

Straight Line Arrangements in the Real Projective Plane*

D. Forge¹ and J. L. Ramírez Alfonsín²

¹Université Pierre et Marie Curie, Paris 6, case 189 – Combinatoire, 4 place Jussieu, 75252 Paris Cedex 05, France

²Instituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigacion Cientifica, Circuito Exterior, C.U., Mexico D.F. 04510

Abstract. Let \mathcal{A} be an arrangement of *n* pseudolines in the real projective plane and let $p_3(\mathcal{A})$ be the number of triangles of \mathcal{A} . Grünbaum has proposed the following question. Are there infinitely many simple arrangements of *straight* lines with $p_3(\mathcal{A}) = \frac{1}{3}n(n-1)$? In this paper we answer this question affirmatively.

1. Introduction

An *arrangement of pseudolines* is a finite collection \mathcal{A} of $n \ge 3$ simple closed curves in the real projective plane \mathbb{P} such that every two curves have exactly one point in common at which they cross. In the case where no point on \mathbb{P} belongs to more than two lines of \mathcal{A} we say that \mathcal{A} is *simple*, see [2]. An arrangement of lines decomposes \mathcal{A} into a two-dimensional cell complex. The number of faces with k vertices in \mathcal{A} is denoted by $p_k(\mathcal{A})$. A face with three vertices is called a *triangle*. A simple combinatorial argument shows that $p_3(\mathcal{A}) \le \frac{1}{3}n(n-1)$ for a simple arrangement \mathcal{A} with $n \ge 4$ pseudolines. We say that a simple arrangement \mathcal{A} is p_3 -maximal if $p_3(\mathcal{A}) = \frac{1}{3}n(n-1)$. Grünbaum has proposed the following question (see p. 279 of [1]).

Question. Are there infinitely many p_3 -maximal arrangements of *straight* lines?

^{*} This work was done while the second author was doing a Postdoc visiting the Université Pierre et Marie Curie, Paris 6, Equipe Combinatoire and was partially supported by a fellowship from the European Commission, Contract No. ERBCI1*CT940606. His current address is Université Pierre et Marie Curie, Paris 6, case 189 – Combinatoire, 4 place Jussieu, 75252 Paris Cedex 05, France.

In this paper we answer the above question affirmatively. Indeed, we contruct an infinite family of p_3 -maximal simple arrangements of *straight* lines.

There are known recursive methods by Roudneff [4] and Harborth [3] to construct a simple p_3 -maximal arrangement with 2(n - 1) pseudolines from a simple p_3 -maximal arrangement with n pseudolines.

In Section 2 we give a recursive method to construct an infinite class of simple p_3 -maximal arrangements of pseudolines. This proves the following well-known theorem.

Theorem 1.1 [3], [4]. Let A be a simple p_3 -maximal arrangement of n > 4 pseudolines. Then there exists a simple p_3 -maximal arrangement A' with 2(n-1) pseudolines.

Our method is closely related to that in [3] and it leads to a proof of the following theorem in Section 3.

Theorem 1.2. There exists an infinite family of p_3 -maximal simple arrangements of straight lines.

2. The Method

Proof of Theorem 1.1. Let \mathcal{A} be a p_3 -maximal arrangement of n pseudolines l_0, \ldots, l_{n-2} and the pseudoline l_{∞} at infinity. It is well known and easy to see that n must be even and that each l_i and l_{∞} is adjacent to n-1 triangles. This is illustrated in Fig. 1 for l_{∞} where the images of the intersection point of l_i and l_{∞} are labeled with i and i', $0 \le i \le n-2$, and where the vertex (not lying on l_{∞}) of each triangle adjacent to l_{∞} is labeled with v_i , $1 \le j \le n-1$.

Fig. 1

We add n - 2 new pseudolines d_1, \ldots, d_{n-2} (one by one) to A according to the following rules:

- (i) d_i starts between *i* and (i+1) and ends between *i'* and (i+1)' for i = 1, ..., n-3, and d_{n-2} starts between (n-2)' and 0 and ends between n-2 and 0', see Fig. 1.
- (ii) Each pseudoline d_i , $1 \le i \le n-2$, does not intersect the convex hull of vertices v_j , $1 \le j \le n-1$.
- (iii) For each i = 1, ..., n 2, d_i crosses the pseudolines of \mathcal{A} in the following order. If i = 1, then d_1 crosses $l_2, l_3, ..., l_0, l_1$. If $i \ge 2$, then d_i crosses $l_{i+1}, d_1, l_{i+2}, d_2, ..., l_{2i-1}, d_{i-1}, l_{2i}, l_{2i+1}, ..., l_{n+i-1}$ where subscripts are understood mod (n 1).

We claim that the new arrangement $\mathcal{A}' = \{l_i\}_{0 \le i \le n-1} \cup \{d_j\}_{1 \le j \le n-2}$ is p_3 -maximal. Indeed, the new lines d_i destroy n-2 triangles adjacent to l_{∞} (all except the one formed by 0, 1, and v_1) and each line d_i , i = 1, ..., n-2, creates the following 2i + 1 triangles: d_i , l_i , l_{∞} , d_i , l_{i+1} , l_{∞} , d_i , l_{2i} , l_{2i+1} and for each $i \ge 2$ the triangles d_i , d_k , l_{k+i} and d_i , d_k , l_{k+i+1} for k = 1, ..., i-1. So, we have

$$p_{3}(\mathcal{A}') = \frac{n(n-1)}{3} - (n-2) + \sum_{i=1}^{n-2} (2i+1)$$

= $\frac{n(n-1)}{3} + \sum_{i=1}^{n-2} 2i = \frac{n(n-1)}{3} + \frac{2(n-2)(n-1)}{2}$
= $\frac{n^{2} - n + 3n^{2} - 9n + 6}{3} = \frac{(2n-2)(2n-3)}{3}.$

Hence, \mathcal{A}' is p_3 -maximal.

We illustrate the above method with n = 6 in Fig. 2.

3. Straight Lines

We need the following definitions and lemma before proving Theorem 1.2. Let S_C (l_0, \ldots, l_{n-1}) denote the *star* formed by lines l_0, \ldots, l_{n-1} all passing through a point C and such that the angle between l_i and l_j is $(\pi/n)(j-i)$, $0 \le i < j \le n-1$, see Fig. 3.

We denote by $\hat{l_1l_2}$ and $\hat{P_1P_2P_3}$ the angles formed by lines l_1 , l_2 and by the lines passing through points P_1 , P_2 and P_3 , P_2 , respectively.

Lemma 3.1. Let $S_C(l_0, \ldots, l_{n-1})$ be a star. Let d_1 be a line parallel to the angle bisector of $\widehat{l_0l_1}$ which crosses l_0 above C. Let d_{i+1} be the line parallel to the angle bisector of $\widehat{l_il_{i+1}}$ which passes through the intersection of d_1 and l_i for $i = 1, \ldots, n-1$ where the sum is modulo n. Then the intersection of lines d_i and d_j lies on l_{i+j-1} for each $0 \le i < j \le n-1$ where the sum i + j - 1 is modulo n.

Fig. 2

Proof. Let P_i be the intersection of lines d_1 and l_i for $0 \le i \le n-1$ and let $Q_{i,j}$ be the intersection of lines d_i and d_j for $0 \le i < j \le n-1$. We show that $Q_{i,j} \in l_{i+j-1}$ where the sum i + j - 1 is modulo *n*. Consider Fig. 4.

We have that $\widehat{P_i C P_j} = \widehat{l_i l_j} = (\pi/n)(j-i)$ and $\widehat{P_i Q_{i,j} P_j} = \widehat{d_i d_j} = (\pi/n)(j-i)$. So, the points *C*, P_i , P_j , and $Q_{i,j}$ are on a circle; hence, $\widehat{P_j C Q_{i,j}} = \widehat{P_j P_i Q_{i,j}} = \widehat{d_1 d_j} = (\pi/n)(j-1)$. Therefore, $Q_{i,j} \in l_{i+j-1}$.

Fig. 3

Fig. 4

In particular the lines d_i and d_{n-i+1} cross at line l_0 with $\widehat{l_0d_i} = -\pi/2n + i(\pi/n)$ and $\widehat{l_0d_{n-i+1}} = -(\pi/2n + (i-1)(\pi/n))$. So, d_i and d_{n-i+1} are symmetric with respect to l_0 .

We now prove Theorem 1.2.

Proof of Theorem 1.2. We recursively construct an arrangement \mathcal{A} such that $\mathcal{A} \setminus \{l_{\infty}, l_{n-1}, l_{n-2}\}$ is obtained by a translation of a star where $l_{\infty}, l_{n-1}, l_{n-2}$ are special lines in \mathcal{A} .

Let \mathcal{A} be a simple p_3 -maximal arrangement of n straight lines l_1, \ldots, l_{n-1} and l_{∞} where the l_i 's are labeled in the order of their appearence along l_{∞} . Suppose that \mathcal{A} verifies the following properties: there exists a straight line l_0 (without loss of generality assume that l_0 is on the Y axis) such that (a) $\widehat{l_i l_j} = (\pi (n-2))(j-i)$ for all $0 \le i < j \le n-3$, (b) $\widehat{l_0 l_{n-1}} = \widehat{l_0 l_{n-2}} < \pi (n-2)$ and (c) no intersection point $l_i \cap l_j$, $1 \le i < j \le n-3$, lies in the interior of the cone borded by l_{n-1} , l_{n-2} and containing l_0 except maybe on l_0 .

We give a procedure to construct an arrangement \mathcal{A}' with 2(n-1) lines from \mathcal{A} . First, replace l_{n-1} and l_{n-2} by l_0 (note that, by property (c), l_{n-1} and l_{n-2} can be brought arbitrarily close to l_0). Let T_j be the triangles adjacent to l_∞ with $j = 1, \ldots, n-1$ and let v_j be the vertex in T_j not lying in l_∞ . By continuity, we may assume that vertices v_j are *shrunk* into one point *C* (we can do this by extending the ends of line l_i far enough from the set of v_j 's). So, $\mathcal{A} \setminus \{l_\infty\}$ can be identified with the star $S_C(l_0, \ldots, l_{n-3})$, see Fig. 5(b). Let $\mathcal{S} = S_C(l_0, \ldots, l_{n-3}) \cup \{d_i\}_{0 \le i \le n-3}$ be the arrangement given as in Lemma 3.1. We can see \mathcal{S} as an arrangement formed by overlapping the two *slide-arrangements*

Fig. 5

 $S_1 = S_C(l_0, \ldots, l_{n-3})$ and $S_2 = \{d_i\}_{0 \le i \le n-3}$, see Fig. 5(c). We form arrangement \mathcal{A}' from S as follows:

- (1) Fix slide S₁ and translate slide S₂ (in direction to the positive part of axe Y) a distance of ε/2 where ε is the minimum positive distance such that when moving S₂ as above then a point Q_{i,j} touches a line l_k for some k.
- (2) Replace l_0 by l_{n-1} and l_{n-2} which cross at *C* with $\hat{l_0}\hat{l_k} = \beta/2$ for k = n-1, n-2 where β is the angle between l_0 and the line passing through *C* and $Q_{n/2,n/2-2}$, see Fig. 5(d).

It is easy to check that \mathcal{A}' satisfies rules (i)–(iii) in proof of Theorem 1.1. Hence, \mathcal{A}' is a simple p_3 -maximal arrangement of 2(n-1) straight lines. Moreover, by Lemma 3.1 and by construction, \mathcal{A}' verifies properties (a)–(c). Therefore, we may apply recursively the above procedure starting with the six lines arrangement (that verifies the above properties) drawn in Fig. 5(a).

Example. We illustrate the above procedure for the case with n = 6 in Fig. 5.

References

- B. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler, *Oriented Matroids*, Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, MA, 1993.
- B. Grünbaum, Arrangements and Spreads, Regional Conference Series in Mathematics, Vol. 10, American Mathematical Society, Providence, RI, 1972.
- H. Harborth, Two-colorings of simple arrangements, in *Finite and Infinite Sets*, Colloquia Mathematica Societatis János Bolyai, Vol. 37, North-Holland, Amsterdam, 1981, pp. 371–378.
- J.-P. Roudneff, On the number of triangles in simple arragements of pseudolines in the real projective plane, Discrete Mathematics 60 (1986), 243–251.

Received May 30, 1996, and in revised form February 3, 1997.