126 in OT(A),

e156 = χ(125)χ(165)e125 +χ(126)χ(156)e126 = e125− e126 in A(M(A)).

◦ Consider now the basis B3 of the K-vector space A3. So we have:

e235 = sgn(152)sgn(352)e125 + sgn(235)e135 =−e125 + e135 in OS(M (A)),

e235 =
det(152)

det(352)
e125 +

det(135)

det(235)
e135 =−e125 +2e135 in OT(A),

e235 = χ(152)χ(352)e125 +χ(135)χ(235)e135 =−e125 + e135 in A(M(A)),

e126 = sgn(162)sgn(152)e125 + sgn(126)e156 = e125 + e156 in OS(M (A)),

e126 =
det(152)

det(162)
e125 +

det(156)

det(126)
e156 = 3e125−2e156 in OT(A),

e126 = χ(152)χ(162)e125 +χ(156)χ(126)e156 = e125− e156 in A(M(A)).
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