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Abstract. LetA be an arrangement ofn pseudolines in the real projective plane and let
p3(A) be the number of triangles ofA. Grünbaum has proposed the following question.
Are there infinitely many simple arrangements ofstraight lines with p3(A) = 1

3n(n− 1)?
In this paper we answer this question affirmatively.

1. Introduction

An arrangement of pseudolinesis a finite collectionA of n ≥ 3 simple closed curves in
the real projective planeP such that every two curves have exactly one point in common
at which they cross. In the case where no point onP belongs to more than two lines
of A we say thatA is simple, see [2]. An arrangement of lines decomposesA into a
two-dimensional cell complex. The number of faces withk vertices inA is denoted by
pk(A). A face with three vertices is called atriangle. A simple combinatorial argument
shows thatp3(A) ≤ 1

3n(n−1) for a simple arrangementA with n ≥ 4 pseudolines. We
say that a simple arrangementA is p3-maximalif p3(A) = 1

3n(n− 1). Grünbaum has
proposed the following question (see p. 279 of [1]).

Question. Are there infinitely manyp3-maximal arrangements ofstraight lines?
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6, case 189 – Combinatoire, 4 place Jussieu, 75252 Paris Cedex 05, France.
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In this paper we answer the above question affirmatively. Indeed, we contruct an
infinite family of p3-maximal simple arrangements ofstraight lines.

There are known recursive methods by Roudneff [4] and Harborth [3] to construct a
simple p3-maximal arrangement with 2(n− 1) pseudolines from a simplep3-maximal
arrangement withn pseudolines.

In Section 2 we give a recursive method to construct an infinite class of simplep3-
maximal arrangements of pseudolines. This proves the following well-known theorem.

Theorem 1.1[3], [4]. LetA be a simple p3-maximal arrangement of n> 4 pseudo-
lines. Then there exists a simple p3-maximal arrangementA′ with 2(n−1) pseudolines.

Our method is closely related to that in [3] and it leads to a proof of the following
theorem in Section 3.

Theorem 1.2. There exists an infinite family of p3-maximal simple arrangements of
straight lines.

2. The Method

Proof of Theorem1.1. LetA be ap3-maximal arrangement ofn pseudolinesl0, . . . ,
ln−2 and the pseudolinel∞ at infinity. It is well known and easy to see thatn must be
even and that eachl i andl∞ is adjacent ton − 1 triangles. This is illustrated in Fig. 1
for l∞ where the images of the intersection point ofl i andl∞ are labeled withi andi ′,
0≤ i ≤ n− 2, and where the vertex (not lying onl∞) of each triangle adjacent tol∞ is
labeled withvj , 1≤ j ≤ n− 1.

Fig. 1
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We addn − 2 new pseudolinesd1, . . . ,dn−2 (one by one) toA according to the
following rules:

(i) di starts betweeni and(i+1)and ends betweeni ′ and(i+1)′ for i = 1, . . . ,n−3,
anddn−2 starts between(n−2)′ and 0 and ends betweenn−2 and 0′, see Fig. 1.

(ii) Each pseudolinedi , 1≤ i ≤ n−2, does not intersect the convex hull of vertices
vj , 1≤ j ≤ n− 1.

(iii) For each i = 1, . . . ,n − 2, di crosses the pseudolines ofA in the follow-
ing order. If i = 1, thend1 crossesl2, l3, . . . , l0, l1. If i ≥ 2, thendi crosses
l i+1,d1, l i+2,d2, . . . , l2i−1,di−1, l2i , l2i+1, . . . , ln+i−1 where subscripts are un-
derstood mod(n− 1).

We claim that the new arrangementA′ = {l i }0≤i≤n−1 ∪ {dj }1≤ j≤n−2 is p3-maximal.
Indeed, the new linesdi destroyn − 2 triangles adjacent tol∞ (all except the one
formed by 0, 1, andv1) and each linedi , i = 1, . . . ,n− 2, creates the following 2i + 1
triangles:di , l i , l∞, di , l i+1, l∞, di , l2i , l2i+1 and for eachi ≥ 2 the trianglesdi ,dk, lk+i

anddi ,dk, lk+i+1 for k = 1, . . . , i − 1. So, we have

p3(A′) = n(n− 1)

3
− (n− 2)+

n−2∑
i=1

(2i + 1)

= n(n− 1)

3
+

n−2∑
i=1

2i = n(n− 1)

3
+ 2(n− 2)(n− 1)

2

= n2− n+ 3n2− 9n+ 6

3
= (2n− 2)(2n− 3)

3
.

Hence,A′ is p3-maximal.

We illustrate the above method withn = 6 in Fig. 2.

3. Straight Lines

We need the following definitions and lemma before proving Theorem 1.2. LetSC

(l0, . . . , ln−1) denote thestar formed by linesl0, . . . , ln−1 all passing through a point
C and such that the angle betweenl i andl j is (π/n)( j − i ), 0 ≤ i < j ≤ n − 1, see
Fig. 3.

We denote bŷl1l2 andP̂1P2P3 the angles formed by linesl1, l2 and by the lines passing
through pointsP1, P2 andP3, P2, respectively.

Lemma 3.1. Let SC(l0, . . . , ln−1)be a star.Let d1 be a line parallel to the angle bisector
of l̂0l1 which crosses l0 above C. Let di+1 be the line parallel to the angle bisector of
l̂ i l i+1 which passes through the intersection of d1 and li for i = 1, . . . ,n − 1 where
the sum is modulo n. Then the intersection of lines di and dj lies on li+ j−1 for each
0≤ i < j ≤ n− 1 where the sum i+ j − 1 is modulo n.
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Fig. 2

Proof. Let Pi be the intersection of linesd1 andl i for 0 ≤ i ≤ n− 1 and letQi, j be
the intersection of linesdi anddj for 0 ≤ i < j ≤ n− 1. We show thatQi, j ∈ l i+ j−1

where the sumi + j − 1 is modulon. Consider Fig. 4.
We have that̂Pi C Pj = l̂ i l j = (π/n)( j − i ) and ̂Pi Qi, j Pj = d̂i dj = (π/n)( j − i ).

So, the pointsC, Pi , Pj , andQi, j are on a circle; hence,̂Pj C Qi, j = ̂Pj Pi Qi, j = d̂1dj =
(π/n)( j − 1). Therefore,Qi, j ∈ l i+ j−1.

Fig. 3
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Fig. 4

In particular the linesdi anddn−i+1 cross at linel0 with l̂0di = −π/2n + i (π/n)
and ̂l0dn−i+1 = −(π/2n+ (i − 1)(π/n)). So,di anddn−i+1 are symmetric with respect
to l0.

We now prove Theorem 1.2.

Proof of Theorem1.2. We recursively construct an arrangementA such that
A\{l∞, ln−1, ln−2} is obtained by a translation of a star wherel∞, ln−1, ln−2 are spe-
cial lines inA.

Let A be a simplep3-maximal arrangement ofn straight linesl1, . . . , ln−1 and l∞
where thel i ’s are labeled in the order of their appearence alongl∞. Suppose thatAverifies
the following properties: there exists a straight linel0 (without loss of generality assume
thatl0 is on theY axis) such that (a)̂l i l j = (π(n− 2))( j − i ) for all 0≤ i < j ≤ n− 3,

(b) ̂l0ln−1 = ̂l0ln−2 < π(n− 2) and (c) no intersection pointl i ∩ l j , 1≤ i < j ≤ n− 3,
lies in the interior of the cone borded byln−1, ln−2 and containingl0 except maybe onl0.

We give a procedure to construct an arrangementA′ with 2(n − 1) lines fromA.
First, replaceln−1 andln−2 by l0 (note that, by property (c),ln−1 andln−2 can be brought
arbitrarily close tol0). LetTj be the triangles adjacent tol∞ with j = 1, . . . ,n−1 and let
vj be the vertex inTj not lying in l∞. By continuity, we may assume that verticesvj are
shrunkinto one pointC (we can do this by extending the ends of linel i far enough from
the set ofvj ’s). So,A\{l∞} can be identified with the starSC(l0, . . . , ln−3), see Fig. 5(b).
Let S = SC(l0, . . . , ln−3) ∪ {di }0≤i≤n−3 be the arrangement given as in Lemma 3.1.
We can seeS as an arrangement formed by overlapping the twoslide-arrangements
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Fig. 5
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S1 = SC(l0, . . . , ln−3) andS2 = {di }0≤i≤n−3, see Fig. 5(c). We form arrangementA′
from S as follows:

(1) Fix slideS1 and translate slideS2 (in direction to the positive part of axeY) a
distance ofε/2 whereε is the minimum positive distance such that when moving
S2 as above then a pointQi, j touches a linelk for somek.

(2) Replacel0 by ln−1 andln−2 which cross atC with l̂0lk = β/2 for k = n−1,n−2
whereβ is the angle betweenl0 and the line passing throughC andQn/2,n/2−2,
see Fig. 5(d).

It is easy to check thatA′ satisfies rules (i)–(iii) in proof of Theorem 1.1. Hence,A′
is a simplep3-maximal arrangement of 2(n−1) straight lines. Moreover, by Lemma 3.1
and by construction,A′ verifies properties (a)–(c). Therefore, we may apply recursively
the above procedure starting with the six lines arrangement (that verifies the above
properties) drawn in Fig. 5(a).

Example. We illustrate the above procedure for the case withn = 6 in Fig. 5.
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