
Colorations, Orthotopes, and a Huge Polynomial Tutte

Invariant of Weighted Gain Graphs

Version of May 12, 2007

David Forge1

Laboratoire de recherche en informatique UMR 8623
Bât. 490, Université Paris-Sud
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1. Introduction

1.1. Weights, gains, and dichromatics. In 1999 Noble and Welsh introduced a dichro-
matic polynomial of graphs whose vertices are weighted by positive integers. The weights
add during contraction, so that when an edge is contracted the new vertex weight is the
sum of the endpoint weights of the edge. Having defined contraction they could formulate
a deletion-contraction reduction formula for their polynomial, and they found the gratifying
fact that the polynomial is a universal Tutte invariant. Curiously, it has infinitely many
variables, one for each positive integer.

A few years later in [5] we introduced weighted integral gain graphs, which can be regarded
as graphs whose edges are orientably labelled by integers, called the gains of the edges
(orientability means that the gain negates if the edge is reoriented), and whose vertices are
assigned integer weights which combine under contraction by taking the maximum (after
an adjustment). These graphs were suggested by a problem of counting lattice points.
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Reinterpreting the lattice points as proper colorations of a weighted integral gain graph
led us to a chromatic function (not quite a polynomial) that counts proper colorations of
the graph. Subsequently we discovered that our chromatic function is an evaluation of a
dichromatic polynomial that has infinitely many variables (one for each integer) and satisfies
Tutte invariance, though it is not universal.

When we learned of Noble and Welsh’s work we noticed that both their and our graphs
have weights taken from an abelian semigroup (the positive integers with addition, or all
integers with maximization), and in our case there is an action of Z, the group from which
the gains are drawn, on the weight semigroup. In this paper we present a vast common
generalization, in which the edges are labelled by a gain group that is lattice-ordered and
acts upon an abelian weight semigroup; furthermore, there is a color filter that restricts the
colors at each vertex, so that the number of proper colorations is a function of the choice of
filter. Then there is a dichromatic polynomial with one variable for each potential weight,
and in examples where we can define a proper coloration, the number of proper colorations,
while not a polynomial itself, is an evaluation of the dichromatic polynomial.

With this machinery we extend our prior work on integral gain graphs.
First, taking the weight semigroup to be the class of order ideals in the integer lattice Z

d

with the semigroup operation of set union and with the translation action of the additive
gain group Z

d (Section 5.3) leads to a new definition of proper colorations of the gain graph;
these colorations correspond to lattice points in Z

d|V | and can be counted in terms of the
dichromatic polynomial.

Second, letting the weight semigroup be the class of sets of integers that are bounded
below, we count integral proper list colorations of the gain graph (Section 5.2).

Finally, an integral orthotope is a rectangular parallelepiped whose edges are parallel to the
coordinate axes and whose vertices have integer coordinates. An affinographic hyperplane is
a hyperplane of the form xj = xi +a. Letting the weight semigroup be Z with maximization,
and letting the color filter be an interval (−∞,M) in Z

n, we obtain a formula (Theorem 1.1)
for the number of integer points that lie in an integral orthotope but are not contained in
any of a given arrangement (a finite set) of affinographic hyperplanes. This improves on [5],
which dealt only with the case of a hypercube. We also get several generalizations of this
result (see Theorem 1.2 and Section 5.4).

A brief outline is that, after introductory details, we discuss weighted gain graphs in
Section 2, our new dichromatic polynomial in Section 3 and a Tutte-style tree expansion of
it in Section 4, colorations in Section 5, weights without gains in Section 6, and in the last
section some ideas about further development of the theory.

1.2. Tutte invariance. A function defined on objects O, such as graphs or matroids, having
a ground set and operations of deletion and contraction of ground-set elements, is a Tutte
invariant if it satisfies the three conditions:

(A) Additivity: For every non-detachable element e, f(O) = f(O \ e) + f(O/e).
(M) Multiplicativity: The value of f on O is the product of its values on the components

of O.
(I) Invariance: If O and O′ are isomorphic, then f(O) = f(O′).

(U) Unitarity: f equals 1 on trivial objects.

The definitions of isomorphism, of components, of detachable element, and of triviality
depend on the kind of object under consideration.
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The most popular Tutte invariants have been those of graphs in which one takes a compo-
nent to be a block and the detachable elements to be the loops and isthmi; edgeless graphs
are trivial objects. These invariants are Tutte invariants of graphic matroids, and they ex-
tend to all matroids. Examples are the number of bases or maximal forests, the characteristic
or chromatic polynomial (modulo a normalization), and the Tutte polynomial, a 2-variable
polynomial TO(x, y) that is not only a Tutte invariant but is universal : every other Tutte
invariant is obtained from the Tutte polynomial by fixing values for x and y. This kind of
Tutte invariant of graphs was discovered by Tutte [10] and extended to matroids by Crapo
[3]; universality on graphs is due to Tutte [10] and on matroids to Brylawski [1]. The polyno-
mial arises from graphs by taking a component to be a block and the detachable elements to
be the loops and isthmi. The trivial object is the empty matroid, corresponding to edgeless
graphs.

A different kind of Tutte invariant of graphs appears if we take components to be con-
nected components, the detachable elements to be the loops, and the empty graph to be
trivial. (Tutte called these invariants V -functions.) For these Tutte invariants there is also
a universal Tutte-invariant polynomial; this one has infinitely many variables, one for each
nonnegative integer [10, 12].

In Noble and Welsh’s weighted ordinary graphs the detachable elements are loops, com-
ponents are connected components, and the empty graph is trivial. Once again, there is a
universal Tutte-invariant polynomial with countably infinitely many variables, which they
call WG(x1, x2, . . . , y).

In the weighted integral gain graphs of [5] the detachable elements are also loops, compo-
nents are connected components, and the empty graph is trivial. We found that the function
counting proper colorations is a Tutte invariant, but it is far from universal.

1.3. Something new. Our new objects are weighted gain graphs. The edges are orientably
labelled from a group and the vertices are weighted from a semigroup. There is a total dichro-
matic polynomial in which, in effect, the coloop variable x of the classical Tutte polynomial
splits into a number of variables indexed by the semigroup. (Our polynomial is not strictly a
Tutte polynomial but is a refinement and generalization of the two dichromatic polynomials
of a gain graph [15, Section III.3], which in turn were based on Tutte’s dichromatic polyno-
mial of a graph [11].) The actual number of variables may be uncountably infinite, even in
an interesting combinatorial problem (see the end of Section 5.3 in particular). We believe
such a plethora of variables has never before been observed.

Our polynomial falls short of universality. That may be because we have not found a big
enough polynomial or the right definitions of detachable elements and so forth, but Section
7.1, where we produce other Tutte invariants that cannot be evaluations of our polynomial
(they appear to be something like quotients rather than evaluations of the dichromatic
polynomial), leads us to believe that there is a more fundamental reason. There may, in
fact, be no universal polynomial. This would be a new phenomenon for Tutte invariants,
though it is known to occur with parametrized or colored Tutte invariants (cf. [16], for
instance).

If as in Noble and Welsh’s graphs all gains equal the group identity (so in effect there are
no gains), we have weighted ordinary graphs. The number of independent variables in the
total dichromatic polynomial, though, is the same. (See Section 6.)

Reexamined in light of the generality of semigroup weights, the problem of [5] of counting
proper colorations of a weighted integral gain graph suggests the new problem of counting
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list colorations of a graph (either with or without edge gains) where the list is an upwardly
infinite set of integers and the choice of colors is constrained by a variable upper bound
m (Section 5.1). With a mild restriction on the lists, the number of proper colorations is
an evaluation of the total dichromatic polynomial of a weighted integral gain graph whose
weights are the vertex lists, in which there are uncountably many possible variables, one
for each list. Each list variable is given a value that depends on m. With a slight further
restriction on the lists the number of proper colorations becomes a polynomial function of
m when m is sufficiently large. All this generalizes to a wide range of weighted graphs and
gain graphs. An example is coloring a graph whose gains are in Z

d by colors from Z
d (this

is the order-ideal example we referred to earlier), and there is a partial generalization to any
lattice-ordered gain group with list coloring by colors in the group.

1.4. Lattice points in orthotopes. Our original reason for developing a theory of weighted
gain graphs was an application to geometry. An integral orthotope is a rectangular paral-
lelepiped with edges parallel to the coordinate axes. Our wish is to count the points of the
integer lattice that lie in an orthotope but not in any of a certain arrangement of affino-
graphic hyperplanes. We state two theorems of this kind here to give the flavor of our
geometrical results. (Perhaps the statements seem rather technical; it might be helpful to
read the technical definitions in Section 2 now.)

Suppose we have an arrangement A of affinographic hyperplanes. An integral gain graph
is a graph whose gain group is (Z,+). We construct an integral gain graph Φ that has one
vertex vi for each coordinate and an edge aeij for each hyperplane xj = xi + a in A. This
means there is an edge vivj with gain a in the indicated direction; the gain of that edge in
the other direction, from vj to vi, is −a. If we have an edge set B such that every circle in B
has gain 0 (then B is called balanced), we define in each component Bk (including isolated
vertices as components) a vertex tk such that no path Bwtk in Bk from any vertex w to tk
has negative gain. The gain of such a path is the sum of the constants a appearing in the
equations of the corresponding hyperplanes xj = xi + a, each one oriented so that the path
leads from vi to vj . For instance, if the path is e14e42e28 with vertices v1, v4, v2, t = v8, and
the corresponding hyperplanes are x4 = x1 + a, x4 = x2 + b, x8 = x2 + c, then the gain of
the path is a − b + c. Finally, let gk be the maximum gain of a path in Bk; this also equals
the largest gain of paths that ends at tk.

The first result generalizes the main theorem of [5], which applied only to hypercubes,
where all mi = m. We write x+ := max(0, x), the positive part of the real number x.

Theorem 1.1. Let P := [0,m1] × · · · × [0,mn] be an orthotope in R
n and let A be an

arrangement of affinographic hyperplanes. The number of integer points in P \
⋃

A equals
∑

B⊆E: balanced

(−1)|B|
∏

Bk

(

1 + min
vi∈V (Bk)

[mi + ϕ(Bvitk)] − gk

)+
,

where the product is over all components of B.

The proof is in Section 5.4. One can see that the count is a polynomial function of the
arguments mi when they are all sufficiently large.

For the second theorem, suppose that for each coordinate xi we have a finite list Li of
possible integral values. We want to count lattice points in L1 × · · · ×Ln that are in none of
the hyperplanes of the affinographic arrangement A. Of course, this generalizes the preceding
theorem, but the viewpoint is different and the formula is much more complex.
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Theorem 1.2. The number of these lattice points is given by the formula
∑

B⊆E: balanced

(−1)|B|
∏

Bk

∣

∣

∣

⋂

vi∈V (Bk)

(

Li + ϕ(Bvitk)
)

∣

∣

∣
,

where the product is over all components of B.

That is, we take the intersection of translates of the lists, governed by the gains of paths
in the chosen balanced edge set B. The proof is in Section 5.4, which also has a common
generalization of both results.

We even have a formula for the number of n×d integral matrices in an integral orthotope
in Z

nd that do not lie in any of a class of d-codimensional subspaces whose equations compare
rows of the matrix (Section 5.4).

2. Weighted gain graphs

2.1. Graphs. Edges of a graph Γ = (V,E) are of four kinds. A link has two distinct
endpoints; a loop has two coinciding endpoints. A half edge has one endpoint, and a loose
edge has no endpoints. (Half and loose edges have a negligible role in this paper except in
Section 2.4.) The set of loops and links is written E∗. Multiple edges are permitted. We
write n := |V | and V = {v1, v2, . . . , vn}. All our graphs have finite order and indeed are
finite (except for root edges, when they appear). A (connected) component of Γ is a maximal
connected subgraph that is not a loose edge; we do not count a loose edge as a component.
The number of components is c(Γ). For S ⊆ E, we denote by c(S) the number of connected
components of the spanning subgraph (V, S) (which we call the components of S) and by
π(S) the partition of V into the vertex sets of the various components. We write Svw to
denote any path in S from v to w (if one exists).

2.2. Gain graphs. A gain graph Φ = (Γ, ϕ) consists of a graph Γ = (V,E), a group G called
the gain group, and an orientable function ϕ : E∗ → G, called the gain mapping. (Half and
loose edges do not have gains.) The basic reference is [15, Part I]. “Orientability” means
that, if e denotes an edge oriented in one direction and e−1 the same edge with the opposite
orientation, then ϕ(e−1) = ϕ(e)−1. (It does not mean that Γ is directed; there is no fixed
orientation of any edge.) We sometimes use the simplified notations eij for an edge with
endpoints vi and vj , oriented from vi to vj , and geij for such an edge with gain g; that is,
ϕ(geij) = g. (Thus geij is the same edge as g−1eji.) A circle is a connected 2-regular subgraph
without half edges, or its edge set; for instance, a loop is a circle of length 1. We may write
a circle C as a word e1e2 · · · el; this means the edges are numbered consecutively around C
and oriented in a consistent direction. The gain of C is ϕ(C) := ϕ(e1)ϕ(e2) · · ·ϕ(el); this is
well defined up to conjugation and inversion, and in particular it is well defined whether the
gain is the identity 1 or not. An edge set or subgraph is called balanced if every circle in it
has gain 1 and it has no half edges. The notation c(Φ) means c(Γ).

For W ⊆ V , the subgraph induced by W is notated Γ:W , or with gains Φ:W . The edge set
of Γ:W consists of all edges that have at least one endpoint in W and no endpoint outside
W ; thus, half edges at vertices of W are included, but loose edges are not. If S ⊆ E, then
S:W means the subset of S induced by W .

Switching Φ by a switching function η : V → G : vi 7→ η(vi) means replacing ϕ by

ϕη(eij) := η(vi)
−1ϕ(eij)η(vj).
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We write Φη for the switched gain graph (Γ, ϕη). It is clear that the switching action is
an action of the group G

V of switching functions on the set G
E of gain functions on the

underlying graph.
Consider a balanced edge set S. Let Svivj

denote a path in S from vi to vj, if one exists;
the gain ϕ(Svivj

) is independent of the particular path because S is balanced. There is a

switching function η such that ϕη
∣

∣

S
≡ 1 [15, Section I.5]; it is determined by any one value

in each component of S through the formula

(2.1) η(vj) = ϕ(Svjvi
)η(vi),

We call η a switching function for S. Any two different switching functions for S, η and η′,
are connected by the relation

(2.2) η′ = η · αW

for constants αW ∈ G, one for each W ∈ π(S). (In fact, αW = η(vi)
−1η′(vi) for any

vi ∈ W ; this is easy to deduce from (2.1).) Thus, as long as the endpoints of an edge
eij are in the same component of S, ϕη(eij) = η(vi)

−1ϕ(eij)ϕ(Svjvi
)η(vi), which is uniquely

determined up to conjugation. (If eij has endpoints in distinct components of S, then
ϕη(eij) = η(vi)

−1ϕ(eij)η(vj) can be anything, since η(vi) and η(vj) are independently choos-
able elements of G.)

The operation of deleting an edge or a set of edges is obvious. The notation for Φ with E\S
deleted, called the restriction of Φ to S, is Φ|S = (V, S, ϕ|S). The number of components of
S that are balanced is b(Φ|S) or briefly b(S) (recall that this counts isolated vertices but not
loose edges); πb(S) = πb(Φ|S) is the set {W ∈ π(S) : (S:W ) is balanced}; V0(S) is the set
of vertices that belong to no balanced component of S; and Vb(S) denotes the set of vertices
of balanced components, Vb(S) = V \ V0(S).

Contraction is not so obvious. We take the definition from [15]. First, we describe how to
contract a balanced edge set S. We first switch by η, any switching function for S; then we
identify each block W ∈ π(S) to a single vertex and delete S. The notation is Φη/S. This
contraction depends on the choice of η, so Φη/S is well defined only up to switching. (Soon,
however, we shall see how to single out a preferred switching function.)

For a general subset S we first delete the vertex set V0(S), then contract the remaining part
of S, which is the union of all balanced components of S, and delete any remaining edges of
S. Edges not in S that have one or more endpoints in V0(S) lose those endpoints but remain
in the graph, thus becoming half or loose edges. So, the contraction has V (Φ/S) = πb(S)
and E(Φ/S) = E \ S.

A balanced edge set S is called closed if it contains every loose edge and any edge geij

whose endpoints are joined by an open path P ⊆ S with the same gain (P has length 0 if
i = j) is itself in S. This is equivalent to saying S equals its own closure; the closure of a
balanced edge set S is given by

cl(S) := S ∪ {e /∈ S : e is contained in a balanced circle C ⊆ S ∪ {e}} ∪ {loose edges},

and is balanced [15, Proposition I.3.1]. The semilattice of all closed, balanced edge sets in
Φ is written Latb Φ.

2.3. Ordered gain groups. For the rest of this article we assume the gain group is lattice
ordered. (It may be totally ordered; this case has some special features.)
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We continue thinking of a balanced edge set S. The ordering singles out a particular
switching function for S, the one for which the meet of its values on each block of π(S) is
the identity. We call this the top switching function and we write it ηS; it is what we use for
switching throughout the rest of this article. Because S is balanced, the gain of every path
Svw is the same.

Lemma 2.1. The top switching function ηS has the formula

ηS(v) =
∨

w

ϕ(Svw),

where w ranges over vertices connected by S to v, and for its inverse

ηS(v)−1 =
∧

w

ϕ(Swv).

Proof. We use the identity (α ∧ β)−1 = α−1 ∨ β−1.
We know two properties of ηS. As a switching function for S it satisfies (2.1). As a top

switching function it satisfies
∧

w∈W ηS(w) = 1. Equation (2.1) lets us rewrite this as

∧

w∈W

ϕ(Swv)ηS(v) = 1.

Factoring out ηS(v),

ηS(v) =
[

∧

w∈W

ϕ(Swv)
]−1

=
∨

ϕ(Swv). �

In view of the importance of the meet of switching-function values, we define

η(X) :=
∧

v∈X

η(v)

for X ⊆ V .
Now, to contract S we first switch by ηS; then we identify each block W ∈ π(S) to a

single vertex and delete S. The contraction ΦηS/S, which we call the top contraction, we
usually write Φ/S for brevity. The contraction Φ/S is now a unique gain graph, because the
gain-group ordering allows us to specify the switching function uniquely.

When the group is totally ordered, there is a top vertex in every component of S, a vertex
t such that no path in S that begins at t has positive gain; this is any vertex for which
ηS(t) = 1. Then the rule for defining ηS is that its minimum value on each block is the
identity. A top vertex may also happen to exist when G is not totally ordered. If ti denotes
a top vertex in the same component of S as vi, then the top switching function has the
formula

(2.3) ηS(vi) = ϕ(Sviti).

The gain function ϕ switched by ηS is given by the formula

(2.4) ϕηS(eij) = ϕ(Sviti)
−1ϕ(eij)ϕ(Svjtj) = ϕ(Stivi

eijSvjtj).
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2.4. Weights. Suppose we have an abelian semigroup W (written additively) and a group
G. We say G acts on W if each g ∈ G has a right action on W which is a semigroup
automorphism satisfying the usual identities, i.e., (hg)g′ = h(gg′) and h1 = h.

A weighted gain graph (Φ, h) is a gain graph Φ together with a weight function h : V → W.
We usually write hi := h(vi). The way h transforms under switching is that

hη
i = hη(vi) := hiη(vi)

(as if hi were the gain of an edge oriented into vi from an extra vertex at which η is the
identity). Thus, the switching group GV has a right action on the set WV of weight functions.
The contraction rule is that, first, we always contract with top switching; and if W ∈ πb(S),
then the weight function hS in the contraction (Φ, h)/S is given by

hS(W ) :=
∑

vi∈W

hηS

i .

If R ⊆ S and πb(R) = πb(S), then hR = hS.
If there is a top vertex ti in the component S:W that contains vi, then hηS

i = hiϕ(Sviti)
and hS(W ) =

∑

vi∈W hiϕ(Sviti).
We have occasion to contract the induction (Φ, h):W := (Φ:W,h|W ) of the entire weighted

graph by the induction S:W of an edge set, where W ∈ πb(S); we ought to write this
((Φ, h):W )/(S:W ) but we simplify the notation to (Φ, h)/S:W .

The next result states the fundamental properties of deletion and contraction of weighted
gain graphs.

Proposition 2.2. In a weighted gain graph (Φ, h), let S ⊆ E be the disjoint union of Q and
R. Then

((Φ, h)/Q)/R = (Φ, h)/S,

((Φ, h)/Q) \ R = ((Φ, h) \ R)/Q,

((Φ, h) \ Q) \ R = (Φ, h) \ S.

Proof. We may suppose Φ is connected. The two latter formulas are obvious.
The first one is not; indeed, in a purely technical sense it is false, since V (Φ/S) = πb(Φ|S)

while V ((Φ/Q)/R) = πb(Φ/Q|R); but it is correct if we identify W ∈ πb(Φ|S) with W ′′ ∈
πb(Φ/Q|R) in the natural way: W corresponds to W ′′ = {X ∈ πb(Φ|Q) : X ⊆ W} and
conversely W ′′ corresponds to W =

⋃

W ′′ = {w ∈ V (Φ) : w ∈ X for some X ∈ W ′′}.
In proving the first formula, the first step is to show that we can assume S is balanced.

It is a routine check to see that Φ/S and Φ/Q/R have the same half and loose edges. Since
V (Φ/S) = πb(S), we have

(Φ/S)∗ = [(Φ:U)/(S:U)]∗ and (Φ/Q/R)∗ =
[(

(Φ:U)/(Q:U)
)

/(R:U)
]∗

where U := Vb(S) and the superscript ∗ denotes that loose and half edges are to be deleted.
Since S:U is balanced, both Q:U and R:U are also balanced. The weights of the contractions
only appear on vertices of Φ/S so they depend only on vertices and edges in U ; the same
holds true for Φ/Q/R. It follows that

((Φ, h)/S)∗ = [((Φ, h):U)/(S:U)]∗

and
((Φ, h)/Q/R)∗ =

[(

((Φ, h):U)/(Q:U)
)

/(R:U)
]∗

.
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This proves that we may confine our attention to the balanced spanning subgraph (U, S:U)
in Φ:U ; thus, we may from now on assume S is balanced.

Let η′
S be the top switching function for ΦηQ |S and let η′′

R be that for Φ/Q|R. (Recall that
Φ/Q means ΦηQ/Q.) The key to the proof is the factorization identity

(2.5) ηS(v) = ηQ(v)η′
S(v),

which shows that the effect of ηS, which is to switch so ϕ|S becomes 1, can be divided into
two stages: first switching by ηQ so that ϕ|Q becomes 1, and then switching by η′

S, which is
constant on components of Q.

In proving (2.5), first we compare ηQ and ηS. Since they are two switching functions for
Q, they are related by (2.2). Specifically, let X ∈ π(Q) and W ∈ π(S), with X ⊆ W ; then
ηS(v) = ηQ(v)αX for v ∈ X. Taking the meet over X, ηS(X) = ηQ(X)αX = 1αX , so

ηS(v) = ηQ(v)ηS(X)

for v ∈ X. Next we show that ηS(X) = η′
S(v). Define η̄ := ηQη′

S. It is easy to verify that
η̄ is a switching function for S. Taking the meet over all v ∈ W , and taking note that
η′

S(v) = η′
S(X) for v ∈ X because η′

S is constant on X, we find that

η̄(W ) =
∧

v∈W

ηQ(v)η′
S(v) =

∧

X∈W ′′

[

∧

v∈X

ηQ(v)
]

η′
S(X)

=
∧

X∈W ′′

1η′
S(X) =

∧

v∈W

η′
S(v) = 1.

Thus η̄ is a top switching function for S and, as there is only one, it equals ηS. This proves
(2.5).

From (2.5) it follows that ϕηS = (ϕηQ)η′

S and hηS(v) = (hηQ)η′

S (v), thus establishing that

(2.6) (Φ, h)ηS =
(

(Φ, h)ηQ
)η′

S .

Now we can analyze the process of contraction. We know from [15, Theorem I.4.7 and
the proof of Theorem I.5.4] that Φ/Q/R ∼ Φ/S (where Φ1 ∼ Φ2 means that each of them
is a switching of the other). But the switching equivalence is really equality because the
switching functions employed are related by Equation (2.5). Thus, Φ/S = Φ/Q/R.

The last step is to prove that weights contract properly. The key here is that contraction
by Q commutes with two-stage switching, i.e.,

(2.7) (hηQ/Q)η′′

R = (hηQ)η′

S/Q.

Observe that η′
S is constant on each X ∈ π(Q) and its common value is η′′

R(X). Expanding
both sides according to the definitions of switching and contraction, this is equivalent to

(

∑

w∈X

hηQ(w)

)

η′′
R(X) =

∑

w∈X

hηQ(w)η′
S(w),

which is true because η′
S(w) = η′′

R(X). That concludes the proof of (2.7).
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Equations (2.6) and (2.7) imply the double contraction formula through the sequence of
transformations

(Φ, h)/Q/R =
(

(Φ, h)ηQ/Q
)η′′

R/R by definition

=
(

(Φ, h)ηQη′

S/Q
)

/R by (2.7)

=
(

(Φ, h)ηS/Q
)

/R by (2.6)

= (Φ, h)ηS/S

in the loose sense previously defined in terms of the correspondence W ↔ W ′′. �

Example 2.1 (Weighted integral gain graphs; linearly ordered group weights). Our original
example [5] was that of weighted integral gain graphs, where the gain group is the additive
group of integers and the weight semigroup is the integers with the operation of maximization.
In other words, G = (Z,+) and W = (Z,max).

A similar kind of example exists for every linearly ordered gain group, with W = (G,max)
or (G,min).

Example 2.2 (Semilattice weights). To further generalize Example 2.1, let W be a semilattice
with a G-action; the semigroup operation is the semilattice operation. In an important
example of this type there is a set C on which there is a right action of the gain group; the
weights are subsets of C, i.e., W ⊆ P(C); and the semigroup operation is set intersection—so
W must be closed under intersection. (In Section 5 C will be a color set and the weight
hi ⊆ C will be treated as the list of colors possible for vertex vi.)

Generalizing minimization, let C be a partially ordered set and let the weights be order
ideals in C. If C is a meet semilattice, one may restrict the weights to be principal ideals.
There are also the order duals of these examples.

When, on the other hand, C = G with the right translation action, one may take W =
P(G), for instance, or the class of principal dual order ideals (since G is a lattice), or the
class of sets that have a lower bound (that is, all subsets of principal dual ideals). The dual
of this last, with gain group Z was the prototype of weighted gain graphs, as we explain
next.

2.5. Rooted integral gain graphs. The curious reader will be wondering how we came
to semigroup weights. Originally, in [5], there was a rooted integral gain graph, which is an
integral gain graph Ψ with a root vertex v0 such that the gains of edges e0i form an interval
(−∞, hi] in the gain group Z, the infinite cyclic group. (This is the one exception to our
assumption that gain graphs are finite.) In top switching of a balanced set S of nonroot
edges of Ψ, one always takes ηS(v0) = 0. This implies a rule for how the value hi changes
under switching. We used this rule in studying the chromatic function, which count proper
colorations in an interval (−∞,m], of a rooted integral gain graph, as explained in Example
5.3.

An equivalent presentation omits the root and simply specifies an integral weight hi on
each vertex of Φ := Ψ \ v0. Then switching in Ψ, transferred to the rootless integral gain
graph Φ, implies the rule hη = h + η for switching the weights hi. That is the rule adopted
and generalized in Section 2.4.

Similarly, contraction, defined in the standard gain-graphic way on Ψ and reinterpreted in
terms of integral weights hi on Φ, assigns to a set W ∈ πb(S) (as a vertex in Φ/S) a weight
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equal to the maximum weight of a vertex in W after switching; thus the weights belong to
the set Z but with the semigroup operation of maximization instead of the group operation
of addition. (Technically, contraction of a nonroot edge may create parallel root edges with
the same gain, but for our purposes parallel root edges can be ignored.)

We noticed that one could get similar but more general conclusions about the chromatic
function by allowing the root-edge gains to form fairly arbitrary sets Hi, instead of just
intervals (−∞, hi] as in the original rooted integral gain graphs, and especially if the gain set
Hi is any subset of Z that is bounded above and has complement bounded below (see Section
5.1, where the weights are the complements of these gain sets). The effect of contraction on
the gain sets is to take the union. Thus we had a new weight semigroup; instead of Z, it
consisted of all subsets that are bounded above and cobounded below. It became apparent
that the semigroup can be treated independently of the gain group except for the action of
the latter upon the former.

Thus, although the vertex weights can no longer be interpreted as gains of root edges, our
thinking is based on the model of a rooted integral gain graph.

3. A Tutte-invariant polynomial

A function f defined on weighted gain graphs (with fixed gain group and weight semigroup)
is a Tutte invariant if it satisfies the three conditions from the introduction:

(Ti) (Additivity) For every link e,

f(Φ, h) = f(Φ \ e, h) + f(Φ/e, h/e),

where h/e denotes the contracted weight function.
(Tii) (Multiplicativity) The value of f on (Φ, h) is the product of its values on the compo-

nents of (Φ, h).
(Tiii) (Invariance) If (Φ, h) and (Φ′, h′) are switching isomorphic, then f(Φ, h) = f(Φ′, h′).

(Switching isomorphism means an isomorphism of underlying graphs that preserves
gains and weights up to switching.)

(Tiv) (Unitarity) f(∅) = 1.

We present here an algebraic Tutte invariant. We need variables uk for all k ∈ W; the
collection of all uk’s is denoted by u. The total dichromatic polynomial of a weighted gain
graph is

(3.1) Q(Φ,h)(u, v, z) :=
∑

S⊆E

v|S|−n+b(S)zc(S)−b(S)
∏

W∈πb(S)

uhS(W ),

where

hS(W ) :=
∑

w∈W

hηS(w).

This polynomial refines the balanced and ordinary dichromatic polynomials of a gain graph
or biased graph [15, Section III.3], which are obtained by setting all uk = u and z = 0 or
z = 1, respectively. (Thus the total polynomial with all uk = u fills a gap in the theory of
[15, Part III] by unifying the balanced and ordinary polynomials.)

For a graph with no edges,

(3.2) Q((V,∅),h) =
∏

vi∈V

uhi
.
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If e is a balanced loop or a loose edge,

(3.3) Q(Φ,h) = (v + 1)Q(Φ\e,h).

Theorem 3.1. The total dichromatic polynomial Q(Φ,h)(u, v, z) is a Tutte invariant of weighted
gain graphs.

Proof. Invariance, unitarity, and multiplicativity are obvious. For additivity we follow the
usual proof method, dividing up the terms of the defining sum into two parts: those sets
S that do not contain the link e and those sets that do contain e. The sum of the for-
mer terms obviously equals Q(Φ,h)\e(u, v, z) and the sum of the latter, we shall see, equals
Q(Φ,h)/e(u, v, z).

A set S ∋ e contracts to a set R = S \ e in Φ/e whose balanced components correspond
to those of S. That is, if S0 is a balanced component of S, then S0 (if e /∈ S0 or S0/e
(if e ∈ S0) is a balanced component of R, and vice versa. (This follows from [15, Lemma
I.4.3].) So b(Φ/e|R) = b(Φ|S). Since Φ/e has order n − 1, the term of S in Q(Φ,h) and that
of R in Q(Φ,h)/e are the same except for the factors uhS(W ) in the former and uhR(W ′′) in the
latter, where W ′′ is the block of πb(Φ/e|R) that corresponds to W . We want to show that
these factors are equal, i.e., that hS(W ) = hR(W ′′). But the former is h/S and the latter is
(h/e)/R, which we know by Proposition 2.2 to be equal.

It follows that Q satisfies additivity, so is a Tutte invariant. �

4. Tree expansion

We turn to an expression for the balanced dichromatic polynomial, Q(Φ,h)(u, v, 0), that
depends on a linear ordering of the edge set. We fix one such ordering O and in terms of it we
define a spanning-tree expansion similar to the Tutte polynomial of a matroid. The details
are in Section 4.3, after some preliminary work with independent sets in semimatroids and
gain graphs.

4.1. Activities in semimatroids. A semimatroid is a generalization of a matroid that
extends properties like rank and closure of the family of balanced edge sets in a gain graph.
The theory was developed by Wachs and Walker in [13]. Just as with matroids, there are
many equivalent ways to define a semimatroid. We define a semimatroid in terms of a
matroid M0 with ground set E0 and a basepoint e0. A subset of E := E0 \ e0 whose closure
in M0 does not contain e0 is called balanced ; the family of balanced sets is denoted by Pb(M).
The semimatroid M associated with (M0, e0) is the family of all balanced subsets of E with
closure operator, rank function, closed or independent sets, circuits, and so forth the same
as those of M0 but restricted to balanced sets.

For instance, the independent sets of M are the ones of M0 whose closures do not contain
e0. The closed sets of M are those of M0 that do not contain e0. A fundamental fact is that
if S is balanced, the closure cl0 S (in M0) is balanced. Consequently, the closure clS in M
equals cl0 S. Also, any circuit in clS is balanced. A maximal balanced independent set, that
is, a maximal independent set of M , is called a semibasis.

If e0 is a loop or coloop in M0, then M is the matroid M0\e0. Otherwise, E is not balanced
and M is not a matroid.

We develop some facts about independent sets, activities, and broken circuits in a semima-
troid. Some of them are already known for matroids. We could not find an explicit source
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for exactly these results, but [4] and [6, Section 2] have theorems along similar lines. A
reference for the fundamentals of activities in matroids is [1] or [2].

First, some basic definitions. Let F be independent in M0. For a point e ∈ (cl0 F ) \ F ,
there is a unique circuit contained in F ∪ e; it is called the fundamental circuit of e with
respect to F and denoted by CF (e). It is balanced if (but not only if) F is balanced. For a
point f ∈ F , we call cl0(F ) \ cl0(F \ f) the fundamental relative cocircuit of f with respect
to F , written DF (e). If F is balanced, the closures are in M so cl0 can be replaced by cl.

We fix a linear ordering O of E. Consider an independent set F of the semimatroid M
(that is, a balanced independent set of M0). We say that a point e is externally active (in
M) with respect to F if e /∈ F and e is the largest point in CF (e) (so only a point in (clF )\F
can be externally active). A point e is internally active (in M) with respect to F if it is in
F and it is the largest point in DF (e). A point that is not active is internally inactive if
it belongs to F and externally inactive if it belongs to (clF ) \ F . The sets of internally or
externally active or inactive points with respect to F are denoted by IA(F ), EA(F ), II(F ),
EI(F ). The number of externally active points is ε(F ). The number of internally active
points is ι(F ).

The definitions for M0 are the same, except for the omission of the word “balanced”,
replacement of cl by cl0, and the need to linearly order all of E0. Thus we have IA0(F ), etc.;
but when F is balanced, these are the same as IA(F ), etc.

A broken (balanced) circuit is a (balanced) circuit with its largest element removed. Note
that a set may be a broken circuit and balanced without being a broken balanced circuit;
for an example let M0 itself be a circuit and order E0 so e0 is largest; then E is balanced
and a broken circuit, but there are no broken balanced circuits.

Lemma 4.1. Let F be independent in the semimatroid M . Then II(F ) is the union of all
broken balanced circuits in F .

Proof. If D is a broken balanced circuit in F , there is a point e ∈ (clF )\F which is maximal
in its fundamental circuit CF (e) = D∪{e}. Any f ∈ D is internally inactive because e >O f
and e, f ∈ (clF ) \ F . �

Lemma 4.2. If F ′ is independent in the semimatroid M and F ⊆ F ′, then II(F ) ⊆ II(F ′).

Proof. Immediate from Lemma 4.1. �

Each point set S has a minimal basis F (S), the basis that is lexicographically first in O;
it is the one obtained by the greedy algorithm applied to S. It is balanced if and only if F
is balanced. The next lemma says that the inverse of the mapping S 7→ F (S) partitions the
power set of E0 into intervals [F, F ∪ EA0(F )], one for each independent set F , and either
all sets in the interval are balanced or all are unbalanced.

Lemma 4.3. Let F be independent in M0 and let S ⊆ E0. For the minimal basis of S to be
F , it is necessary and sufficient that F ⊆ S ⊆ F ∪EA0(F ). Further, F ∪EA0(F ) is balanced
if and only if F is balanced.

Proof. Assume F is the minimal basis of S and write F = e1e2 · · · in increasing order in O.
Every e ∈ S \ F has a fundamental circuit CF (e). Suppose e is not externally active with
respect to F , so that CF (e) = · · · ee′ · · · ; let e′ = ek+1. The set {e1, . . . , ek, e} is independent
because the only circuit it could contain is CF (e), but e′ ∈ CF (e) \ {e1, . . . , ek, e}. Consider
the greedy algorithm for finding F . After choosing e1, . . . , ek, the next point chosen cannot
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be e′, because e (or some other point different from e′) would be preferred as it has not been
chosen, it precedes e′ in the ordering, and {e1, . . . , ek, e} is independent. Thus, ek+1 6= e′.
This is a contradiction. Therefore, e must be externally active.

Assume F ⊆ S ⊆ F ∪ EA0(F ). Thus, F is a basis for S; we want to show it is minimal.
Let e ∈ S \F and write CF (e) = e1 · · · ekek+1 in the ordering O; then e = ek+1. In the greedy
algorithm for constructing the minimal basis F (S), each point e1, . . . , ek, ek+1 is considered
in order for inclusion. Let Fi(S) be the set of points that have already been chosen when ei is
considered for inclusion. If ei is not then chosen for F (S), it is because ei ∈ cl Fi(S). If ei is
chosen, then ei ∈ Fi+1(S). Thus, all of e1, . . . , ek ∈ cl Fk+1(S). It follows that e ∈ cl Fk+1(S),
so e /∈ F (S). This shows that no point of EA0(F ) can belong to the minimal basis F (S);
hence, F (S) ⊆ F and by comparing ranks we see that F (S) = F .

The last part of the lemma follows because EA0(F ) ⊆ cl0 F , which is balanced if F is
balanced. �

Suppose we already have a balanced independent set F that we want to extend to a
semibasis. We can do that by applying the reverse greedy algorithm. That means we take
E \ F and scan down it from the largest point (in the ordering O) to the smallest, adding a
point to the independent set whenever the resulting set remains independent and balanced.
The set obtained in this way we call the maximal semibasis extension, T (F ). It is clear that
T (F ) is a semibasis.

Lemma 4.4. For an independent set F in M , T (F ) has the following properties:

(i) F ⊇ II(T (F )) and T (F ) \ F ⊆ IA(T (F )).
(ii) II(F ) = II(T (F )).
(iii) EA(F ) ⊆ cl(II(T (F )).
(iv) EA(F ) = EA(II(T (F ))) = EA(T (F )); thus, ε(F ) = ε(T (F )).

Proof. In (i) the two statements are obviously equivalent; we prove the latter. Suppose we
have a balanced independent set F ′ and a point e /∈ cl F ′; call e F ′-tolerable if F ′ ∪ {e}
is balanced. Write T (F ) \ F = ek · · · e1 in increasing order, so that each ei is the largest
F ∪ {e1, . . . , ei−1}-tolerable point. Since

ei /∈ cl(T (F ) \ ei) ⊇ cl(F ∪ {e1, . . . , ei−1}),

ei is larger than any other F ∪ {e1, . . . , ei−1}-tolerable point not in cl(T (F ) \ ei). That is, it
is externally active.

In Part (ii), II(F ) ⊆ II(T (F )) by Lemma 4.2. To prove the reverse containment, apply the
same lemma to Part (i) to conclude that II(F ) ⊇ II(II(T (F ))); the latter equals II(T (F ))
by Lemma 4.1.

In (iii), e is maximal in CF (e) for e ∈ EA(F ). By Lemma 4.1 and Part (ii), CF (e) \ {e} ⊆
II(F ) = II(T (F )).

For (iv), suppose we have two balanced independent sets, F1 ⊆ F2. Obviously EA(F1) ⊆
EA(F2), because (clF1) \ F1 ⊆ (clF2) \ F2. If EA(F2) ⊆ cl F1, then EA(F2) ⊆ EA(F1); thus
the two EAs are equal. Now apply this fact to F1 = II(T (F2)) and F2 = F or T (F ), recalling
(iii). �

4.2. Activities in gain graphs. When we come to gain graphs, the semimatroid we need
is that associated with the balanced edge sets of Φ. Here, M0 is the complete lift matroid
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L0(Φ), which is the matroid on E0 := E(Φ) ∪ {e0} with rank function

rk(S) =

{

n − c(S) if S is balanced,

n − c(S) + 1 if S is unbalanced

[15, Section II.4]. In a way, the complete lift matroid generalizes the usual graphic matroid
G(Γ), since when Φ is balanced, e0 is a coloop and G(Γ) = L0(Φ)\e0. We call the semimatroid
associated with L0(Φ) and e0 the semimatroid of graph balance of Φ.

(For those concerned with loose and half edges: In this section we treat a loose edge e as
a balanced loop and a half edge as an unbalanced loop since in the matroid the two types
behave exactly the same.)

Here is how the previous discussion of semimatroids applies to gain graphs. A balanced
circle is the same thing as a semimatroid circuit, i.e., it is a matroid circuit (in L0(Φ)) that
is a balanced edge set. A forest F is the same as a balanced independent set; its closure
defined in graphical terms is

cl(F ) := F ∪ {e /∈ F : F ∪ {e} contains a balanced circle}.

The reason is that CF (e), if it exists, must be balanced so it is a balanced circle; it is called
the fundamental circle of e with respect to F .

A broken balanced circle is a balanced circle with its largest edge removed.
Applying the general semimatroid definitions to balanced independent sets in L0(Φ), an

edge e is externally active with respect to a forest F when F ∪e contains a balanced circle C
(which has to be the fundamental circle) and e is the largest edge in C. For an edge e ∈ F ,
in F \ e one component of F is divided into two; the fundamental relative cocircuit of e with
respect to F is the set DF (e) of edges f ∈ E that join these two into one and such that F ∪f
is balanced. So, e is internally active with respect to F when it is in F and it is the largest
edge in DF (e). (Our definitions of activity differ from the usual ones for graphs because the
latter ignore balance.) To clarify these ideas we give two descriptive lemmas; the first is a
translation of matroid theory but the second is particular to gain graphs.

Lemma 4.5. Let F be a forest in Φ. Then II(F ) is the union of all broken balanced circles
in F .

Proof. The circuits that make broken balanced circles in F are contained in cl F , which is
balanced. The matroid circuits in a balanced set are the balanced circles. Thus, in F a
broken balanced circle is the same as a broken circuit. Apply Lemma 4.1. �

Lemma 4.6. Suppose Φ is a gain graph with no balanced digons. Let F be a forest in Φ.
Then EA(F ) is the set of all edges e /∈ F such that e ∈ (clF ) \ F and CF (e) \ e is a broken
balanced circle.

Proof. If an edge e /∈ F is externally active, it is in (clF ) \ F and it is maximal in CF (e).
The latter implies that CF (e) \ e is a broken balanced circle.

To prove the converse, assume CF (e) exists and D := CF (e) \ e is a broken balanced
circle. Either e is maximal in CF (e), so e is externally active, or D 6= ∅ and there is an edge
e′ /∈ F , other than e, such that CF (e′) \ e′ = D. Then e and e′ are parallel links with the
same endpoints. Because they form a digon in clF , which is balanced, they form a balanced
digon, contrary to the assumption. Consequently, e′ cannot exist. �
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4.3. The forest expansion. The forest expansion of (Φ, h) is

(4.1) F(Φ,h),O(u, y) :=
∑

F

yε(F )
∏

W∈π(F )

uhF (W ),

summed over all forests F of Φ.

Theorem 4.7. The forest expansion is independent of O. Indeed,

F(Φ,h),O(u, y) := Q(Φ,h)(u, y − 1, 0).

Proof. Let us expand. In each sum, S is restricted to balanced edge sets that satisfy the
stated conditions.

Q(Φ,h)(u, v, 0) =
∑

S

v|S|−rk(S)
∏

W∈π(S)

uhS(W )

=
∑

F forest

∑

S⊇F
F (S)=F

v|S\F |
∏

W∈π(S)

uhS(W )

=
∑

F forest

∑

F⊆S⊆F∪EA(F )

v|S\F |
∏

W∈π(F )

uhF (W )

by Lemma 4.3, because π(S) = π(F ), and because EA(F ) ⊆ cl(F ) so that hS(W ) =
hcl(F )(W ) = hF (W ),

=
∑

F forest

(v + 1)|EA(F )|
∏

W∈π(F )

uhF (W ). �

We hoped for a spanning-tree expansion analogous to Tutte’s for graphs, but we could not
find one. The problem is that semibases do not span the matroid. When the semimatroid
of graph balance is a matroid, as when Φ is balanced, a semibasis is a basis; then for a basis
T and an independent set F , T (F ) = T if and only if II(T ) ⊆ F ⊆ T . This property lets
us replace the sum over forests by a sum over spanning trees. We did not find an analogous
property of semibases.

5. Coloring

A proper coloration is a way of assigning to each vertex an element of a color set, subject to
exclusion rules governed by the edges. The subject of [5] was the problem of counting integral
lattice points not contained in specified integral affinographic hyperplanes (see Section 5.4).
We solved it by reinterpreting lattice points as proper colorations of a Z-weighted integral
gain graph. In this section we develop a theory of proper colorations of all weighted gain
graphs. We begin with list coloring, where the weight of a vertex is a finite list of of possible
colors (Section 5.1). We then go on to infinite lists with an additional constraint regarded as
a variable, e.g., upper bounds that make the effective list finite (Section 5.2); this generalizes
ordinary graph k-coloring, in which the list is {1, 2, 3, . . .} restricted by the variable upper
bound k. Finally, we apply the general definition to multidimensional integral gain groups
and weights, which have the geometrical meaning of counting integer lattice points that lie
in a given rectangular parallelepiped but not in any of a family of integral affinographic
subspaces (all of which will be explained).
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A general notion of proper coloring of gain graphs was developed in [15, Section III.5]
(and there called zero-free coloring). There is a color set C, which is any set upon which the
gain group G has a right action such that the only element of G that has any fixed points is
the identity. A coloration of Φ is any function x : V → C. The set of improper edges of x is

I(x) := {eij : xj = xiϕ(eij)}.

The coloration is proper if I(x) = ∅. A basic fact from [15, Section III.5] is that an improper
edge set is balanced and closed. For completeness we give the easy proof here.

Lemma 5.1. The improper edge set I(x) of a coloration is balanced and closed.

Proof. First we prove balance. Suppose a circle e01e12 · · · el−1,l ⊆ I(x), where v0 = vl.
Impropriety of the edges implies that xl = x0ϕ(e01e12 · · · el−1,l). Thus x0 = xl is a fixed point
of ϕ(e01e12 · · · el−1,l). By our overall hypothesis that the action is proper, the circle has gain
1. Thus, I(x) is balanced.

Suppose now that e is an edge from v to w in the closure of I(x). Since I(x) is balanced,
there is a path e12 · · · el−1,l in I(x) connecting the endpoints of e (that is, v1 = v and vl = w)
whose gain ϕ(e12 · · · el−1,l) = ϕ(e). Since xl = xl−1ϕ(el−1,l) = · · · = x1ϕ(e12) · · ·ϕ(el−1,l) =
x1ϕ(e12 · · · el−1,l) = x1ϕ(e), e is improper. Hence, e ∈ I(x); that is, I(x) is closed. �

In contrast to [15], in this paper we have an infinite color set. We use weights in various
ways to limit the possible colorations to a finite set. We have especially in mind two kinds of
example. In the first, the group and the color set are both Z and the color lists are arbitrary
subsets of Z that are bounded below and whose complements are bounded above; but there
is a variable upper bound m on the possible colors; thus the number of proper colorations
is a function of m. We call this open-ended list coloring. In the second, the group and color
set are both Z

d, the color lists are dual order ideals in Z
d, and there is a variable upper

bound mi on the colors that can be used at vertex vi. (This problem has a nice geometrical
interpretation.) We wish to cover both of these examples, as well as similar ones, in a way
that exposes to view the essential features; therefore we generalize considerably.

5.1. List coloring. A simple kind of list coloring is the basis of all our methods of coloring
a weighted gain graph. The idea is to let W be any class of subsets of the color set C that is
closed under intersection and the G-action; these subsets can be used as vertex color lists.

In list coloring a contracted weight has the formula

hB(W ) =
⋂

vi∈W

hiηB(vi).

(Recall that if vi ∈ W and it happens that W has a top vertex ti, then ηB(vi) = ϕ(Bviti).)
We need to switch colorations. If x is a coloration of (Φ, h) and η is a switching function,

we define xη by
xη(vi) := xiη(vi),

the result of the gain-group action on xi.

Proposition 5.2. If in (Φ, h) not all vertex lists hi are finite, then the number of proper col-
orations is either zero or infinite. If all lists are finite, then the number of proper colorations
equals

∑

B∈Latb Φ

µ(∅, B)
∏

W∈π(B)

|hB(W )| =
∑

B⊆E: balanced

(−1)|B|
∏

W∈π(B)

|hB(W )|,
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where µ is the Möbius function of Latb Φ.

For the Möbius function of a poset see, i.a., [8, 9]; note that µ(∅, B) = 0 if the empty
set is not closed, that is, if Φ has a balanced loop or a loose edge. The two sums are equal
because µ(∅, B) =

∑

{(−1)|B
′| : cl(B′) = B} if B is balanced and closed, and π(B′) = π(B).

Proof. First let us suppose hn is infinite. If there is any proper coloration x, then x1, . . . , xn−1

prevent xn from taking on only finitely many possible values, because Φ is finite. There is
an infinite number of permitted possible choices of xn ∈ hn.

Now we assume all lists are finite. To prove the first part of the formula we use Möbius
inversion over Latb Φ as in [8, p. 362] or [14, Theorem 2.4]. (The second part has a similar
proof by inversion over the class of balanced edge sets.) Throughout the proof B denotes an
element of Latb Φ. Consider all colorations of (Φ, h), proper or not; let f(B) be the number
of colorations x such that I(x) = B and let g(B) be the number of colorations such that
I(x) ⊇ B. By Lemma 5.1 each coloration is counted in one f(B), so

g(A) =
∑

B⊇A

f(B),

from which by Möbius inversion

f(A) =
∑

B⊇A

µ(∅, B)g(B).

Setting A = ∅, the total number of proper colorations equals
∑

B

µ(∅, B)g(B).

We show by a bijection that g(B) is the number of all colorations of (Φ, h)/B, which
clearly equals

∏

W∈π(B) |hB(W )|. Let ηB be the top switching function for B. It is easy to

see that switching a coloration x of (Φ, h) gives a coloration of (Φ, h)ηB that is constant on
components of B, and conversely. Therefore, if W ∈ π(B), yW , defined as the common value
of xηB

i for every vi ∈ W , belongs to hηB

i for every vi ∈ W . When we contract (Φ, h) by B,
yW ∈

⋂

vi∈W hηB

i = hB(W ), so we get a well-defined coloration y of (Φ, h)/B.

Conversely, for any B ∈ Latb Φ, a coloration y of (Φ, h)/B pulls back to a coloration
of (Φ, h)ηB by xi = yW where vi ∈ W ∈ π(B). Then switching back to (Φ, h) we have a

coloration xη−1

B of (Φ, h) whose improper edge set contains B. Since it is clear that these
correspondences are inverse to each other, the bijection is proved. �

The last part of the proof can be strengthened to yield a formula for proper colorations of
contractions.

Proposition 5.3. If all vertex lists hi are finite and B is a balanced edge set, then the
number of colorations of (Φ, h) whose balanced edge set equals B equals the number of proper
colorations of (Φ, h)/B.

The proof is a simple modification of the evaluation of g(B) in the previous proof, and
is also a simple generalization of the evaluation of f(B) in the proof of [5, Theorem 3.3].
(In [5] we accidentally wrote f(B) when we meant g(B); but that led us to write a proof of
Proposition 5.3 in the special situation of [5]. We thank Seth Chaiken for pointing out the
error in [5].)
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Let Pfin(C) be the class of finite subsets of C, and let us call a weighted gain graph with
weights in Pfin(C) finitely list weighted. Then the total dichromatic polynomial has a variable
uh for each finite subset h ⊆ C.

Theorem 5.4. If (Φ, h) is finitely list weighted, then the number of proper colorations equals
(−1)nQ(Φ,h)(u,−1, 0) evaluated at uh = −|h|.

Proof. The proof is by comparing the second formula of Proposition 5.2 to the definition of
Q(Φ,h). �

Call a signed Tutte invariant any function that satisfies (Tii–iv) and the modified form of
(Ti),

(Ti′) (Subtractivity) For every link e,

f(Φ, h) = f(Φ \ e, h) − f(Φ/e, h/e).

It is clear that f is a signed Tutte invariant if and only if (−1)|V |f is a Tutte invariant.

Corollary 5.5. Given a gain group G and a color set C, the number of proper colorations
is a signed Tutte invariant of finitely list weighted gain graphs with gains in G.

Proof. The family of finitely list weighted G-gain graphs is closed under deletion and con-
traction because finiteness of lists is preserved by those operations. Apply Theorem 5.4. �

Example 5.1 (Finite lists). If C is partially ordered, take W to consist of all finite order
ideals, or all finite intervals. The special case C = Z

d is our main example.

5.2. Filtered lists. In examples the color lists for the vertices are not always finite. A
general picture is that there is a list hi for each vertex, which is some subset of C, and there
is also a set Mi ⊆ C that acts as a filter of colors: a color must lie not only in its vertex list
but also in Mi. Thus we have a function χ(Φ,h)(M) defined for M := (M1, . . . ,Mn) ∈ P(C)n

whose value is the number of proper colorations of (Φ, h) using only colors in Mi at vertex
vi. This is the list chromatic function of (Φ, h). An example, of course, is the quantity of
Proposition 5.2, which equals χ(Φ,h)(C

n) (finite lists with no filtering). That proposition has
the following extension. We define switching of a color filter M and its contraction MB(W )
just as for weights, so that

MB(W ) :=
⋂

vi∈W

MiηB(vi).

Proposition 5.6. If every intersection Mi ∩ hi is finite, then

χ(Φ,h)(M) =
∑

B∈Latb Φ

µ(∅, B)
∏

W∈π(B)

|hB(W ) ∩ MB(W )|.

Proof. In Proposition 5.2 replace hi by hi ∩ Mi. �

Since color filters contract like weights, we can form a doubly weighted gain graph by
taking new weights (hi,Mi), provided we define a G-invariant semigroup M0 from which the
double weights are drawn. To that end, let

M0 := {(h′,M ′) : h′ ∈ W, M ′ ⊆ C, and M ′ ∩ h′ is finite}.

The semigroup operation is componentwise intersection, i.e., (h′,M ′) ∩ (h′′,M ′′) := (h′ ∩
h′′,M ′ ∩ M ′′). Given this weight semigroup, there is a doubly weighted total dichromatic
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polynomial, which we write Q(Φ,h),M(u, v, z), with M = (M1, . . . ,Mn), to emphasize the
different roles of h and M . The variables are now uh′,M ′ for each pair (h′,M ′) ∈ M0, and of
course v and z, and the formula for the doubly weighted polynomial is

Q(Φ,h),M(u, v, z) =
∑

S⊆E

v|S|−n+b(S)zc(S)−b(S)
∏

W∈πb(S)

uhS(W ),MS(W ),

where, as usual, hS := hηS and MS := M ηS . It is easy to see that every (hS(W ),MS(W )) ∈
M0 if every (hi,Mi) ∈ M0.

Theorem 5.7. If (Φ, h) and M1, . . . ,Mn ⊆ C are such that the filtered list Mi ∩ hi is
finite for each vertex vi, then the list chromatic function χ(Φ,h)(M1, . . . ,Mn) is obtained from
(−1)nQ(Φ,h),M(u,−1, 0) by setting uh′,M ′ = −|M ′ ∩ h′| for each h′ ∈ W and M ′ ⊆ C.

Proof. Like that of Theorem 5.4, but from Proposition 5.6. �

Fix the gain group G, color set C, and weight subsemigroup W ⊆ (P(C),∩). Consider any
weighted gain graph (Φ, h) with gains in G and weights (functioning as vertex color lists)
in W. Allow any collection of color filters (M1, . . . ,Mn) for which all hi ∩ Mi are finite; we
call ((Φ, h),M) a finitely filtered, list weighted gain graph. This gives us a list chromatic
function χ(Φ,h)(M1, . . . ,Mn) that is always a well defined nonnegative integer. Thinking of
((Φ, h),M) as a (doubly) weighted gain graph, we have deletions and contractions and we
can ask about Tutte invariance.

Corollary 5.8. The list chromatic function χ(Φ,h)(M1, . . . ,Mn) is a signed Tutte invariant
of finitely filtered, list weighted gain graphs.

Proof. As we noted, the class of list weighted gain graphs with suitable arguments is closed
under deletion and contraction. Now, apply Theorem 5.7. �

Example 5.2 (Locally finite join semilattice). Suppose C is a locally finite join semilattice.
We may take W to be the set of principal dual order ideals 〈z〉∗ and let the Mi range over
principal ideals. The join operation makes W an intersection semigroup, as the intersection
〈z〉∗∩〈z′〉∗ is the principal dual ideal 〈z∨z′〉∗; and W is clearly G-invariant. The intersection
Mi ∩ hi will always be finite so the preceding proposition and theorem apply.

We may weaken the assumptions. Let W be the class of all subsets of C that have a
lower bound; that is, subsets of principal dual ideals. And let Mi be any subset with an
upper bound; that is, a subset of a principal ideal. Then Mi ∩ hi is necessarily finite so the
preceding results hold good. That is, we admit as filters all upper-bounded subsets of C.

An example of this kind is that in which C = Z
d; it is the topic of the next subsection.

5.3. Open-ended list coloring in an integer lattice. To introduce the main applications
we turn once again to the original example from [5] but with a slight change in viewpoint.

Example 5.3 (Open-ended interval coloring). The gain group is Z and the weights can be
treated as upper intervals, (hi,∞) at vertex vi. A proper m-coloration of (Φ, h) is a function
x : V → Z such that each xi ∈ (hi,∞) and all xi ≤ m. One can think of this as a list
coloration in which the list for each vertex is an interval that grows with m. The integral
chromatic function χZ

(Φ,h)(m) of [5] counts proper m-colorations. This function is obtained

from Q(u,−1, 0) by substituting uk = −max(m−k, 0). Hence it is a signed Tutte invariant,
as we showed in [5] directly from its counting definition. We showed in [5] that it is eventually

21



a monic polynomial of degree n = |V |, and that it is a sum of simple terms that appear
successively as m increases.

We generalize this example in several ways: to higher-dimensional coloring, to upper
bounds that depend on the vertex, and to arbitrary vertex lists.

For higher-dimensional coloring the color set C is the d-dimensional integer lattice Z
d with

the componentwise partial ordering and the gain group G is the additive group Z
d acting on

C by translation. A coloration is any x : V → Z
d. The weight semigroup W is either of the

classes
W1 := {h′ ⊂ Z : h′ is bounded below},

that is, h′ is contained in a cone 〈a〉∗ =×d

k=1
[ak,∞) for some a ∈ Z

d, and

W2 := {h′ ∈ W1 : for some a ∈ Z
d, h′ ⊆ 〈a〉∗ and 〈a〉∗ \ h′ is bounded above},

that is, h′ is all of 〈a〉∗ except for a finite subset. Both classes W1 and W2 are closed under
intersection of pairs and under translation. For h′ ∈ W1 we define h′ as the meet of the
members of h′; when h′ ∈ W2 and d > 1 this is the only possible a, but in dimension d = 1
it is the largest possible a and also the smallest element of h′.

The color filters Mi are principal order ideals 〈mi〉 =×d

k=1
(−∞,mik] for mi ∈ Z

d (we

write mi := (mi1, . . . ,mid)), so the list chromatic function has domain Z
d and is defined by

χ(Φ,h)(m) := the number of x : V → Z
d such that each xi ∈ hi, x ≤ m,

and xj 6= xi + ϕ(eij) for each edge eij,

where m := (m1, . . . ,mn). This number is a function of one variable mik for each i = 1, . . . , n
and k = 1, . . . , d and is finite for each m. Our general theory shows that χ(Φ,h)(m) is an
evaluation of the total dichromatic polynomial; and now we can generalize Example 5.3. In
the present case a switching function is η : V → Z

d and the contraction formula for weights
takes the form

hB(W ) =
⋂

vi∈W

(hi + ηB(vi))

if B is a balanced edge set, where hi + a denotes the translation of hi by a. In the total
dichromatic polynomial there is one variable uh′,m′ for each h′ ∈ W1 and m′ ∈ (Zd)n.
(Variables with empty h′ ∩ 〈m′〉 can be omitted.)

Theorem 5.9. With all hi ∈ W1, the list chromatic function χ(Φ,h)(m) is obtained from

(−1)nQ(Φ,h),M(u,−1, 0) by setting uh′,m′ = −
∣

∣h′ ∩ 〈m′〉
∣

∣ for each h′ ∈ W1 and m′ ∈ Z
d.

Proof. A corollary of Theorem 5.7, since the intersections hi ∩ Mi are finite. �

Corollary 5.10. The list chromatic function is a signed Tutte invariant of gain graphs with
gain group Z

d and weight lists belonging to W1.

Proof. A special case of Corollary 5.8. �

For hi ∈ W1 define h−
i := hi − (1, . . . , 1) and Hi := 〈hi〉

∗ \ hi, and let ĥi :=
∨

Hi, except

that ĥi = h−
i if Hi = ∅. Clearly, ĥi is defined in Z

d if and only if Hi is finite, that is,
hi ∈ W2. For vertices vi and vj, let

αji :=
∨

Pji

ϕ(Pji),
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where Pji ranges over all paths in Φ from vj to vi, and let αj :=
∨

i αji, the least upper
bound of the gains of all paths that begin at vj.

A function p(y1, . . . , yr) is a piecewise polynomial if it is defined on a domain in R
r that

is a union of a finite number of closed, full-dimensional sets Dσ, each containing infinitely
many integer points, on each of which p is a polynomial pσ(y1, . . . , yr). By saying p has
leading term y1 · · · yr, or has degree at most 1 in each variable, we mean that each pσ has
that property. This definition is chosen to suit the following result. The numbers hik are the
components of hi.

Theorem 5.11. Assume Φ has no balanced loops or loose edges. Suppose all hi ∈ W2.
Define

qk(B,W ) := min
vi∈W

(

mik + ηB(vi)
)

− max
vi∈W

(

hik + ηB(vi)
)

+ 1

for B ∈ Latb Φ and W ∈ π(B), and

p(m) :=
∑

B∈Latb Φ

µ(∅, B)
∏

W∈π(B)

(

d
∏

k=1

qk(B,W ) −
∣

∣

∣

⋃

vi∈W

(

Hi + ηB(vi)
)

∣

∣

∣

)

,

which is a piecewise polynomial function of the nd variables mik having degree at most 1 in
each variable and leading term

∏n
i−1

∏d
k=1 mik. The list chromatic function χ(Φ,h)(m) equals

p(m) for all m ≥ m0, where

m0i :=
n
∨

j=1

(

ĥj + αji

)

.

In the theorem, r = nd, the variables are x11, x12, . . . , x1d, x21, . . . , xnd, and the domains
Dσ are the sets on which each of the d sets (one for each fixed k ≤ d) of shifted variables
mk(B,W ) := minvi∈W

(

mik + ηB(vi)
)

(one variable for each B and each W ∈ π(B)) assumes
a particular weakly increasing order, since the orderings of these variables determine exactly
which polynomial p(m) is.

Proof. We apply the formula of Proposition 5.6 in the form
∑

B∈Latb Φ

µ(∅, B)
∏

W∈π(B)

|hB(W ) ∩ MB(W )|,

which shows that the theorem is true when the range of m is such that |hB(W ) ∩ MB(W )|
is a polynomial of degree 1 in each mik such that vi ∈ W . Rewrite the expression:

(5.1)

hB(W ) ∩ MB(W ) =
⋂

vi∈W

(hi + ηB) ∩
⋂

vi∈W

〈mi + ηB(vi)〉

=
⋂

vi∈W

(

[〈hi〉
∗ \ Hi] + ηB(vi)

)

∩
⋂

vi∈W

〈mi + ηB(vi)〉

=
([

∨

vi∈W

hi,
∧

vi∈W

mi

]

+ ηB(vi)
)

\
⋃

vi∈W

(

Hi + η(vi)
)

since hi = 〈hi〉
∗ \ Hi and Mi = 〈mi〉, where [x,y] denotes an interval in the lattice Z

d.
Let us see what natural conditions are sufficient for piecewise polynomiality (with the

specified leading term) when m is large. It should be true for each factor in each term.
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Consider W = {vi}, which is a component when B = ∅. We can compute the factor
corresponding to this W ; it is

(5.2)

∣

∣

(

[hi,mi] + ηB(vi)
)

\
(

Hi + ηB(vi)
)
∣

∣ =
∣

∣[hi,mi] \
(

Hi ∩ 〈mi〉
)
∣

∣

=
d
∏

k=1

(mik − hik + 1)+ −
∣

∣Hi ∩ 〈mi〉
∣

∣.

This is not a piecewise polynomial function unless, firstly, mi ≥ h−
i , and secondly, |Hi∩〈mi〉|

is a constant. The way to ensure the latter is for Hi to be contained in 〈mi〉, or equivalently

mi ≥ ĥi. We assume this from now on.
Treating in the same manner each factor in Equation (5.1), rewritten as

|hB(W ) ∩ MB(W )| =
[

∨

vi∈W

(

hi + ηB(vi)
)

,
∧

vi∈W

(

mi + ηB(vi)
)

]

\
⋃

vi∈W

(

Hi + ηB(vi)
)

,

we see that piecewise polynomiality is ensured if
∧

vi∈W

(

mi + ηB(vi)
)

≥
∨

vi∈W

∨

(

Hi + ηB(vi)
)

=
∨

vi∈W

(

ĥi + ηB(vi)
)

.

This is equivalent to having mi+ηB(vi) ≥ ĥj+ηB(vj) for every vi, vj ∈ W , or, rewriting again,

mi ≥ ĥj + ηB(vj) − ηB(vi). Now recall from Equation (2.1) that ηB(vj) − ηB(vi) = ϕ(Bji).
Here Bji is any path in B from vj to vi. As B is any balanced, closed set, we can take B to
be the closure of any path Pji from vj to vi in Φ. Thus, to ensure piecewise polynomiality

we require that mi ≥ ĥj + ϕ(Pji) for every path Pji; that is, mi ≥ ĥj + αji.
We have found a sufficient condition on m for χ(Φ,h)(m) to be a piecewise polynomial

function. The term of highest degree is that for which π(B) has the most components;
that is n components when B = ∅. The corresponding term is the product of the factors
associated with singleton sets W ; these factors are all monic piecewise polynomials of total
degree d, as we see in Equation (5.2). �

The proof suggests that the theorem’s lower bound on m is essential; for any other choice
of m, p(m) will not agree with χ(Φ,h)(m). One reason is that, if m 6≥ h, then p(m) does
not extract the positive part of qk(B,W ). A more subtle one is that the constant term
∣

∣

⋃

vi∈W

(

Hi + ηB(vi)
)
∣

∣ in the factor of W assumes that
⋃

vi∈W

(

Hi + ηB(vi)
)

is contained in
〈
∧

vi∈W

(

mi + ηB(vi)
)〉

. However, we have not tried to prove necessity of the lower bound,
and there might be exceptions. We have also not tried to decide whether the domain on
which χ(Φ,h)(m) is a piecewise polynomial with the right leading term (though not necessarily
agreeing with p) is larger than 〈m0〉

∗.
It is clear, though, why hi has to be bounded below and its cone complement Hi must be

bounded above. If some hi has no lower bound, then χ(Φ,h)(m) will be infinite. Even when
each hi is bounded below, if some Hi has no upper bound then χ(Φ,h)(m) will not become a
polynomial when m is large.

In the one-dimensional case, where the gain group and color set are Z,

W2 = {h′ ⊂ Z : h′ is bounded below and Z \ h′ is bounded above}

and m = (m1, . . . ,mn) ∈ Z
n. In this case hi = minhi and ĥi = max(Z \ hi); and αji is the

largest gain of a path in Φ from vj to vi.
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Corollary 5.12. For an integral gain graph without balanced loops or loose edges, and with
all weights hi ∈ W2, χ(Φ,h)(m1, . . . ,mn) is a monic polynomial in the n variables mi for large
enough mi’s, linear in each variable and with leading term m1 · · ·mn. Polynomiality holds
when all

mi ≥ m0i := max
j=1,...,n

[

max(Z \ hj) + αji

]

.

The theorem simplifies when all mi equal a common value m′ ∈ Z
d.

Corollary 5.13. For a Z
d-gain graph Φ with no balanced loops or loose edges, suppose all

weights hi ∈ W2. Define

q̄k(B,W ) := m′
k − max

vi,vj∈W

(

hik + ηB(vi)k − ηB(vj)k

)

+ 1

for B ∈ Latb Φ, W ∈ π(B), and m′ ∈ Z
d. For large enough m′ ∈ R

d, the list chromatic
function χ(Φ,h)(m

′, . . . ,m′) equals

p̄(m′) :=
∑

B∈Latb Φ

µ(∅, B)
∏

W∈π(B)

(

d
∏

k=1

q̄k(B,W ) −
∣

∣

∣

⋃

vi∈W

(

Hi + ηB(vi)
)

∣

∣

∣

)

,

a polynomial function of the d variables m′
k having degree at most n in each variable and

leading term
∏d

k=1(m
′
k)

n. The equation χ(Φ,h)(m
′, . . . ,m′) = p(m′) holds true for all

m′ ≥
n
∨

j=1

(

ĥj + αj

)

.

Now we begin to justify the claim that a total dichromatic polynomial connected with an
interesting combinatorial problem has an uncountable number of variables. (We assume the
reader finds the list chromatic function with gains in Z or Z

d interesting, or this argument
fails! The geometrization in the next subsection may add to the interest.) The number of
variables uh′,m′ when the weight semigroup is W1 (and m′ ∈ Z

d) is |M0| = |W1| · |Z
d|. As

W1 contains every subset of the natural numbers, its cardinality is that of the continuum.
On the other hand, |W2| = ℵ0, for W2 is a countable union of countable sets. We see this

by describing h ∈ W2 as an ordered pair (h′, h′ \ 〈a〉∗). There is a countable number of pairs
(a, X) of this type, for each a, and the number of integer vectors a is countable.

5.4. Arrangements of affinographic hyperplanes and affinographic matrix sub-

spaces. First we prove the geometrical theorems stated in the introduction. Then we gen-
eralize them to matrix subspaces. We restate Theorem 1.1 in a more sophisticated but
equivalent form. As usual, Φ is the gain graph corresponding to A; tk is a top vertex of the
component Bk of B, whose vertex set is Wk; and µ is the Möbius function of the semilattice
Latb Φ.

Theorem 5.14. With P and A as in Theorem 1.1, the number of integer points in P \
⋃

A

equals

χ(Φ,0)(m1, . . . ,mn) =
∑

B∈Latb Φ

µ(∅, B)
∏

Wk∈π(B)

(

1 + min
vi∈W

[mi + ϕ(Bvitk)] − gk

)+
.
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Proof. The lattice points to be counted are simply proper colorations in disguise. In Propo-
sition 5.6 take the list for vi to be hi = [0,∞) and the filter to be Mi = (−∞,mi], and
then sort through the definitions. E.g., from Equation (2.3), if vi is in the component Bk

of B, then ηB(vi) = ϕ(Bvitk). Also, if W = V (Bk), then hB(W ) = [gk,∞) where gk is the
largest gain of a path in Bk, and MB(W ) = (−∞,minvi∈W mi + ϕ(Bvitk)]. Hence, the factor
in Proposition 5.6 equals

∣

∣[gk, min
vi∈W

mi + ϕ(Bvitk)]
∣

∣ =
(

1 + min
vi∈W

[mi + ϕ(Bvitk)] − gk

)+
.

Thus we have Theorem 1.1. Theorem 5.14 follows by the formula for µ given at Proposition
5.2. �

Proof of Theorem 1.2. This follows directly from Proposition 5.2 and the formula for ηB(vi).
�

We state one more theorem, a combination of the previous two. Here we have a list Li of
nonnegative integral permitted values for each coordinate, which may be infinite, and we also
have an upper bound mi, which we treat as a variable. Again we let P := [0,m1]×· · ·×[0,mn]
where the mi are integers.

Theorem 5.15. The number of points in P∩(L1×· · ·×Ln) but not in any of the hyperplanes
of the arrangement A equals

∑

B∈Latb Φ

µ(∅, B)
∏

Bk

∣

∣

∣

⋂

vi∈V (Bk)

(

(Li ∩ [0,mi]) + ϕ(Bvitk)
)

∣

∣

∣
,

where the product is over all components of B.

Proof. The proof is similar to that of Theorem 1.2. �

When Li has finite complement in the nonnegative integers, then for sufficiently large
variables mi this count is a polynomial in the variables, just as in Theorem 1.1.

Theorem 5.11 allows us to count integer matrices that are contained in an orthotope but
not in any of a finite set of subspaces that are determined by affinographic equations.

Write Z
n×d for the lattice of n × d integer matrices and R

n×d for the real vector space
that contains them; if X is a matrix, we write xi = (xi1, . . . , xid) for the ith row vector,
an element of R

d. An integral orthotope [H,M ], where H and M are integer matrices with
H ≤ M , is the convex polytope given by the constraints H ≤ X ≤ M in R

n×d.
We call a subspace determined by an equation of the form xj = xi + a row-affinographic,

and integral if a is an integral vector in R
d. (The name “affinographic” comes from the fact

that such a subspace is an affine translate of a graphic subspace, i.e., a subspace defined
by lists of equal coordinates, in this case by the equation xj = xi.) A finite set S of such
subspaces is an integral row-affinographic subspace arrangement.

We want to know the number N of integral matrices in an integral orthotope [H,M ] but
not in any of the subspaces of S. This number is given by Theorem 5.11. Rather than
translate the theorem into purely geometrical language, which seems unnatural, we explain
how to set up a weighted gain graph (Φ, h) to which it applies, thereby getting the formula

N = χ(Φ,h)(m1, . . . ,mn).

There is one vertex for each row of the matrices; thus, V = {v1, . . . , vn}. There is one edge
for each subspace; that with equation xj = xi + a becomes an edge from vi to vj with gain
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a (in that direction; the gain from vj to vi is −a). The weight of vi is the cone 〈hi〉
∗. An

integral matrix X in the orthotope becomes a coloration, the color of vi being the ith row
vector xi. It is now clear that an integral matrix that we wish to count is precisely the same
as a proper coloration of (Φ, h) that satisfies the upper bound (m1, . . . ,mn).

6. Graphs without gains: Noble and Welsh generalized

We think of a graph without gains (and with no loose or half edges) as having all gains
1 (or 0 if the gain group is additive). It is instructive to see what our results say here. We
write Γ for Φ = (Γ, 1) to emphasize that, the gains being fixed, the only significant datum is
the graph. Since the graph is balanced, b(S) = c(S) and πb(S) is a partition of V for every
edge set S.

A W-weighted graph is a pair (Γ, h) where h : V → W. There is no need for switching;
thus contraction is ordinary graph contraction together with contraction of h to

h(W ) =
∑

vi∈W

hi

for W ∈ π(S), where summation means the semigroup operation and the subscript S is
superfluous because there is no switching. The total dichromatic polynomial becomes

Q(Γ,h)(u, v, z) =
∑

S⊆E

v|S|−n+c(S)
∏

W∈π(S)

uh(W )(6.1)

with tree expansion

=
∑

T

(v + 1)ε(T )
∑

F⊆T
F⊇II(T )

∏

W∈π(F )

uh(W ).(6.2)

Observe that z drops out; thus we write Q(Γ,h)(u, v) for this polynomial.
These graphs with weights but no gains subsume the weighted graphs (Γ, ω) of Noble

and Welsh [7], which have positive integral vertex weights. Indeed, their work largely
inspired our generalization to semigroup weights. At first we had the total dichromatic
polynomial only for weighted integral gain graphs with integral weights, but we compared
their definitions to ours and noticed remarkable analogies. Noble and Welsh’s weights add:
ω(W ) =

∑

w∈W ω(w), while the weights on weighted integral gain graphs maximize. Our
polynomial Q(Γ,h) (for weighted integral gain graphs) and the polynomial W(Γ,ω) of [7] have
virtually the same variables (if one makes simple substitutions) and satisfy the same Tutte
relations (Ti–Tiii), initial conditions (3.2), and loop reduction identity (3.3). We had to
suspect a common generalization. This paper is the result.

The theorem without gains is stronger than our broader results.

Theorem 6.1. Given an abelian semigroup W, the polynomial-valued function (Γ, h) 7→
Q(Γ,h)(u, v) of W-weighted graphs is universal with the properties (Ti), (Tiii), (Tiv), (3.2),
and (3.3); (Tii) holds; and there is a tree expansion as in (6.2).

Proof. The proof is like that of Noble and Welsh. �

The treatment of coloring in Section 5 applies to ordinary graphs, without gains, simply
by taking ϕ ≡ 1, the identity. The only differences are that every edge set is balanced, so
Latb Φ is the class of all closed edge sets (sets B such that any edge whose endpoints are
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connected by B is itself in B), and that hB(W ) becomes simply h(W ) =
⋂

vi∈W hi. Also,
the weight semigroup W need only be closed under intersection, as there is no group action
constraining it.

Taking gain group Z
d as in Section 5.3, so that the graph can be treated as having all zero

gains, we have the following corollary of Theorem 5.11; the notation is that of the theorem.

Corollary 6.2. Let (Γ, h) be a weighted graph with weights hi ∈ W2. Assume Γ has no bal-
anced loops or loose edges. For large enough m, χ(Γ,h)(m) is a monic polynomial function of

the nd variables mik, having degree 1 in each variable and highest-degree term
∏n

i=1

∏d
k=1 mik.

Polynomiality holds when all mi ≥
∨n

j=1 ĥj.

When the weights are principal dual ideals 〈hi〉, the lower bound on mi is
∨

j h−
j .

7. Caveat lector

7.1. Modular gains. We know we have not found the universal Tutte invariant of weighted
gain graphs. (In defining a Tutte invariant here, we take the detachable edges to be those
that are not links. This is equivalent to allowing contraction only of balanced edge sets, and
it is not precisely the same definition as used elsewhere, e.g., in [15, Part III]. We take the
components to be the connected components.)

Choosing an example from [5] (which the reader may skip; we are about to generalize it),
the modular chromatic function χmod

Φ (m) of a rooted integral gain graph is a Tutte invariant
(once it has been multiplied by (−1)n) but it is not obtainable as an evaluation of the total
dichromatic polynomial. One can prove this by noting that χmod

Φ (m) = 0 when Φ has a loop
with gain divisible by m, but the dichromatic polynomial of (Φ, h) cannot distinguish loops
with different nonzero gains.

One gets a generalization by starting with a weighted gain graph whose gain group G

has a nontrivial normal subgroup N, which could even be G itself. Ignore the weights and
take the gains modulo N. This gives a gain graph ΦmodN with gain group G/N whose total
dichromatic polynomial is

QΦmod N
(u, v, z) :=

∑

S⊆E

ubN (S)v|S|−n+c(S)zc(S)−bN (S),

where we write bN to emphasize that we count balanced components in ΦmodN. This poly-
nomial is a Tutte invariant. When z = 0 it also has a tree expansion. Let

TΦmod N ,O(x, y) :=
∑

T

xι(T )yε(T ),

summed over all maximal forests T , where O is, as usual, a linear ordering of the edge set
and ι and ε are the internal and external activities in ΦmodN.

For instance, when the gain group is Z
d, we can take the gains modulo a positive integer

vector m = (m1, . . . ,md) ∈ Z
d
>0. This gives a gain graph Φmodm

with gain group that is an
integral torus Zm1

× · · · × Zmd
.

Theorem 7.1. The total dichromatic polynomial of ΦmodN is a Tutte invariant of gain
graphs. The balanced dichromatic polynomial QΦmod N

(u, v, 0) has the spanning-tree expansion

QΦmod N
(u, v, 0) = uc(Φ)TΦmod N ,O(u + 1, v + 1),

valid for every linear ordering O.
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Proof. The first part is obvious, since taking gains modulo N commutes with deletion and
contraction of links.

The proof of the second part begins as in that of Theorem 4.7; we obtain

QΦmod N
(u, v, 0) =

∑

T

∑

F⊆T
T (F )=T

uc(F )(v + 1)ε(F ).

Now we observe that c(F ) = n − |F |. Furthermore, when F ⊆ T , T (F ) = T if and only if
F ⊇ II(T ). If F does contain II(T ), then EA(F ) = EA(T ), because II(F ) is the union of
all broken circles contained in F , the same holds for T , and the fact that T = T (F ) implies
that F and T have the same internally active elements. Thus,

QΦmod N
(u, v, 0) =

∑

T

(v + 1)ε(T )
∑

F⊆T
F⊇II(T )

un−|F |

=
∑

T

(v + 1)ε(T )
∑

T\F⊆T
T\F⊆IA(T )

uc(T )+|T\F |

= uc(Γ)
∑

T

(v + 1)ε(T )(u + 1)ι(T ),

because c(T ) = c(Γ). This proves the tree expansion formula. �

The idea of producing a new Tutte invariant by taking the total dichromatic polynomial
with gains that are quotients modulo a normal subgroup of the gain group can also be applied
to an unweighted gain graph. It appears to complicate the problem of finding the universal
Tutte invariant.

7.2. Dichromatic overgeneralization. Suppose we tried to generalize Q(Φ,h)(u, v, z) to a
more powerful Tutte invariant by taking indeterminates u(Φ,h)/S:W , dependent on the iso-
morphism type of (Φ, h)/S:W . As we saw in the last step of the proof, in order to have a
Tutte invariant we would have to say that the indeterminate was not changed by adding or
subtracting any loop or half edge e. That is, u could depend only on the vertex and weight;
but being an isomorphism invariant, it could only depend on the weight. It follows that our
polynomial Tutte invariants cannot be generalized in this direction.

What we do see as a necessary generalization, if there is any hope of finding the univer-
sal Tutte invariant, is to take account of loops (and half edges). In our total dichromatic
polynomial loops and half edges play no role. We have explored a more general dichromatic
polynomial with variables corresponding to loops, but there appear to be inescapable rela-
tions among these variables that suggest the universal invariant cannot be a true polynomial
but instead lies in a quotient of a polynomial ring.
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