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1. Introduction

An integral gain graph is a graph whose edges are labelled invertibly by integers; that
is, reversing the direction of an edge negates the label (the gain of the edge). The gainic
hyperplane arrangement, A[Φ], that corresponds to an integral gain graph Φ is the set of all
hyperplanes in Rn of the form xj−xi = g for edges (i, j) with i < j and gain g in Φ. (See [8,
Section IV.4.1, pp. 270–271] or [4].) The use of graph representing ”graphic” arrangements
is common and we think that it should also be the case for gain graphs representing gainic
arrangements.

In last ten years there has been much interest in real hyperplane arrangements of this type,
such as the Shi arrangement, the Linial arrangement, and the composed-partition or Catalan
arrangement. For all these families, the characteristic polynomials and the number of regions
have been found. For the Shi arrangement, Athanasiadis [1] gave a bijection between the
regions and the parking functions.

In [3], we started to replace the study of the regions of such arrangements by the study of
the NBC sets of the corresponding gain graphs. This study works specially well in the case of
the complete gain graphs with gains in intervals [a, b] with a+ b = 0 or 1. This permits us to
give a bijection between the NBC sets of the braid arrangement and the increasing labelled
trees and another one between the NBC sets of the Shi arrangements and the labelled trees.
For the other values such that a+b = 0 or 1 we introduced [a, b]-trees to get similar bijections.

In this paper, we do the same thing for the cases where a + b = 2. The first case, where
a = b = 1, corresponds to the so called Linial arrangement. The construction for the Linial
case goes to the local binary search trees (LBS for short) as proposed by Stanley et al. For
the intervals of the form [1, k + 1] and [−k + 1, k + 1] we introduce two k- generalizations of
the LBS which are (k+1)-ary.

1The research of the author is supported by the TEOMATRO project, grant number ANR-10-BLAN
0207.
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2. Basic definitions

An integral gain graph Φ = (Γ, ϕ) consists of a graph Γ = (V,E) and an orientable
function ϕ : E → Z, called the gain mapping. Orientability means that, if (i, j) denotes an
edge oriented in one direction and (j, i) the same edge with the opposite orientation, then
ϕ(j, i) = −ϕ(i, j). We have no loops but multiple edges are permitted. For the rest of the
paper, we denote the vertex set by V = {1, 2, . . . , n} =: [n] with n ≥ 1. We use the notations
(i, j) for an edge with endpoints i and j, oriented from i to j, and g(i, j) for such an edge
with gain g; that is, ϕ(g(i, j)) = g. (Thus g(i, j) is the same edge as (−g)(j, i). ) A circle is
a connected 2-regular subgraph, or its edge set. Writing a circle C as a word e1e2 · · · el, the
gain of C is ϕ(C) := ϕ(e1) + ϕ(e2) + · · · + ϕ(el); then it is well defined whether the gain is
zero or non zero. A subgraph is called balanced if every circle in it has gain zero. We will
consider most especially balanced circles.

Given a linear order <O on the set of edges E, a broken circuit is the set of edges obtained
by deleting the smallest element in a balanced circle. A set of edges, N ⊆ E, is a no-broken-
circuit set (NBC set for short) if it contains no broken circuit. This notion from matroid
theory (see [2] for reference) is very important here. We denote by N the set of NBC sets
of the gain graph. It is well known that this set depends on the choice of the order, but its
cardinality does not.

We can now transpose some ideas or problems from hyperplane arrangements to gain
graphs. For any integers a, b, n, let Kab

n be the gain graph built on vertices V = [n] by
putting on every edge (i, j) all the gains k, for a ≤ k ≤ b. These gainic arrangements are
called sometimes deformations of the braid arrangement or truncated arrangements. We
have four main examples coming from hyperplane arrangements. We denote by Bn the gain
graph K00

n and call it the braid gain graph, by Ln the gain graph K11
n and call it the Linial

gain graph, by Sn the gain graph K01
n and call it the Shi gain graph and finally by Cn the

gain graph K−11
n and call it the Catalan gain graph.

3. Height function of a balanced gain graph

We introduce the notion of height function on an integral gain graph on the vertex set [n].
A height function h defines two important things for the rest of the paper: the induced gain
graph Φ[h] of a gain graph Φ and an order Oh on the set of vertices extended lexicographically
to the set of edges.

Definition 1. For V a finite set of N, a height function on V is a function h from V to N
such that h−1(0) 6= ∅. The corner of V defined by the height function is the smallest element
of greatest height.

Definition 2. Let Φ be a connected and balanced integral gain graph on a set V of integers.
The height function of the gain graph is the unique function hΦ such that for every edge
g(i, j) we have hΦ(j)− hΦ(i) = g. (Such a function exists iff Φ is balanced.)

Definition 3. Let Φ be a gain graph also on V = [n] and let h be a height function on
V . We say that an edge g(i, j) is coherent with h if h(j) − h(i) = g. The subgraph Φ[h] of
Φ selected by h is the gain graph on the same vertex set V whose edges are the edges of Φ
coherent with h.
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Definition 4. Given a height function h on the set V , the order Oh on the set V = [n] is
defined by i <Oh

j iff h(i) > h(j) or (h(i) = h(j) and i < j). The order Oh is extended
lexicographically to an order Oh on the set of edges coherent with the height function.

With this definition, the corner is the smallest vertex of the whole graph. The subcorner
of V defined by the height function is the smallest neighbour of the corner in Φ[h]. When
|V | = 1, the subcorner is by definition the corner. In the Linial case, where all gains are
equal to 1, the subcorner is the smallest vertex on the second level. When 0 is a gain value,
the subcorner is the second vertex on the first level when it exists.

To explain a little all these definitions, a height function is just putting the vertices on
different levels. An integral gain graph Φ on integers defines a height function hΦ when it is
balanced (a tree works). On the other hand, given a height function h and a gain graph Φ,
we get a subgraph Φ[h] of Φ by keeping only the edges coherent with h. Finally, the height
function defines the order Oh on the edges of the gain graph which we will need to define
the NBC sets.

The height function will play a very central role in all the paper. The constructions for
the Linial arrangement as well as for its generalisations will always work once the height
function has been chosen. This property will have for consequence, once we also define a
height function on the corresponding trees (the other side of the bijection), to have a finer
correspondence such as fixing the root of the tree.

4. NBC sets and NBC trees in gain graphs

An NBC set in a gain graph Φ is basically an edge set, as it arises from matroid theory.
We usually assume an NBC set is a spanning subgraph, i.e., it contains all vertices. Thus,
an NBC tree is a spanning tree of Φ. Sometimes we wish to have non-spanning NBC sets,
such as the components of an NBC forest; then we write of NBC subtrees, which need not
be spanning trees.

Given a height function h, a gain graph Φ and the linear order <Oh
on the edges, they

determine the set of NBC sets of the subgraph Φ[h] relative to the order <Oh
, denoted by

NO(Φ[h]). As always, this set depends on the choice of the order but its cardinality does
not.

Lemma 5. Given an NBC tree A of height function h with corner c, the forest A\c is a dis-
joint union of NBC subtrees of height functions h1,...,hk, and the orders Ohi

are restrictions
of the order Oh. �

It is known from matroid theory that the NBC sets of the semimatroid of an affine ar-
rangement A, with respect to a given ordering <O of the edges, correspond to the regions
of the arrangement [6, Section 9]. The semimatroid of A[Φ] is the frame (previously “bias”)
semimatroid of Φ, which consists of the balanced edge sets of the gain graph Φ ([8, Sect. II.2]
or [4]). Thus, the NBC sets of that semimatroid are the spanning forests of Φ. Therefore
|NO(Φ)| equals the number of regions of A[Φ].

We show that the total number of NBC trees in an integral gain graph Φ equals the sum,
over all height functions h, of the number of NBC trees in Φ[h].

Let Φ be connected. Then we can decompose NO(Φ) into disjoint subsets NO(Φ[h]), one
for each height function h that is coherent with Φ (that means that Φ[h] is also connected).
We have now:

NO(Φ) =
⊎
{NO(Φ[h]) | h is coherent with Φ}.
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Therefore, the total number of NBC trees of all Φ[h] with respect to all possible height
functions h equals the number of NBC trees of Φ.

5. Complete [a, b]-gain graphs and their NBC trees

Let a and b be two integers such that a ≤ b. The interval [a, b] is the set {i ∈ Z | a ≤
i ≤ b}. We consider the gain graph Kab

n with vertices labelled by [n] and with all the edges
g(i, j), with i < j and g ∈ [a, b]. The arrangements that correspond to these gain graphs,
called deformations of the braid arrangement, have been of particular interest. The braid
arrangement corresponds to the special case a = b = 0. Other well studied cases are a = −b
(extended Catalan), a = b = 1 (Linial) and a = b− 1 = 0 (Shi).

We will describe the set of NBC trees of Kab
n [h] for a given height function h. The idea is

that, as mentioned above, the height function h defines an order Oh on a balanced subgraph.
We will then be able to describe the NBC sets coherent with h for the order Oh.

Proposition 6. Let a and b be integers such that a ≤ b. Let h be a height function of
corner c and let Φ be a spanning tree of Kab

n [h]. Suppose c is incident to the edges gi(c, vi),
1 ≤ i ≤ k, and let Φi be the connected component of Φ \ c containing ci (that is a subtree).
Then Φ is an NBC tree if and only if all the Φi are NBC trees and each vi is the Oh-smallest
vertex of Φi adjacent to c in Kab

n [h].

Proof. Everything comes from the choice of the order Oh for the vertices and the edges. If
we have a vertex v in Φi such that v <Oh

vi for which the edge (c, v) ∈ Kab
n [h] exists then

this edge is smaller than all the edges of Φi + c. Such an edge then closes a balanced circuit
being the smallest edge of the circuit which is not possible.

In the other direction, if Φ is not an NBC tree then there is an edge (x, y) in Kab
n [h] closing

a balanced circuit by being the smallest edge of the circuit. Since the Φi are by hypothesis
are NBC trees the vertices x and y can not be in a same Φi. They can not be in two different
Φi neither since the smallest edge would contain c necessarily. The last solution is that
one of the vertices say x is c and that the other vertex y is in a Φi. Since the edge (c, vi)
will be in the circuit we need to have (x, y) <Oh

(c, vi). This implies the condition of the
proposition. �

6. Local binary search trees and two generalisations

The local binary search trees (LBS for short) are labelled rooted plane binary trees such
that a vertex has possibly two children a left one and a right one with the property that :
the value of the parent is bigger than the value of the left child and smaller than the value
of the right child. The number of LBS labelled on the set [n] is known to be equal to the
number of regions of the Linial arrangement in dimension n.

Definition 7. A LBS is called a left LBS (LLBS for short) (resp. a right LBS (RLBS for
short)) if the root has no right child (resp. left child).

Let T be a LBS tree of root r = r0. Let r1 be its right child and r2 be r1’s right child
and so on... rk+1 be rk’s right child. Let r` the last of these vertices. If we delete the edges
{ri, ri+1} we obtain `+ 1 disjoint LLBS L0 , . . . ,L`. We call this the left decomposition of an
LBS.

Similarly we have the right decomposition of an LBS by taking r = r′0. Let r′1 be its left
child and r′2 be r′1’s left child and so on... r′k+1 be r′k’s left child. Let r′′` the last of these
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vertices. If we delete the edges {r′i, r′i+1} we obtain `′ + 1 disjoint RLBS R0 , . . . ,R`′ . We
call this the right decomposition of an LBS..

We introduce now a generalization of LBS which will have many similar properties. The
local k-ary search trees (LkS for short) are labelled rooted plane k-ary trees such that a
vertex has possibly k children numbered from 1 to k such that the value of the parent is
bigger than the value of the number 1 child and smaller than the value of the number k
child. Note that a vertex has any number of children from 0 to k but that the number of
the child does not depend on the presence of the other children (this is what means plane
k-ary). Note also that of course a LBS is a LkS for k = 2.

Definition 8. A LkS is called a left LkS (LLkS for short) if the root has no number k child.

Let T be a LkS tree of root r = r0. Let r1 be its number k child and r2 be r1’s number
k child and so on... rk+1 be rk’s number k child. Let r` the last of these vertices. If we
delete the edges {ri, ri+1} we obtain ` + 1 disjoint LLkS L0 , . . . ,L`. We call this the left
decomposition of an LkS. If we start with a LLkS tree T (already left) of root and subtrees
T i for 1 ≤ i ≤ k − 1, then each T i has a left decomposition Di = {Li

0, L
i
1, . . . , L

i
`i
}. We call

the set of the Di the left decomposition of T .
We can define a height function of an LLkS of root r and left decompositions Di =
{Li

0, L
i
1, . . . , L

i
`i
} recursively by: define h(r) = 0 and take a height function hi

j in each Li
j.

Then define h on all the roots of the Li
j by:

• if rij is the root of a Li
j and is smaller than r take h(rij) = −(k − i + 1);

• if rij is the root of a Li
j is bigger than r take h(rij) = −(k − i + 1) + 1.

We just need to take for the other vertices h(x) = hi
j(x) + h(rij)− hi

j(r
i
j) if x ∈ Li

j.
Note that r is the corner of this height function. Note also that the vertices of weight 1

are in the lowest levels. This choice comes from the future bijection with the NBC sets. It
could be easily reversed. Note also that the level of rij the root of Li

j has two the possible

values −k + i− 1 or −k + i depending on the fact rij < r or not.
We introduce now another generalization of LBS corresponding to another generalization

of the Linial arrangement. The semi local k-ary search trees (SLkS for short) are labelled
rooted plane k-ary trees such that a vertex has possibly k children numbered from 1 to k
such that the value of the parent is bigger than the value of the first child from 1 to k − 1
and smaller than the value of the number k child. Note that of course a LBS is a SLkS for
k = 2. Note also that a SLkS tree is also a LkS tree and that therefore we will not need to
define the decomposition or the height function of this new family.

7. Linial gain graph

In [3], we have studied with more details the cases a + b = 0 and a + b = 1 which contain
the braid and the Shi cases. Now we will consider the case a+b = 2 and starting by a = b = 1
corresponding to the Linial case.

The Linial gain graph is the first Kab
n graph with a + b = 2 by taking a = b = 1. It

corresponds to the Linial arrangement, whose hyperplanes have equation xi − xj = 1, with
i < j. The number of regions (and then of NBC sets) of the Linial arrangement in dimension
n is known to be equal to

1

n2n−1

n∑
k=1

(
n

k

)
kn−1.
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It is also known to be equal to the number of local binary search trees on n vertices. We will
give now a bijection between the NBC sets of the Linial arrangement on [n] and the LBS on
[n]. We start by giving a bijection between the NBC trees of the Linial arrangement on [n]
and the LLBS on [n].

Theorem 9. The number of NBC of the Linial gain graph on [n] is equal to the number of
LBS on [n]. Moreover, the number of NBC of corner c of the Linial gain graph on [n] is
equal to the number of LBS of root c on [n]. And even for any height function on [n], the
number of NBC of height h of the Linial gain graph on [n] is equal to the number of LBS of
height h on [n].

Example 10. In the figure, we give on the left a LLBS and on the right the NBC tree
corresponding. The special point in both sides is 3; in the left side if it the biggest number
smaller than the root 4 in the right chain 1− 3− 5− 7 and in the right side it is the biggest
neighbour of the corner.

From left to right, the node which are smaller than the root becomes neighbours of the
corner. The two other node 5 and 7 will be corners of their subtree but are connected
differently. The subtree of root 5 gives a sub NBC tree of corner 5 (always the root becomes
the corner) and of sub corner 2. Since 2 is smaller than the root 4, this subtree is connected
by the edge {4, 2}. The subtree of root 7 gives a sub NBC tree of corner 7 and of sub corner
6. Since 6 is bigger than the root 4, this subtree is connected by the edge {3, 7}.

In the other direction, 3 is again recognized as the special vertex and gives the decompo-
sition in subtrees. The LLBS obtained are just making the chain of the left decomposition
of the LLBS of root 4.

4

1

3

5

2 7

6

4

1 3

5

2

7

6

Figure 1 : Correspondance from LLBS to NBC

Proof. From the definitions of height functions, the following correspondence preserves height
function in both directions and therefore corner goes to root. The fact that the height
function is preserved is of course very important but it also forces the position of the vertices.

To go from LLBS to LBS we just use the left decomposition which correspond to a par-
tition of [n] in the same way as a NBC is just a union of NBC trees (we could call this a
decomposition of an NBC in NBC trees!).
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(From LLBS to NBC trees) Let L be a LLBS with root r and left decomposition in
LLBS Li of root ri for 1 ≤ i ≤ k. We have r1 < r2 < · · · < rk and let rp be the biggest ri
smaller than r. The bijection is recursive as follows:

• Let Ni be the NBC trees corresponding to Li for 1 ≤ i ≤ k. They are of corner ri.
• Add the edge {r, ri} for 1 ≤ i ≤ p.
• For p+ 1 ≤ i ≤ k, let ci and sci be the corner and subcorner of Ni. By hypothesis ci

is bigger than r and also rp. If sci < rp then add the edge {r, sci} and otherwise add
the edge {rp, ci}.

(From NBC trees to LLBS) Let T be a NBC tree of height function hT and so for
the order OhT

. Let c be its corner and vij its neighbours and T i
j the subtrees obtained by

deleting the vertex c ( by notation the vertex vij uses gain i) . Note that the vertex vij is not

necessarily the corner of the subtree T i
j but that it can also be the subcorner. The vertex p

which is the smallest for Oh neighbour of the corner plays a special role. The vertex p is the
biggest vertex using gain k. We need to recognize the pieces which were attached to Np in
the preceding construction. The vertex p by the order and the fact that T is an NBC tree
has at most one neighbour v′1 bigger and (p, v′1) has gain 1. The vertex v′1 is not necessarily
the corner of T \ Np but can have a neighbour v′2 with edge of gain 0 and v′2 < v′1. Let
T ′0, T

′
1, . . . , T

′
` the subtrees of Tp obtained by deleting the edges {v′i, v′i+1}. The subtree T ′0 is

the subtree containing p and the subtree T ′i is the subtree containing v′i. The bijection is
reccursive:

• Let Li be the LLBS corresponding to Ti for 1 ≤ i ≤ k − 1 of corner ci
• Let L′j be the LLBS corresponding to T ′i for 0 ≤ i ≤ ` of corner ci
• Let relabel the Li and L′i to some L′′i along their roots ri. That is we have k+` LLBS
L′′i such that r1 < r2 < · · · < rk+`.
• Add the edge {c, r1} (a left edge) and all the right edges {ri, ri+1} for 1 ≤ i ≤ k+`−1.

�

We give now a more surprising correspondence between RLBS of root r and NBC trees of
subcorner r. Clearly we can go by symmetry from the RLBS to LLBS so the surprise is that
that there is also a correspondence between LLBS of corner c and of subcorner n− c + 1.

Theorem 11. The number of NBC of the Linial gain graph on [n] is equal to the number of
LBS on [n]. Moreover, the number of NBC of subcorner c of the Linial gain graph on [n] is
equal to the number of RBS of root c on [n].

Proof. (From NBC trees to RLBS) Let N be a NBC tree of height function hN and so for
the order OhN

. Let sc be its subcorner and v1 < v2 < . . . < vk its neighbours and N1, . . . , Nk

the subtrees obtained by deleting the vertex sc. Note that the vertex vi is whether the corner
ci or the subcorner sci of the subtree Ni. From the fact that sc is the subcorner of N , we
deduce that there is at least one of the Ni of subcorner sci bigger than sc. The bijection is
recursive:

• Let Ri be the RLBS corresponding to Ni for 1 ≤ i ≤ k of root sci.
• Let relabel the Ri in such a way that sc1 > sc2 > · · · > sck.
• Add the edge {sc, sc1} (a right edge) and all the left edges {sci, sci+1} for 1 ≤ i ≤
k − 1.
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(From RLBS to NBC trees) Let R be a RLBS with root r and right decomposition in
RLBS Ri of root ri for 1 ≤ i ≤ k. We have r1 > r2 > · · · > rk and let rp be the biggest ri
smaller than r. The bijection is recursive as follows:

• Let Ni be the NBC tree corresponding to Ri for 1 ≤ i ≤ k. They are of subcorner
sci and of corner ci with ci ≥ sci (recall that the subcorner in a one vertex tree is the
corner).
• If sci > sc then add the edge {sc, ci} for 1 ≤ i ≤ p.
• If sc > ci then add the edge {sc, ci} for 1 ≤ i ≤ p.
• If ci > sc > sci then add the edge {sc, sci} for 1 ≤ i ≤ p.

�

Here is now a third decomposition of NBC trees by its corner but the pieces are given by
their subcorner. There is a fourth decomposition of a RLBS tree into LLBS which is missing.

(From NBC trees to LLBS) Let N be a NBC tree of height function hN and so for
the order OhN

. Let c be its corner and v1 < v2 < . . . < vk its neighbours and N1, . . . , Nk the
subtrees obtained by deleting the vertex c. Note that the vertex vi is whether the corner ci
or the subcorner sci of the subtree Ni. From the fact that c is the corner of N , we deduce
that all the Ni have a subcorner sci smaller than c. The bijection is recursive, we build R of
root c by:

• Let Ri be the RLBS corresponding to Ni for 1 ≤ i ≤ k of root sci.
• Let relabel the Ri in such a way that sc1 > sc2 > · · · > sck.
• Add the edge {c, sc1} (a left edge) and all the left edges {sci, sci+1} for 1 ≤ i ≤ k−1.

(From LLBS to NBC trees) Let L be a LLBS with root r and right decomposition in
RLBS Ri of root ri for 1 ≤ i ≤ k. We have r1 > r2 > · · · > rk. The bijection is recursive,
we build N of corner r by::

• Let Ni be the NBC tree corresponding to Ri for 1 ≤ i ≤ k. They are of subcorner
ri and of corner ci with ci ≥ ri (recall that the subcorner in a one vertex tree is the
corner). We have for all Ni that the subcorner is smaller then r the corner of the full
NBC tree.
• If c > ci then add the edge {c, ci} for 1 ≤ i ≤ k.
• If c < ci then add the edge {c, sci} for 1 ≤ i ≤ k.

8. Other [a, b] gain graph with a + b = 2

We are now considering the complete gain graph K2−k,k
n for any integer k ≥ 1. The case

k = 1 is the preceding Linial case.

Theorem 12. The number of NBC of the K2−k,k
n gain graph on [n] is equal to the number

of LkS on [n]. Moreover, the number of NBC of corner c of the K2−k,k
n gain graph on [n] is

equal to the number of LkS of root c on [n]. And even for any height function h on [n], the
number of NBC of height h of the K2−k,k

n gain graph on [n] is equal to the number of LkS of
height h on [n].

Proof. The following correspondence preserves height function in both directions and there-
fore corner goes to root. The fact that the height function is preserved is of course very
important but it also forces the position of the vertices. When we give the gain of an edge
there is then no more choice. In the other direction the weight of the edge is also without
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choice and comes directly from the height function. There is a special vertex p which plays
a very central role. In one direction it permits to connect all the pieces even those which
can not be connected directly to the root. In the other direction, it permits to recognize all
the pieces.

To go from LLkS to LkS we just use the left decomposition which correspond to a partition
of [n] is the same way as a NBC is just a union of NBC trees. So we just ned to go make
the correspondence between LLkS and NBC trees.

(From LLkS to NBC trees) Let L be a LLkS with root r and left decomposition in
LLkS Di = {Li

0, L
i
1, . . . , L

i
`i
} each Li

j being of root rij. Let p be the biggest r1
j smaller than

r. The bijection is recursive as follows:

• Let N i
j be the NBC trees corresponding to Li

j. They are of corner rij.

• For j > 1, every N i
j can be uniquely connected with an edge to (r, rij). If rij < r add

the edge (r, rij) of gain k − i + 1 and if rij > r add the edge (r, rij) of gain i− k.

• For j = 1 we are in a case similar to the Linial case. Let scij be the subcorner of N i
j .

– Add the edge {r, rij} for rij ≤ p with gain k.

– Add the edge {r, rij} for rij > p but scij <Oh
p with gain k. All the other N i

j will
be connected to p but not necessarily directly.

– For rij > p and scij >Oh
p, by hypothesis cij is bigger than r and also than p. If

scij < p then add the edge (r, scij) with gain k. For the N i
j such that scij > p

taken in increasing order, we add the edge (p, rij) with gain 1 for the biggest rij.

Then we add the edge (rij′ , r
i
j) with gain 0 (rij′ being the corner of the preceding

such N i
j taking the rij in decreasing order). The reason of this construction apart

from keeping the height function is to be able to recognize the pieces in the other
direction construction.

(From NBC trees to LLkS) The case k = 1 is Linial and there is nothing to prove.
In the case k ≥ 2, we will use that the value 0 is a possible gain. The construction is very
similar to the Linial case. The construction is just done on the neighbours with gain k. The
other vertices can be directly attached to the corner in any case.

Let N be a NBC tree of height function hN and so for the order OhN
. Let c be its corner

and vij < c its neighbours and N i
j the subtrees obtained by deleting the vertex c and the

corresponding edge of gain i by notation. From Proposition 6, the vertex vij is not necessarily

the corner of the subtree N i
j . In fact this is true only if the gain is k. For all other gain,

vij is necessarily the corner of N i
j . The reason comes from the choice of the order Oh. The

vertex p which is the biggest neighbour of the corner with gain k plays a special role and let
Np be its component. From the choice of the order, the vertex p has at most one neighbour
v′1 bigger using gain 1. This vertex v′1 must verify v′1 > r. The vertex v′1 can have only one
neighbour v′2 smaller using gain 0. Similarly v′2 can also have only one smaller neighbour
using gain 0. After deleting all the edges (v′i, v

′
i+1) we get NBC subtrees N ′i whose corner is

v′i. The subtree N ′0 is as well the subtree containing p and is of corner p. The bijection is
recursive :

• Let Li
j be the LLkS corresponding to N i

j of corner vij. We have h(c)− h(vij) = i and

vij < c.

• Let L′i be the LLkS corresponding to N ′i of corner v′i. We have h(c)−h(v′ij) = k−1+i

and v′ij > c.
9



• To every Li
j such that i > 1 and vij < c put weight k − i + 1.

• To every Li
j such that i > 1 and vij > c put weight k − i.

• To every Li
j such that i = 1 put weight 1.

• To every L′i put weight 1.
• The LLkS tree is given by its root c and itsleft decomposition Dw where Dw is just

the set of sub LLkS trees to which we have put weight w.

�

9. [1, k] gain graph

We are now considering the complete gain graph K1,k
n for k any integer bigger than 1. The

case k = 1 is the preceding Linial case. The bijection is based on the same idea: to connect
all the blocks to the root or a special vertex. Here it becomes a little more complicated
because of the different possible gains.

Theorem 13. The number of NBC of the Linial gain graph on [n] is equal to the number
of SLkS on [n]. Moreover, the number of NBC of corner c of the Linial gain graph on [n] is
equal to the number of SLkS of root c on [n]. And even for any height function on [n], the
number of NBC of height h of the Linial gain graph on [n] is equal to the number of SLkS
of height h on [n].

Proof. The following correspondence preserves height function in both directions and there-
fore corner goes to root. To go from LLBS to LBS we just use the left decomposition which
correspond to a partition of [n] is the same way as a NBC is just a union of NBC trees. So
we just need to make the correspondence between SLLkS and NBC trees.

(From LLkS to NBC trees) Let L be a LLkS with root r and left decomposition in
LLkS Di = {Li

0, L
i
1, . . . , L

i
`i
} each Li

j being of root rij. Let p be the biggest r1
j smaller than

r. The height function h of L will be needed. The bijection is recursive as follows:

• Let N i
j be the NBC trees corresponding to Li

j. They are of corner rij. Let xi
j be, if

it exists, the smallest vertex (for order Oh) such that an edge (r, xi
j) exists in Φ[h].

Previously, this vertex could be only the corner or the subcorner. Now it can be on
any level between 1 and h(r)− h(rij). However it is the smallest element of its level.

• We will connect the N i
j to r by taking them in the decreasing order for Oh of their

corner rij. The first such N j
i is then Np of corner p. Some of the N i

j will be connected

directly to the corner r. The other N i
j will be connected to Np making a special

component which will be growing during the construction: we call this component T
which is a name of variable.
• Add the edge (r, p) of gain k − ` + 1.

– If xi
j <h p then add the edge the edge (xi

j, p). For th gain there are two cases :

if rij < r then the gain is k− i+ 1 and else of gain k− i+ h(rij)− h(xi
j) (the +1

disappeared to conserve the height function). This is the case where N i
j can be

connected directly to the corner r. The other case will go to T .
– If xi

j >h p or also xi
j does not exist now we connect to T . We just need to find

in T the vertex tij to add edge (tij, r
i
j). The vertex tij is simply the biggest vertex

of T for Oh such that the edge (tij, r
i
j) exists. So we add the edge (rij, t

i
j) with

gain h(rij)− h(tij).

10



To be complete we must check that the sign graph is indeed a NBC tree of height function
h and such that p is the biggest neighbour of r. First, the tree T is at every moment a NBC
tree by the choice of tij. Also the condition xi

j >h p makes that the vertex p is always the
biggest vertex of T for Oh which can be connected to r. So by Proposition 6 we obtain an
NBC tree. The vertex p is then the biggest neighbour of r since every other neighbour is a
xi
j verifying xi

j <h p. Finally the height function is well preserved by the choices of the gains.

(From NBC trees to LLkS) The case k = 1 is Linial and there is nothing to prove. In
the case k ≥ 2, we will use that the value 0 is a possible gain.

Let N be a NBC tree of height function hN and so for the order OhN
. Let c be its corner

and vij < c its neighbours, N i
j the subtrees obtained by deleting the vertex c, cij the corner

of N i
j . By notation we have that h(c) − h(cij) = i by notation. If we want the gain of the

edge(c, vij) is is h(c)− h(vij). From Proposition 6, the vertex vij is not necessarily the corner

of the subtree N i
j but the smallest vertex for Oh which can be connected in N i

j . The vertex
p which is the biggest neighbour of the corner for Oh plays a special role and let Np be its
component.

We need now to cut Np to get back the blocks in the preceding construction (Np corre-
sponds to the final T ). The algorithm to get back the pieces is simply a kind of depth first
search starting at p. Each time we found an edge (x, y) such that y <h p we know that the
vertex y is not in Tp. In fact we know also that y is the corner of a new NBC which we will
obtain by continuing the search and cutting now edges (x′, y′) where y′ <h y. Finally we get
subtrees N ′i of corner yi when we put indices at each vertex y found. The subtree N ′0 is as
well the subtree containing p and is of corner p. The bijection is recursive :

• Let Li
j be the LLkS corresponding to N i

j of corner cij. We have h(c)− h(cij) = i.
• Let L′i be the LLkS corresponding to N ′i of corner yi.
• To every Li

j such that i > 1 and cij < c put weight k − i + 1.

• To every Li
j such that i > 1 and cij > c put weight k − i.

• To L′0 put weight k − (h(c) − h(p)) + 1. Recall that p is the corner of L′0 and that
p <h c.
• To every L′i put weight k − (h(c) − h(yi)). Now we have that yi is the corner of N ′i

and that yi >h c.
• The LLkS tree is given by its root c and its left decomposition Dw where Dw is just

the set of sub LLkS trees to which we have put weight w.

�

10. LkS and SLkS as coloured trees and forests

We kept the definition of LBS and gave their two similar generalisations because our first
goal was to go from NBC to LBS. However we already made the remark that the right
decomposition means that LBS are like forests of LLBS. Similarly the LkS and SLkS are
also forests of left parts. We will give in this section a definition which would have been
more suitable for our constructions and that is in some sense more natural.

We consider Tn, k the set of rooted coloured labelled trees that is rooted labelled trees on
[n] where the edges have k possible colours in [k]. On [n] the number of rooted labelled trees
is known to be nn−1 and so the cardinality of Tn, k is 2n−1nn−1.

Definition 14. An inner vertex x is said to be a descent if it has no child of colour 1 or if
it has a child y of colour 1 such that y < x.

11



An inner vertex x is said to be a S-descent if its smallest child of smallest caller y is such
that y < x.

Theorem 15. The LLkS are in bijection with the rooted coloured labelled trees such that all
inner vertices are descents. The SLLkS are in bijection with the rooted coloured labelled trees
such that all inner vertices are S-descents.

Proof. From SLLkS to labelled trees. Let L be a LLkS, r be its root, ri be r’s number i
child for 1 ≤ i ≤ k − 1 (it has no number k child). The vertex ri is the root of an LkS Li.
Let take the left decomposition of Li into the set of LLkS Li

0 , . . . ,Li
`i

with corresponding
roots ri0,. . . ,ri`i . We obtain recursively the bijection just by replacing each LLkS Li by its
corresponding rooted tree and adding the edges {r, rij} for 0 ≤ j ≤ `i with weight i.

From labelled trees to LLkS. Let T be a rooted labelled tree with the property and r be
its root. Let T i

j be the rooted labelled trees obtain by deleting the root r where i is the
value of the weight of the deleted edge. The tree T is not a rooted plane tree so there is
special order on these subtrees. Any way they have root rij which can be uniquely ordered

by their label and let us suppose then that ri0 < ri1 . . . < ri`i . That means we work on each
weight separately. By hypothesis we have r0 < r. So recursively again, we obtain the LLkS
corresponding to T by replacing each Ti by its corresponding LLkS and joining them to the
root by adding the edge {r, ri0} (ri0 is the number i child of r) and all the edges {rij−1, r

i
j} (rij

is the number i child of rij−1) for 1 ≤ j ≤ `i. �

Remark 16. (1) Note that LBS are both LkS and SLkS for k = 1. Of course this comes
from the fact that the two different definitions are the same when k = 1.

(2) Note also that we could make a new definition with two different set of weights
W1 = [k1] and W2 = [k2]. A W1-descent would be a inner vertex x such that y
its smallest child of smallest weight in W1 is such that y < x. Then the descent
definition corresponds to the case k1 = 1 and k2 = n− 1 and the S-descent definition
corresponds to the case k1 = n and k2 = 0. Other values of k1 ≥ 1 and k2 ≥ 0
are possible and will correspond in our construction to the complete gain graphs

K
[1−k2,k1+k2]
n .
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