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Abstract. Let.A be an arrangement afpseudolines in the real projective plane and let
p3(A) be the number of triangles of. Grninbaum has proposed the following question.
Are there infinitely many simple arrangementssohightlines with ps(A) = %n(n - 1?

In this paper we answer this question affirmatively.

1. Introduction

An arrangement of pseudolinésa finite collection4 of n > 3 simple closed curves in
the real projective plan® such that every two curves have exactly one point in common
at which they cross. In the case where no pointPobelongs to more than two lines
of A we say that4 is simple see [2]. An arrangement of lines decompogesito a
two-dimensional cell complex. The number of faces vidtvertices inA is denoted by
px(A). A face with three vertices is called@angle. A simple combinatorial argument
shows thapps(A) < %n(n — 1) for a simple arrangement with n > 4 pseudolines. We
say that a simple arrangemeftis ps-maximalif ps(A) = %n(n —1). Grinbaum has
proposed the following question (see p. 279 of [1]).

Question. Are there infinitely manyps-maximal arrangements sfraightlines?
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Commission, Contract No. ERBCI1*CT940606. His current address is Uniedtigtie et Marie Curie, Paris
6, case 189 — Combinatoire, 4 place Jussieu, 75252 Paris Cedex 05, France.
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In this paper we answer the above question affirmatively. Indeed, we contruct an
infinite family of ps-maximal simple arrangements stfaightlines.

There are known recursive methods by Roudneff [4] and Harborth [3] to construct a
simple ps-maximal arrangement with(& — 1) pseudolines from a simplps-maximal
arrangement witim pseudolines.

In Section 2 we give a recursive method to construct an infinite class of sipgple
maximal arrangements of pseudolines. This proves the following well-known theorem.

Theorem 1.1[3], [4]. Let.4 be a simple p-maximal arrangement of & 4 pseudo-
lines Then there exists a simplg-maximal arrangementl’ with 2(n — 1) pseudolines

Our method is closely related to that in [3] and it leads to a proof of the following
theorem in Section 3.

Theorem 1.2. There exists an infinite family ofspmaximal simple arrangements of
straight lines

2. The Method

Proof of Theoremi..1. Let.A be apz-maximal arrangement of pseudolinedy, . . .,
In—2 and the pseudolink, at infinity. It is well known and easy to see thamust be
even and that eadh andl, is adjacent ton — 1 triangles. This is illustrated in Fig. 1
for I, where the images of the intersection pointcdndl., are labeled with andi’,

0 <i < n -2, and where the vertex (not lying &) of each triangle adjacent tg, is
labeled withv;, 1 < j <n—1.

Un/2+1

Un/2
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We addn — 2 new pseudolined, ..., d,_2 (one by one) taAd according to the
following rules:

(i) d; starts betweenand(i +1) and ends betweéhand(i +1) fori = 1,...,n-—3,
andd,_, starts betweem — 2)’ and 0 and ends betwean- 2 and 0, see Fig. 1.

(i) Each pseudoling;, 1 <i < n—2, does not intersect the convex hull of vertices
vj,1<j<n-1.

(i) For eachi = 1,...,n — 2, d; crosses the pseudolines df in the follow-
ing order. Ifi = 1, thend; crossesd,, I3, ..., lg,l1. If i > 2, thend, crosses
liv1, da, livo, doy ooy loiog, dizg, Lo, 1o, - . o, Ingio1 Where subscripts are un-

derstood modn — 1).

We claim that the new arrangemedt = {l; }o<i<n—1 U {dj}1<j<n—2 iS ps-maximal.
Indeed, the new lines; destroyn — 2 triangles adjacent tb, (all except the one
formed by 0, 1, and;) and each ling;,i = 1, ..., n— 2, creates the followingi2+ 1
triangles:d;, Ii, I, di, li11, loo, di, l2i, l2i41 @and for each > 2 the triangles;, dg, Iy

andd;, d, lsir1 fork =1,...,i — 1. So, we have
) nn —1) n-2
pa(A) = —(n—2)+Z(2|+1)

B n(n -1 =2 1) 2(n—2)(n — 1)

= Z + >

. N —n+3n>-9+6 _ (@n—=2)(2n-23)

= 3 = 3 )
Hence, A’ is pz-maximal. O

We illustrate the above method with= 6 in Fig. 2.

3. Straight Lines

We need the following definitions and lemma before proving Theorem 1.25t et
(o, ..., lh—1) denote thestar formed by linedy, ..., I,_1 all passing through a point
C and such that the angle betwdemndl; is (z/n)(j —1),0<i < j <n-—1, see
Fig. 3.

We denote by]} and I31/F32\IDg the angles formed by linés, 1, and by the lines passing
through pointsP;, P, and P, P, respectively.

LemAma 3.1. Let&o,...,lh_1) beastarLetd be aline parallelto the angle bisector
of lIol; which crossesglabove C Let d; be the line parallel to the angle bisector of
Iili/rl which passes through the intersection gfathd | fori = 1,...,n — 1 where
the sum is modulo.riThen the intersection of lines dnd d lies on |,j_; for each
0<i < j <n-1wherethe sumi- j — 1is modulon



158 D. Forge and J. L. Ranez Alfonsh

Fig. 2

Proof. Let P be the intersection of lined; andl; for 0 <i < n— 1 and letQ; ; be
the intersection of lined; andd; for0 <i < j < n— 1. We show thaQQ; ; € lij—1
where the sum + j — 1 is modulon. Consider Fig. 4.

We have thaP CP, = [[I; = (x/n)(j —i) andP Q| P, = did; = (x/n)(j — ).
So, the point€, P, P;, andQ; j are on acircle, henc@,j/ca,j = F’,ﬁa,j = d/laJ =
(r/n)(j —1). Therefore Qi j € li+j—-1.

I3

Is

le I

Fig. 3
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Fig. 4
In particular the lines}, andd,_j .1 cross at lindg with IEE = —m/2n +i(zw/Nn)
andlodn_i+1 = —(/2n+ (i — 1)(x/n)). So,d; andd,_j,; are symmetric with respect
to |0. O

We now prove Theorem 1.2.

Proof of Theoreni.2. We recursively construct an arrangemedt such that
A\{l s, In_1, In_2} is obtained by a translation of a star whégg I,_1, Ih_» are spe-
cial lines in A.

Let A be a simpleps-maximal arrangement af straight lined, ..., I -1 andl
where thé;'s are labeled in the order of their appearence algn@uppose thatl verifies
the following properties: there exists a straight lipéwvithout loss of generality assume
thatly is on theY axis) such that (aj-l\j =(@nh-2)( —i)forallO<i <j<n-3,
(b) Im: = IO/I,:Z < m(n — 2) and (c) no intersection poihtNl;, 1 <i <j <n-3,
lies in the interior of the cone borded Ly 1, I,_» and containindy except maybe oky.

We give a procedure to construct an arrangen#ntvith 2(n — 1) lines from A.
First, replacé,_; andl,_; by |, (note that, by property (c),_1 andl,,_, can be brought
arbitrarily close tdo). Let T; be the triangles adjacentltg with j = 1, ..., n—1and let
vj be the vertex ifT; not lying inl.,. By continuity, we may assume that vertiagsare
shrunkinto one pointC (we can do this by extending the ends of linéar enough from
the set ofy;’s). So,4\{l.} can be identified with the st& (o, . . ., In—3), see Fig. 5(b).
LetS = (o, ..., In—3) U {di}o<i<n—3 be the arrangement given as in Lemma 3.1.
We can se&S as an arrangement formed by overlapping the $lide-arrangements
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S1 = o, ..., In=3) andS, = {d; }o<i<n-3, See Fig. 5(c). We form arrangemet
from S as follows:

(1) Fix slideS; and translate slidé&, (in direction to the positive part of axé) a
distance ot /2 whereg is the minimum positive distance such that when moving
S, as above then a poi; ; touches a lindy for somek.

(2) Replacég byl,_1 andl,,_, which cross a€ with |0Tk =pB/2fork=n—-1,n-2
whereg is the angle betweelg and the line passing throughand Qn/2,n/2-2,
see Fig. 5(d).

It is easy to check thatl” satisfies rules (i)—(iii) in proof of Theorem 1.1. Henc¥,
is a simplepz-maximal arrangement of @ — 1) straight lines. Moreover, by Lemma 3.1
and by constructiond’ verifies properties (a)—(c). Therefore, we may apply recursively
the above procedure starting with the six lines arrangement (that verifies the above
properties) drawn in Fig. 5(a). O

Example. We illustrate the above procedure for the case with 6 in Fig. 5.
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