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Abstract. A flippable edge in an acyclic digraph is an edge whose re-
orientation leaves the graph acyclic. Flippable edges was recently con-
sidered by K. Fukuda et al. In an acyclic digraph the set of flippable
edges is spanning. We then characterize the spanning trees T of an undi-
rected graph G such that there exists an acyclic orientation of G whose
set of flippable edges is T . In particular for every edge e ∈ E(G) we give
a linear algorithm returning an acyclic orientation and a spanning tree
T containing e such that T is the set of flippable edges of the digraph.

After going to oriented matroid theory and dualizing the proofs we
obtain theorems concerning flippable edges in strongly connected di-
graphs.

1. Introduction and notations

The famous formula of Cayley says that the number of trees on n labelled
vertices equals nn−2. Nevertheless finding a spanning tree in an undirected
graph is a well known polynomial problem. In this paper we consider a re-
lated problem concerning the class of directed graphs (digraphs, for short).
We will also consider a digraph as a graph together with an orientation of its
edges. An acyclic orientation of a graph is an orientation with no directed
circuit. Given a directed graph G, the flipping of an edge e = (a, b) is the
directed graph, denoted −eG, with the same set of vertices and with the
same set of directed edges except that the edge (a, b) is replaced by the edge
(b, a). A flippable edge in an acyclic digraph is an edge whose reorientation
leaves the graph acyclic. Flippable edges were recently considered by K.
Fukuda et al, see [2]. We give a simple graph theoretical proof that the set
of flippable edges is spanning and determine completely the digraph. We
characterize the spanning trees T of an undirected graph G such that there
exists an orientation of G whose set of flippable edges is T . In particular for
every edge e ∈ E(G) we give a linear algorithm giving an acyclic orientation
and a spanning tree T containing e and such that T is the set of flippable
edges of the digraph. These notions are more natural and more classical in
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oriented matroid theory. Some of our results hold also for non-graphic ori-
ented matroids. Nevertheless we opt here for a graph theoretic presentation
and postpone to the end of the paper the introduction of the oriented ma-
troid point of view. We give graphic proofs when possible even when there
are more general matroid proofs. From the matroid notion of “duality”, we
also get a series of results concerning flippable edges in strongly connected
digraphs which is the property dual to acyclic.

The paper is organized as follows. In section 2, we look at the set of
flippable edges of an acyclic graph and stay entirely in a graphical context
for the proofs. In section 3, we give when possible analogous results for
flippable edges in strongly connected graphs. We omit the proofs which are
very similar from duality in the matroid sense. In section 4, we replace our
results in the more general context of oriented matroids and hyperplane ar-
rangements. In a geometrical set up, flippable edges correspond to extremal
points in an affine space or to walls of the fundamental cell in a hyperplane
arrangement.

We now fix some more notations and definitions on graph theory. We
will call G a graph or a digraph on a set V of vertices and a set E of edges
with |V | = n and |E| = m. A simple graph is a graph without loops or
multiple edges. Note that a graph is simple if and only it has no cycle of
size smaller than three. In a digraph G the edges of a cycle C of the graph
are divided naturally, after a choice of a direction, into a positive and a
negative part C+ and C−. The signed set C = (C+, C−) is a circuit of the
graph. The circuit (C+, C−) with e ∈ C+ is the circuit on the cycle C and
along e. If the negative part is empty the circuit is positive (a positive circuit
is sometimes called in the literature simply a circuit). An orientation of a
graph is acyclic if it has no positive circuit. Every acyclic orientation of the
graph G determines at least one linear ordering v1 < · · · < vn of the vertex
set V (G) := {v1, . . . , vn} such that an edge (vi, vj) of G has the direction
(vi, vj) if and only if vi < vj . An ordering verifying these conditions is
called in the literature a topological ordering of the vertices relative to the
orientation. Such a topological ordering can classically be obtained in linear
time by a depth first search algorithm. Reciprocally every linear ordering
v1′ < · · · < vn′ of V (G) is a topological ordering of an acyclic orientation
and determines this orientation. A totally cyclic orientation of a graph is
an orientation such that every edge belongs to a positive circuit. It is a well
known result that a 2-connected digraph is totally cyclic iff it is strongly
connected (i.e., for any two vertices a and b there exists a directed path
from a to b). For a spanning tree T and an edge e ∈ E(G) \ T , the unique
cycle [resp. circuit along e] of G contained in T ∪ e is the fundamental
cycle [resp. fundamental circuit] and is denoted C(e, T ). A cutset C? in a
connected graph is a minimal set of edges which disconnects the vertices of
the graph in two non-empty parts A and B. A graph is k-connected if it
has no cutset of size smaller than k. In a digraph the edges of a cutset C?

are naturally separated into a positive part C?+
which are the edges from
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A to B and a negative part C?− which are the edges from B to A. The
signed set C? = (C?+

, C?−) is a cocircuit of the digraph. If an edge e is in
C?+

, the cocircuit C? is called the cocircuit on the cutset C? and along e.
If the negative part of a cocircuit is empty, the cocircuit is positive. The
circuits and cocircuits of a directed graph G are precisely the circuits and
the cocircuits of the oriented matroid M(G). For a spanning tree T and an
edge e ∈ T , the unique cutset [resp. cocircuit along e] of G contained in
(E(G) \T )∪ e is the fundamental cutset [resp. fundamental cocircuit] and is
denoted C?(e, T ). A cycle C [resp. circuit C = (C+, C−] of G corresponds
to a vector in RE(G) with 1 on C [resp. 1 on C+ and -1 on C−] and 0
on E(G) \ C. Similarly, a cutset C? [resp. cocircuit C? = (C?+

, C?−)] of
G corresponds to a vector in RE(G) with 1 on C? [resp. 1 on C?+

and -
1 on C?− ] and 0 on E(G) \ C. Let C(G) [resp. C?(G)] be the the vector
subspace of RE(G) spanned by the vectors corresponding to the circuits [resp.
cocircuits].

Remark that the graphic oriented matroid M(G), of a connected digraph
G, is acyclic if and only if the oriented dual matroid M?(G) is totally cyclic,
see [1] for details. Applying this duality K. Fukuda et al [2] obtained some
interesting results. In particular we recall that, given a graph G, an orien-
tation of G is determined by the graphic oriented matroid determined by G
and the orientation of an edge in every connected component.

2. flippable edges in acyclic digraphs

The following lemma is a known result of oriented matroid theory. Propo-
sition 2.2 is also partially known.

Lemma 2.1. An edge e = (a, b) is not flippable in an acyclic digraph G iff
there exists a path from a to b in the digraph G \ e.

Proof. If there exists a path P from a to b in the digraph G \ e there will
be a directed circuit in −eG by completing P by the arc (b, a). Reciprocally
if there exists a directed circuit C in −eG, it necessarily contains the edge
ē = (b, a). The set C \ ē is a path from a to b in G. �

We say that a set of edges E′ ⊆ E(G) preserves the directed connectivity
of the graph if for any two vertices a, b ∈ V (G) the following two conditions
are equivalent:

(i) There is a directed path from a to b in G;
(ii) There is a directed path from a to b in G′ = (V,E′).

Proposition 2.2. In a digraph G of order n the set of flippable edges pre-
serves the directed connectivity of G. Consequently, if the graph is connected
then there are at least n− 1 flippable edges and if there is exactly n− 1 flip-
pable edges the set is a tree.



4 RAUL CORDOVIL AND DAVID FORGE

Proof. Let a and b be two vertices connected by a directed path in G. Let
P ab

max be a maximal path connecting these two vertices (maximal with re-
spect to cardinality). All the edges of P ab

max are flippable since otherwise
by the previous lemma we could replace an edge of P ab

max by a path, which
contradicts the maximally of P ab

max. If now the graph is connected, the set of
flippable edges is spanning which implies that it has at least n−1 edges. �

From the simple preceding results we can see that the set of flippable edges
with their orientation determines the directions of all the edges in the di-
graph. Indeed let e be a non-flippable edge of G. Necessarily from the lemma
it belongs to a circuit C of G where it is the only positive edge. From this
remark, one can also deduce that two different acyclic orientations of the
same graph differ at least on one flippable edge, which is exactly Lemma 1.1
of [2].

Theorem 2.3. Let T be a spanning tree of a digraph G. Then the following
three conditions are equivalent:

(i) The digraph G is acyclic and T is the set of flippable edges of G.
(ii) For every edge e ∈ E(G) \ T , e is the unique positive element in the

fundamental circuit C(e, T ).
(iii) For every edge e ∈ T the fundamental cocircuit C?(e, T ) is positive.

Proof. (i) =⇒ (ii) is a consequence of Lemma 2.1.
(ii) =⇒ (iii) is a consequence of the orthogonality of circuits and cocircuits
of a digraph: i.e., given a circuit C = (C+, C−) and a cocircuit C? =
(C?+

, C?−) in a digraph such that |C ∩ C?| = 2 then |(C+ ∩ C?+
) ∪ (C− ∩

C?−)| = 1 and |(C+ ∩ C?−) ∪ (C− ∩ C?+
)| = 1.

(iii) =⇒ (i). Suppose that G has a directed cycle C. For an edge e of T ,
let Ae and Be denote the components of G that are separated by C?(e, T ).
We claim that there exists an edge e of T such that C ∩Ae and C ∩Be are
both non-empty. Since C?(e, T ) is positive, we see that the acyclicity of G
follows from this claim. To prove the claim, pick an edge (a, b) of C \ T .
Let p be the undirected path from a to b that is contained in T , and let e
be any edge of p. If we cut the edge e of T , then a and b are separated in
T . Therefore, a and b are separated in G by C?(e, T ), proving the claim,
and hence the acyclicity of G. Next, for any e 6∈ T , pick an arbitrary
element a ∈ C(e, T ) \ e. From the orthogonality of the circuit C(e, T ) and
the cocircuit C?(a, T ) we conclude that the element e is not flippable. The
minimum number of flippable elements in the acyclic graph G is |T |, see
Proposition 2.2. So every element of T is flippable. �

Given a spanning tree T of a digraph G it is well known that the set
{C(a, T ) : a ∈ E(G)\T} is a basis of the space of circuits C(G). By matroid
duality the set {C?(a, T ) : a ∈ T} is a basis of the space of cocircuits C?(G)
over R. Therefore, we can immediately deduce the following:
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Corollary 2.4. Let G be a 2-connected digraph and T be a spanning tree of
G. Then the following propositions are equivalent:

(i) G is acyclic and T is the set of flippable edges of G.
(ii) All the cocircuits {C?(a, T ) : a ∈ T} are positive and form a basis

of the cocircuit space C?(G).

Remark 2.5. The existence of a basis of positive cocircuits does not guar-
antee the fact that the flippable edges form a tree. This can be seen in
the following example. Let G be the graph on 4 vertices and with 5 edges
oriented like in Figure (a). The edges 1, 2, 3, and 4 are flippable and the
positive cocircuits {2, 4, 5}, {1, 4, 5} and {1, 3, 5} form a basis of the cocir-
cuit space C?(G). In the digraph of figure (b), the flippable edges are 2, 3
and 5 and they form a tree.
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Corollary 2.6. Let G be a 2-connected graph and T be a spanning tree of
G. If T is the set of flippable edges of an acyclic orientation of G then it is
the set of flippable edges of exactly two opposite acyclic orientations of G.

Proof. Suppose that T is the set of flippable edges of a digraph G. From the
equivalence of (i) and (ii) of Proposition 2.2 we know a basis of the space of
circuits {C(e, T ) : e ∈ E(G) \ T}. From the 2-connectivity of the graph, we
know that the two opposite orientations of an edge of G give two opposite
orientations of the graph G. �

From a classical result of R. W. Shannon [4] (on hyperplane arrange-
ments), there exist at least 2m different acyclic orientations having a span-
ning tree of flippable edges. We present here a linear algorithm, based on a
depth first search, to find for every edge e ∈ E(G) two acyclic orientations
and a spanning tree T corresponding to the edge e.

Theorem 2.7. Let G = (V,E) be a 2-connected graph. There exist at least
2m acyclic orientations with exactly n− 1 flippable edges.
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Proof. The proof is based on the following algorithm for numbering the
vertices based on a depth first search with postfix numbering starting with
a specific edge. Indeed, we can see that each edge e gives two different
correct orientations, one for each orientation of e.
Algorithm
Input: A graph G, two vertices a and b forming an edge (and a numbering
of the vertices where a is first and b second to determine the search).
Output: A numbering α of the vertices with α(a) = n, α(b) = n − 1 and
such that the associated orientation has exactly n− 1 flippable edges.
Procedure Search(v: vertex)
S ← S \ v; For every neighbor v′ of v do if v′ ∈ S then Search(v′);
α(v)← k; k ← k + 1;
Main
k ← 1; S ← V ; Search(a); return α.

�

The result of the preceding algorithm is a numbering α of the vertices.
This numbering induces two orientations: the increasing orientation if the
edges {a, b} are oriented from a to b if α(a) < α(b) and the decreasing
orientation if the edges {a, b} are oriented from a to b if α(a) > α(b). In
these orientations, the set of flipping edges is exactly the search tree. Since
a and b are the two first vertices in the order used for the search they will
be numbered n and n− 1 respectively.

From the preceding discussion, we deduce the next corollary.

Corollary 2.8. Let G be a 2-connected graph with 2m acyclic orientations
with a tree of flippable edges. Then the tree T of flippable edges in one
of these orientations has a unique source or sink, which has also a unique
neighbor. �

Theorem 2.7 suggests the following open question:

Problem 2.9. Given a spanning subset X ⊆ E(G) of edges of a connected
graph, find a polynomial algorithm to decide if there is an orientation of G
whose set of flippable edges is exactly X.

Following definitions of oriented matroids, a 2-connected graph G on n
vertices is simplicial if every acyclic orientation of G has exactly n− 1 flip-
pable edges (see Section 4 for a geometric explanation of this definition).

Proposition 2.10. In the complete graph Kn a tree is flippable iff it is a
path. A 2-connected graph G on n vertices is simplicial iff it is the complete
graph Kn.

Proof. Any acyclic orientation of the complete graph Kn, which corresponds
to a numbering of the vertices, contains a directed path of length n−1. Every
other edge outside this path are clearly non-flippable.
For a graph G which is not complete, let a and b be two non-adjacent vertices.
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Let C be a circuit of G containing a and b, and of minimum length k. Such
a circuit exists from the connectivity of G. Let us first remark that k, the
length of C, must be at least four. Consider now an acyclic orientation of
G defined by an ordering of the vertices such that 1 and k are the neighbors
(for consistency) of a, 2 is a, the others vertices of C are numbered in the
order with labels 3, 4, . . . , k − 1 from vertex 1 to vertex k going by b and
finally the other vertices outside of C are numbered indifferently from k + 1
to n. By the minimality of C, in such an acyclic orientation all the edges of
C are flippable which with Proposition 2.2 gives that there are at least n of
them. �

Note that the number of flippable trees in the complete graph Kn is n!, a
small number compared with the total number of trees, the Cayley number
nn−2.

Proposition 2.11. Let G = (V,E) be a 2-connected non-Hamiltonian graph
G = (V,E). There is an acyclic orientation of the edges such that every edge
of G is on a positive cocircuit and outside another positive cocircuit.

Proof. By Theorem 2.7, there exists a tree T and an acyclic orientation of
G, such that T is the set of flippable edges of this orientation. By Theorem
2.3, every edge e ∈ E \T is the only positive edge in the fundamental circuit
C(e, T ).

Note that there are exactly n−1 positive cocircuits and for every element
x ∈ T there is exactly one positive cocircuit C?

x containing x, the fundamen-
tal cocircuit C?(x, T ). Every edge x ∈ T is then on a positive cocircuit and
outside another positive cocircuit.

Since G is non-Hamiltonian, for every edge edge b 6∈ T , we know that
T 6⊆ C(b, T ). By the orthogonality of circuits and cocircuits, we have that
x ∈ C(b, T )⇐⇒ b ∈ C?(x, T ). We can deduce then that b is in all the funda-
mental cocircuits C?(x, T ) for x ∈ C(b, T )\b and in none of the fundamental
cocircuits C?(x, T ) for x ∈ T \ C(b, T ), which concludes the proof. �

3. flippings preserving strong connectivity

Similarly to the acyclic case, an edge e ∈ E(G) in a strongly connected
digraph G is flippable if the digraph −eG is also strongly connected. A
graph is 3-edge connected if it has no cutset of size smaller than three. Note
that in the matroid sense, the notions of “strongly connected” and “3-edge
connected” are dual, respectively, to the notions of “acyclic” and “simple”.
These matroid notions will be developed largely in the next section. In this
section, the dual results of the previous section are given without proof.
Dualizing Lemma 2.1, Proposition 2.2 and Theorem 2.3 we have:

Lemma 3.1. An edge e = (a, b) is not flippable in a strongly connected
digraph G iff e is the only edge in the negative part of a cutset. �
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Proposition 3.2. In a 3-edge connected and strongly connected directed
graph G of order n the set of non-flippable edges does not contain a circuit.
Consequently, there are at least m− n + 1 flippable edges. �

Theorem 3.3. Let T be a spanning tree of a 3-connected digraph G. Then
the following three conditions are equivalent:
(i) The directed graph G is strongly connected and T is the set of non-

flippable edges of G.
(ii) Every edge e ∈ T is the unique positive element in the fundamental

cutset C?(e, T ).
(iii) For every edge e ∈ E(G) \ T the fundamental circuit C(e, T ) is posi-

tive. �

Proposition 3.4. A 2-connected graph G = (V,E) admits a strongly con-
nected orientation such that all the edges are flippable iff it is 4-connected.

Proof. This can be deduced almost directly from the theorem of C. St. J.
A. Nash-Williams [3] which says that: “A graph admits a 2 edge-strongly
connected orientation iff it is 4 edge-connected.” Indeed the difficult part is
the if part and in the Nash-Williams’s result the edge can even be deleted
and then clearly flipped. The only if part is immediate after one notes that if
there is a 3-edge cutset then one of the edges of the cutset in any orientation
will be not flippable. �

The following theorem can be obtained by dualizing Theorem 2.7.

Theorem 3.5. Let G = (V,E) be a 3-connected graph. There exist at least
2m strongly connected orientations with exactly m−n+1 flippable edges. �

The cycle with n vertices is the only graph with exactly 2m acyclic ori-
entations with n− 1 flippable edges. In contrast, all n! acyclic orientations
of the complete graph on n vertices have n− 1 flippable edges.

Conjecture 3.6. A 2-connected graph G = (V,E) admits an acyclic orien-
tation such that all the edges are flippable iff it has no triangle.

4. concluding remarks: oriented matroids

In oriented matroid theory, the notion of acyclic reorientation is very
important and has a geometric flavor. In the particular case of an ori-
ented matroid M defined by a hyperplane arrangement H, there is a bi-
jection between the acyclic reorientations of the matroid and the cells of
the hyperplane arrangement, see [1]. All the results of this paper have a
nice geometric (or in the language of oriented matroid) interpretation. We
present now a very short and partial survey for the convenience of the non-
specialist reader. More details can be found in [1]. To every 2-connected
simple graph G = (V,E) on n vertices V := {v1, . . . , vn} and m edges
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E := {e1, . . . , ei := {vk, v`}, . . . , em} we attach a hyperplane arrangement
AG := {He1 , . . . ,Hei , . . . ,Hem} where Hei is the hyperplanes through the
origin defined by

Hei := {x ∈ RV : xvk
= xv`

}.
The complement of the arrangement RV \

⋃m
j=1 Hej is the union of n-dimen-

sional open polyhedral cones called the n-cells of the arrangement. A hy-
perplane arrangement is said to be simplicial if the polyhedral cones are
simplicial. With the definition of simplicial graph given in Section 2, the
hyperplane arrangement AG is simplicial if and only if the attached graph
G is simplicial. If ei = (vk, v`) is a directed edge from vk to v` we say that
H+

ei
:= {x ∈ RV : xvk

< xv`
} and H−

ei
:= {x ∈ RV : xvk

> xv`
} are re-

spectively the positive and negative regions of RV \Hei determined by the
directed edge (vkv`). Suppose now that G is a directed graph. The position
of a generic point x ∈ RV relatively to the hyperplanes and its positive and
negative regions can be encoded by the symbolic vector sg(x) ∈ {0,+,−}E
with,

sg(x)ei =


0, if x ∈ Hei

+, if x ∈ H+
ei

−, if x ∈ H−
ei

.

All these vectors are the covectors of the oriented matroid determined by
the digraph G. The n-cells of the arrangement correspond to covectors of
the oriented matroid with all the coordinates different from zero. From a
well known result of Stanley, the digraph G is acyclic if and only if there is
one (and exactly one) symbolic covector with all the coordinates equal to +.
The corresponding n-cell is called the fundamental cell of the arrangement
AG. The hyperplanes bounding the positive cell correspond to the flippable
edges of the graph. There is a polytope in Rn whose lattice of faces is the
same as the lattice of faces of the positive n-cell. The polar of this polytope
is known as the Las Vergnas polytope determined by the acyclic digraph G
(i.e., the oriented matroid attached to the acyclic digraph). Note that the
bounding hyperplanes correspond to faces of dimension 0 of this polytope.
So Proposition 2.11 can be translated in a more geometric language into:

Proposition 4.1. Let G = (V,E) be a 2-connected non-Hamiltonian graph
G = (V,E). There is an acyclic orientation of the edges such that all the
edges are over facets of the associated Las Vergnas matroid polytope.

It is an easy exercise to translate also the other results of Section 2 in
geometric theorems. One of the attractions of the theory of oriented ma-
troids is certainly the capacity to encode different points of view in a small
axiomatic. In particular there is a natural notion of oriented matroid dual-
ity easily applicable. This notion encodes the duality between circuits and
oriented cutsets (cocircuits) in digraphs. The geometric interpretation of
duality is not so elementary as in our cases and the interested reader can
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consult [1] for details. The results of Section 3 can be obtained by matroid
duality from the results of Section 2, we leave the details to the reader.
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