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Abstract

Let Un; r be a uniform oriented matroid having as bases, B, all r-subsets (resp. as circuits,
C, all (r + 1)-subsets) of {1; : : : ; n}. We say that C1 ⊆ C is a covering, of Un; r , if for any
base B∈B there is a circuit C ∈C1 such that B ⊂ C. Let G(C1) be the graph having as set of
vertices the elements of C1 and where two vertices are joined if they have one base in common.
We say that C1 ⊆ C is a connected covering if C1 is a covering and G(C1) is connected. It
is easy to show that if a covering is connected then it completely determines Un;r . In this note,
we show that connectivity is not always necessary.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Let n; r be positive integers with n¿r. Let Un; r be the uniform oriented matroid
having as bases, B, all r-subsets (resp. as circuits, C, all r-subsets) of {1; : : : ; n}.
Consider the following question. What is the smallest number of circuits, s(n; r), that
is su/cient to determine Un; r?

In [2], the @rst two authors achieved diAerent upper bounds for s(n; r) by analyzing
the smallest number of circuits needed to determine the signs of all the basis of Un; r .
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To this end, it was de@ned a covering for the bases of Un; r and noticed that if the cov-
ering is connected then it determines Un; r . The connected coverings were then related
to the well-known block designs from which upper bounds for s(n; r) were obtained
(improving the best upper bound for s(n; r), known at that time, due to Hamidoune
and Las Vergnas [4]).
A natural question is whether connectivity is necessary for a covering to deter-

mine Un; r .
It turns out that connectivity is not always necessary. In this note, we shall gener-

alize the notion of mutation in order to construct special disconnected coverings that
determine Un;3 for each n¿8.

2. De�nitions and notation

A basis orientation of an oriented matroid M is a mapping 	 of the set of ordered
bases of M to {−1; 1} satisfying certain properties (see [1] for further details).
If M and M′ are two rank r uniform oriented matroids then M and M′ are called

mutants if their basis orientation coincide except for one ordered base. In this case
the base is called a mutation of M (and M′). Las Vergnas [1] proved that every
oriented matroid M has exactly two basis orientations and these two basis orientations
are opposite, 	 and −	.

Remark. Let C be a circuit and B a base of Un; r with B ⊆ C. Given the sign of B
the signature of C allows us to sign the other r basis contained in C.

We say that C1 ⊆ C is a covering, of Un; r , if for any base B∈B there is a circuit
C ∈C1 such that B ⊂ C. Let G(C1) be the graph having as set of vertices the elements
of C1 and where two vertices are joined if they have one base in common. We say that
C1 ⊆ C is a connected covering (resp. a disconnected covering) if C1 is a covering
and G(C1) is connected (resp. disconnected).
It is said that C1 determines Un; r if the signature of the circuits in C1 are suOcient

to sign the rest of the circuits in Un; r . Or equivalently, if they are suOcient to sign all
the bases of Un; r . Notice that if C1 is not a covering then it cannot de@ne Un; r . The
following proposition follows from the above remark.

Proposition 2.1 (Forge and Ramirez [2]). Let C1 be a covering of Un; r . If C1 is con-
nected then it determines Un; r .

Here, we are interested in the converse of the above proposition.
[Q1]. Let n; r be positive integers with n¿r. Let C1 ⊆ C be a covering of Un; r and
suppose that C1 determines Un; r . Then, is C1 connected?
We shall answer [Q1] negatively by considering the following question.

[Q2]. Let DC be a disconnected covering of Un; r having two components DC1 and
DC2. Assume that DC1 and DC2 contain the set of bases B1 and B2, respectively
(and so, B=B1∪B2). Do there always exist a uniform oriented matroid U with basis



D. Forge et al. / Discrete Mathematics 258 (2002) 353–359 355

orientation 	 and such that

	′(B) =

{
	(B) if B ∈ B1;

−	(B) otherwise;

is also the basis orientation of another uniform oriented matroid U′?
Note that [Q2] is asking for two uniform oriented matroids having as mutants a

given set of basis.

Claim 2.2. If [Q2] has a negative answer then [Q1] also does.

Proof. If it never exist oriented matroids U and U′ as in [Q2] then the signatures
of the bases B1 and B2 can be uniquely obtained from DC1 and DC2, respectively.
Thus, DC determines Un; r .

In the next section, we construct a disconnected covering of Un;3; n¿8 having as
components DC1 and DC2 such that there never exist two uniform oriented matroids
U and U′ such that the only mutants of U (or U′) are the bases in DC2. Thus, answer
negatively [Q2] and therefore, by Claim 2.2, [Q1] as well.

3. Disconnected coverings and switchings

In this section, we answer negatively [Q2] when r=3 and n¿8. To this end, we
need the following de@nitions. An arrangement of pseudolines is a @nite collection
A of n¿3 simple closed curves in the real projective plane P2 such that every two
curves have exactly one point in common at which they cross. In the case where no
point on P2 belongs to more than two lines of A we say that A is simple, see [3].
A face with three vertices is called a triangle. A switching in an arrangement is the
local deformation of a triangle showed in Fig. 1.
It is well-known that simple arrangements are in one-to-one correspondance with

a reorientation class of uniform oriented matroids of rank 3. Moreover, the set of all
mutuations of Un;3 correspond to the set of all possible switchings of the corresponding

ji
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ij

k

A switching

Fig. 1.
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arrangement of n pseudolines. More precisely, a base (i; j; k) is a mutation of Un;3 if
and only if there is a switching in the triangle formed by pseudolines i; j and k in the
corresponding arrangement.

Theorem 3.1. Let DC be the disconnected covering of Un;3; n¿8 having as
components

DC1 = {(1; 2; 3; 4); (1; 2; 3; 5); (1; 2; 4; 6); (1; 3; 5; 6)}

and

DC2 = S2 ∪ {(1; 4; 5; 7); (2; 3; 6; 7); (2; 4; 5; 7); (2; 5; 6; 7);

(3; 4; 5; 7); (3; 4; 6; 7); (4; 5; 6; 7)}

where S2 = {(i1; i2; j + 1; j + 2) with 16i1¡i26j and 66j6n− 2}. Then, there not
exist two uniform oriented matroids U and U′ such that the only mutants of U (or
U′) are the bases in DC2.

Proof. It can be checked that DC1 and DC2 are connected components each, disjoint
from each other and that they contain all the bases of Un;3 (and thus, DC1 and DC2

form a disconnected covering of Un;3, n¿8 indeed). Let B1 and B2 be the set of
bases in DC1 and DC2, respectively. Note that R= {(1; 4; 5); (2; 3; 6); (2; 4; 5); (2; 5; 6);
(3; 4; 5); (3; 4; 6); (4; 5; 6)} are bases belonging to B2 and B1 = {all 3-subsets of
{1; : : : ; 6}}\R.
Let A be an arrangement of n¿8 pseudolines. We shall show that if A has as

switchings the triples given by R then A is forced also to have a switching i′; j′; k ′

where the triple i′; j′; k ′ is a base in B1 (and therefore, A cannot have only switchings
formed by triples in B2). W.l.o.g. suppose that pseudoline 1 is the line at in@nity
in A. Now, the intersections of pseudolines 2; : : : ; 5 in A must look as one of the
arrangements given in Figs. 2(a)–(f).
We claim that no matter how line 6 is added to any of the arrangements of Figs.

2(b), (c), (e) or (f) the switchings (2; 3; 6), (2; 5; 6), (3; 4; 6) and (4; 5; 6) cannot be
achieved without making at least another switching which corresponding base belongs
to B1. To see this, notice that if pseudoline 6 crosses (while doing a switching) the
intersections of pseudolines (2; 3), (2; 5), (3; 4) and (4; 5) then it is also forced to
cross the intersection of pseudolines (2; 4) (that is, it is forced to make the swithching
(2; 4; 6) which correspond to a base in B1).
On the other hand, in order to be able to make only switchings (2; 3; 6), (2; 5; 6),

(3; 4; 6) and (4; 5; 6) in Figs. 2(a) and (d), pseudoline 6 must be added as it is shown
in Figure 3(a) and 3(b) respectively (dotted and thick curves represent pseudoline 6
before and after doing the switchings respectively).
But now, switchings (2; 4; 5) and (3; 4; 5) cannot be achieved without making

either switching (2; 3; 4) or switching (2; 3; 5) (both corresponding to bases belonging
to B1).
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Fig. 2. Possible intersections in A.
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Fig. 3. Switching line 6.

Notice that the disconnected coverings given in Theorem 3.1 do not improve the
upper bounds for s(n; 3) given in [2].

Problem. Is there a disconnected covering which improves the upper bounds for s(n; 3)
with n¿8?

We @nally present a result for disconnected coverings that cannot de@ne Un;3.
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Lemma 3.2. Let DC be a disconnected covering of Un;3 having as components DC1

and DC2. Then, there exist two uniform oriented matroids having as mutants the set
of bases B1 (in DC1) if either

(a)
⋂
C∈DC1

C = {i; j; k} with 16i¡j¡k6n or
(b) B1 are all the 3-subsets elements of a set E′ ⊆ {1; : : : ; n} (this case can be

considered as a generalization of a simple mutation).

Proof. In each case, it can be found an appropriate arrangement having only the desired
switchings.

Example. We illustrate Lemma 3.2. In case (a) we take n=8 with

DC1 = {(1; 2; 3; 4); (1; 2; 3; 5); (1; 2; 3; 6)}

and

DC2 = {(1; 2; 7; 8); (1; 3; 7; 8); (1; 4; 5; 6); (1; 4; 7; 8); (1; 5; 6; 7);

(1; 5; 7; 8); (1; 6; 7; 8); (2; 3; 7; 8); (2; 4; 5; 6); (2; 4; 7; 8);

(2; 5; 6; 7); (2; 5; 7; 8); (2; 6; 7; 8); (3; 4; 5; 6); (3; 4; 7; 8);

(3; 5; 6; 7); (3; 5; 7; 8); (3; 6; 7; 8); (4; 5; 6; 7); (4; 5; 7; 8);

(4; 6; 7; 8); (5; 6; 7; 8)}:

So,
⋂
C∈DC1

C =(1; 2; 3) and

B1 = {(1; 2; 3); (1; 2; 4); (1; 2; 5); (1; 2; 6); (1; 3; 4); (1; 3; 5); (1; 3; 6); (2; 3; 4);

(2; 3; 5); (2; 3; 6)}:

The corresponding arrangements are given in Fig. 4(a). In case (b) we take n=7 with
E′ = {1; 2; 3; 4; 5},

DC1 = {(1; 2; 3; 4); (1; 2; 3; 5); (1; 2; 4; 5); (1; 3; 4; 5)}

and

DC2 = {(1; 2; 6; 7); (1; 3; 6; 7); (1; 4; 6; 7); (1; 5; 6; 7); (2; 3; 6; 7);

(2; 4; 6; 7); (2; 5; 6; 7); (3; 4; 6; 7); (3; 5; 6; 7); (4; 5; 6; 7)}:

So, B1 = {(1; 2; 3); (1; 2; 4); (1; 2; 5); (1; 3; 4); (1; 3; 5); (1; 4; 5); (2; 3; 4); (2; 3; 5); (2; 4; 5);
(3; 4; 5)}. The corresponding arrangements are given in Fig. 4(b).
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Fig. 4. Examples for Lemma 3.2.
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