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Abstract

The main content of the note is a proof of the conjecture of Hamidoune-Las Vergnas on the directed

switching game in the case of Lawrence oriented matroids.

C.E. Shannon has introduced the switching game for graphs circa 1960. It has been generalized and solved
for matroids by A. Lehman [4]. A switching game on graphs and oriented matroids was introduced by Y. O.
Hamidoune and M. Las Vergnas [3]. They have solved it for graphic and cographic oriented matroids. They
have stated as a conjecture that the classification of the oriented game is identical to the classification of its
non oriented version. This conjecture holds for the graphic and cographic cases, but remains open for more
general classes of oriented matroids. In this note, we show that it holds for the class of Lawrence oriented
matroids.

Definition 1 (Directed switching game on an oriented matroid). Let M be an oriented matroid and
e one of its elements. In the directed switching game on M, Maker and Breaker alternately play on M and
choose an unplayed element different from e, Maker signs it and Breaker deletes it. Maker wins the game if
the final orientation of M contains a positive circuit containing e.

By the results of [3], in order to prove that the classification of the directed switching game is identical
to the classification of the undirected game, it suffices to prove

Conjecture 1. [3] If M is the union of two disjoint bases, then the directed switching game on oM is
winning for Maker playing first.

Definition 2. The Lawrence oriented matroid defined by an n × r matrix A = (aij) with coefficients in
{−1, 1} is the uniform oriented matroid of rank r on n elements such that the sign of an ordered basis
(i1, . . . , ir)< is given by:

χ(i1, . . . , ir) =

r∏

j=1

aj,ij
.

For more details, we refer the reader to Section 3.5 of [2] for chirotopes and Section 7.6 for Lawrence matroids
(where they are called Γ). Lawrence matroids form a special class of oriented matroids that are uniform and
vectorial. The special case where all the coefficients of the matrix are 1 gives the alternating matroid (the
oriented matroid of the cyclic polytope).

For the convenience of the reader, we recall the relation between the chirotope (basis orientation) and
the signature of a circuit in a uniform oriented matroid. Let C = {i1, i2, · · · , ir+1}< be a circuit of a uniform
matroid. For every element i of the circuit, the set C \ i is an ordered basis of the matroid. The relation
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between the sign in the circuit of two consecutive elements ij , ij+1 and the signs of the basis Bj = C \ ij ,
Bj+1 = C \ ij+1 is:

χ(Bj) · χ(Bj+1) = −C(ij) · C(ij+1).

where the sign of an element i in C is denoted C(i).
It follows that in a Lawrence matroid a signature of C is given by C(i1) = + and recursively by C(ij+1) =

−C(ij) · aj,ij
· aj,ij+1

for 1 ≤ j ≤ r.

Theorem 1. The directed switching game on a Lawrence matroid of rank r and of order n is winning for
Maker playing first if and only if n ≥ 2r.

Proof. If n < 2r then Maker do not sign enough elements to create a circuit and then he loses.
Suppose that n = 2r and let k be the initial element. A winning strategy for Maker will be to play

a = ⌈k−1

2
⌉ elements smaller than k and b = ⌈n−k

2
⌉ elements bigger than k. Note that the relation a+ b+1 =

r + 1 is verified and that k in the end will corresponds to the element ca+1 in the constructed circuit
C = {c1, . . . , cr+1}.

Maker plays on the side (left or right) of k where an odd number, say 2j + 1, of elements is left. On this
side, he chooses i, the closest element to k. In the case where the chosen element is smaller than k, this
element will be cj+1. In the other case, the element i will be cr+1−j.

This permits Maker to sign i by −aj+1,i · aj+1,i′ in the first case and by −ar−j,i · ar−j,i′ , where i′ is the
previous element played on this side (possibly k if none). Of course these rules are used to have at the end
C(i) = C(i′) which implies that after r moves of Maker, the set of selected signed elements forms a positive
circuit.

In the case n > 2r, Maker can use fictitious moves like in [3]. Maker will first select from the all set a
subset of 2r elements containing k. Then he applies the previous strategy on this subset by choosing himself
an element for Breaker in the case where Breaker plays outside the subset (these are the fictitious moves).
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