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A B S T R A C T

By an extensive statistical analysis in genes of bacteria, archaea, eukaryotes, plasmids and viruses, a maximal
𝐶3-self-complementary trinucleotide circular code has been found to have the highest average occurrence in
the reading frame of the ribosome during translation. Circular codes may play an important role in maintaining
the correct reading frame. On the other hand, as several evolutionary theories propose primeval codes based
on dinucleotides, trinucleotides and tetranucleotides, mixed circular codes are investigated.

By using a graph-theoretical approach of circular codes recently developed, we study mixed circular codes,
which are the union of a dinucleotide circular code, a trinucleotide circular code and a tetranucleotide
circular code. Maximal mixed circular codes of (di,tri)-nucleotides, (tri,tetra)-nucleotides and (di,tri,tetra)-
nucleotides are constructed, respectively. In particular, we show that any maximal dinucleotide circular code
of size 6 can be embedded into a maximal mixed (di,tri)-nucleotide circular code such that its trinucleotide
component is a maximal 𝐶3-comma-free code. The growth function of self-complementary mixed circular codes
of dinucleotides and trinucleotides is given. Self-complementary mixed circular codes could have been involved
in primitive genetic processes.

1. Introduction

The genomes of all species, i.e. archaea, bacteria, eukaryota, viruses,
plasmids, mitochondria and chloroplasts, contain regions for coding
proteins, i.e. a series of amino acids. These genomic regions are called
(protein coding) genes. A gene is a series of words of the same length
equal to 3 nucleotides, i.e. a series of trinucleotides, also called codons.
This genetic information can be easily revealed by signal processing,
hence without any biological experimental method. For example, the
correlation function and the power spectrum identify a nucleotide
periodicity modulo 3 in genes [1,2] and [3, Figure 1]. Ten years
later, this periodicity modulo 3 has been explained by a maximal 𝐶3-
self-complementary trinucleotide circular code which has been found
to have the highest average occurrence in the reading frame of the
ribosome during translation, compared to the two shifted frames, of
genes of bacteria, archaea, eukaryotes, plasmids and viruses [4–6]. It
contains the following 20 trinucleotides

𝑋 = {𝐴𝐴𝐶,𝐴𝐴𝑇 ,𝐴𝐶𝐶,𝐴𝑇𝐶,𝐴𝑇𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐶, 𝐶𝑇𝐺,𝐺𝐴𝐴,𝐺𝐴𝐶, (1)

𝐺𝐴𝐺,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐺𝐺𝑇 ,𝐺𝑇𝐴,𝐺𝑇𝐶,𝐺𝑇𝑇 , 𝑇𝐴𝐶, 𝑇 𝑇𝐶}
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and codes the 12 following amino acids (given in three-letter notation
and in one-letter notation)

{Ala,Asn,Asp,Gln,Glu,Gly, Ile,Leu,Phe,Thr,Tyr,Val},

{𝐴,𝑁,𝐷,𝑄,𝐸,𝐺, 𝐼, 𝐿, 𝐹 , 𝑇 , 𝑌 , 𝑉 }.

Two reviews on circular codes, separated by ten years, present the
scientific progress in this research field [7,8]. In particular, these
reviews describe the new mathematical approaches using group theory
and graph theory, the hierarchies of circular codes: strong comma-free,
comma-free and general circular, and the properties of the different
classes of circular codes: maximality, self-complementarity, growth
functions and number of encoded amino acids, for example.

Bacterial, viral and organelle genomes all possess a compact archi-
tecture where genes represent about 90% of a genome, in contrast to
eukaryotes where genes only constitute 10± 5% of a genome [9]. Non-
coding regions of eukaryotic genomes contain different DNA structures
along the chromosome: pseudogenes, RNA-coding genes, introns, tan-
dem repeats: minisatellites and microsatellites, retrotransposons: long
terminal repeats (LTR), non-long terminal repeats (Non-LTR), long
interspersed elements (LINE) and short interspersed elements (SINE),
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DNA transposons, etc. Introns of eukaryotes have no nucleotide period-
icity modulo 3 (Figure 2 in [3]) but a nucleotide periodicity modulo 2
generated by dinucleotides [10,11]. Furthermore, in intergenic regions
of eukaryotes, pure and mixed, as well as short and long, repeated
dinucleotides, trinucleotides and tetranucleotides are very common
(consult, among others, [12–15]). Some dinucleotide repeats are highly
enriched in enhancers which are genomic elements involved in gene
expression [16]. However, most of these genetic structures have an
unknown biological activity and their functions remain an important
open question in today’s biology. This genetic information could in part
be related to traces of ancestral codes [15]. Indeed, in recent years,
various authors have formulated hypotheses about the origin of the
modern genetic code in which it is assumed that single amino acids
were first encoded by dinucleotides or tetranucleotides, and then later
by trinucleotides (see, among others, [17–22]). This coding process
could have been necessary because the number of amino acids to
be encoded increased during the evolution while at the same time
nature needed robustness against mutations and translational errors.
As several biochemical mechanisms would have been used for reading
oligonucleotides of different lengths (‘‘primitive codons’’ of different
lengths), we are interested in mixed circular codes, which allow to
generalize the reading frame retrieval to words of different sizes.

We indeed prove that mixed codes can be circular, and we iden-
tify several of their mathematical properties. Moreover, we formulate
criteria for mixed codes of di-, tri- and tetranucleotides to be circular
and show how such codes, even of maximal possible size, can be
constructed. We also mention some biological implications of mixed
circular codes, which could have been involved in primitive gene
coding processes.

2. Definitions and examples

Let us first state some definitions and results that will be used in the
sequel. The genetic alphabet is

 ∶= {𝐴,𝐶,𝐺, 𝑇 }

where 𝐴 stands for adenine, 𝐶 for cytosine, 𝐺 for guanine and 𝑇 for
thymine. As commonly used in word theory, ∗ = {𝑁1 ⋯𝑁𝑛 ∣ 𝑁𝑖 ∈
, 𝑛 ∈ 𝐍} is the set of all words over  of finite length including the
empty word 𝜀 while + = ∗∖{𝜀}.

Definition 1.

(1) A set 𝑋 ⊆ ∗ is a code if every word 𝑤 ∈ 𝑋∗ has a single
decomposition into words from 𝑋, i.e. whenever 𝑤 = 𝑤1 ⋯𝑤𝑛 =
𝑤′

1 ⋯𝑤′
𝑚 for words 𝑤𝑖, 𝑤′

𝑗 ∈ 𝑋, then 𝑚 = 𝑛 and 𝑤𝑖 = 𝑤′
𝑖 follow.

(2) For 𝓁 ∈ 𝐍 with 𝓁 ≥ 2, an 𝓁-letter code is a subset of 𝓁 .
(3) Elements of 𝓁 are called 𝓁-nucleotides.
(4) 2-nucleotides, 3-nucleotides and 4-nucleotides are also called

dinucleotides, trinucleotides and tetranucleotides, respectively.
(5) Given two finite words 𝑤1 and 𝑤2 in 𝐵∗, we define 𝑤1⊓𝑤2 to be

the largest tail segment (suffix) of 𝑤1 that is an initial segment
(prefix) of 𝑤2. (Note that 𝑤1 ⊓ 𝑤2 might be the empty word 𝜀.)
If 𝑤1 ≠ 𝑤2 and 𝑤1 ⊓ 𝑤2 ≠ 𝜀, then 𝑤1 overlaps 𝑤2.

Remark 1. Any set of 𝓁-nucleotides is always a code, for example the
genetic code 3 and the sets 2 of dinucleotides and 4 of tetranu-
cleotides. However, this property is not always true when allowing
mixed sets containing 𝓁-nucleotides for several values of 𝓁.

Example 1. The mixed set 𝑋 = {𝐴𝐶,𝐺𝐴,𝐺𝑇 ,𝐴𝐶𝐺, 𝑇𝐺𝐴} is not a code
since the word 𝐴𝐶𝐺𝑇𝐺𝐴 has two different decompositions into words
from 𝑋, namely

𝐴𝐶𝐺 ∣ 𝑇𝐺𝐴 = 𝐴𝐶 ∣ 𝐺𝑇 ∣ 𝐺𝐴.

Some codes may have additional properties.

Definition 2. A code 𝑋 ⊆ + is

(1) comma-free if every concatenation 𝑤1𝑤2 of two words from 𝑋
does not contain as a substring any word from 𝑋 but 𝑤1 as a
prefix and 𝑤2 as a suffix, that is, if

𝑋2 ∩ +𝑋+ = ∅;

(2) circular if for any finite concatenation 𝑤1 ⋯𝑤𝑚 of elements
from 𝑋 (𝑚 ∈ 𝐍), there is only one partition into elements
from 𝑋 when read on a circle. Any such partition is a circular
decomposition of 𝑤1 ⋯𝑤𝑚.

Any comma-free code is also circular and the most important prop-
erty of such codes is that they allow the detection of frameshifts. A
major difference between these two classes of circular codes is the
nucleotide window length for retrieving the reading frame in genes
(Figs. 1 and 2).

It directly follows from the definition that a trinucleotide circu-
lar code over  cannot contain the trinucleotides 𝐴𝐴𝐴, 𝐶𝐶𝐶, 𝐺𝐺𝐺
and 𝑇𝑇𝑇 , hence we make the following remark.

Remark 2. The genetic code 3 as well as the codes 2 of dinucleotides
and 4 of trinucleotides are (obviously) not circular.

In the following sections, we will need the notions of self-
complementary code and 𝐶3-code. To define them, we introduce a special
transformation, the so called Strong/Weak (SW) or complementing (c)
transformation

𝑆𝑊 (𝑜𝑟 𝑐)∶ (𝐴, 𝑇 , 𝐶,𝐺) → (𝑇 ,𝐴,𝐺, 𝐶)

that exchanges 𝐴 and 𝑇 as well as 𝐶 and 𝐺. Regarding the complemen-
tary structure of the DNA double helix, this transformation plays an
important biological role. The second important biological transforma-
tion related to the antiparallel structure of the DNA double helix is the
reversing permutation, which we indicate by ⃖⃖ : a given trinucleotide 𝑥 =
(𝑏1, 𝑏2, 𝑏3) ∈ 3 leads to the trinucleotide ⃖⃖𝑥 ∶= (𝑏3, 𝑏2, 𝑏1). These two
biological maps, the complementary transformation and the reversing
permutation, are involved in gene coding.

In general, the reversing permutation inverts the order of bases
in any 𝓁-nucleotide, i.e. if 𝑥 = 𝑁1𝑁2 ⋯𝑁𝓁−1𝑁𝓁 ∈ 𝓁 then ⃖⃖𝑥 =
𝑁𝓁𝑁𝓁−1 ⋯𝑁2𝑁1 ∈ 𝓁 . If 𝑋 is a code of 𝓁-nucleotides, then ⃖⃖�⃖� =
{

⃖⃖𝑥 ∶ 𝑥 ∈ 𝑋
}

is the reversed code of 𝑋. Similarly, the complementing
map 𝑐 ∶ {𝐴,𝐶,𝐺, 𝑇 } → {𝐴,𝐶,𝐺, 𝑇 } that exchanges 𝐴 and 𝑇 as well
as 𝐶 and 𝐺 induces the complemented code 𝑐(𝑋) = {𝑐(𝑥) ∶ 𝑥 ∈ 𝑋}
where 𝑐(𝑁1𝑁2 ⋯𝑁𝓁−1𝑁𝓁) = 𝑐(𝑁1)𝑐(𝑁2)⋯ 𝑐(𝑁𝓁−1)𝑐(𝑁𝓁) for any 𝓁-
nucleotide 𝑥 ∈ 𝓁 . Note that for a trinucleotide 𝑥 = 𝑁1𝑁2𝑁3, the
anti-trinucleotide of 𝑥 is exactly ⃖⃖⃖⃖⃖⃖⃖𝑐(𝑥).

Example 2. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐({𝐴𝐶,𝐴𝑇 }) = {𝐴𝑇 ,𝐺𝑇 } and ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐({𝐶𝐺𝐴,𝐺𝐴𝑇 }) = {𝐴𝑇𝐶,
𝑇𝐶𝐺}.

Definition 3.

(1) A code 𝑋 ⊆ ∗ is self-complementary if 𝑋 = ⃖⃖ ⃖⃖⃖⃖⃖⃖𝑐(𝑋).
(2) A trinucleotide circular code 𝑋 ⊆ 3 is called a 𝐶3-code if both

the circular shifted codes 𝑋′ ∶= {𝑁2𝑁3𝑁1 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋}
and 𝑋′′ ∶= {𝑁3𝑁1𝑁2 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋} are circular as well.

Let us remark that the 𝐶3-property means that the code is circular
in all three reading frames of the ribosome, hence it may retrieve the
correct frame in each of the three frames. For instance, the trinucleotide
circular code that was found in genes (1) is a 𝐶3-self-complementary
code.

Remark 3. The genetic code 3 is a self-complementary trinucleotide
code.

Definition 4. Let 𝐶 be a class of circular codes (for instance, circular,
or circular and self-complementary, or 𝐶3-code) defined over .
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Fig. 1. Reading frame retrieval in genes with the comma-free code 𝑋 = {𝐴𝐶𝐴,𝐴𝐺𝐴,𝐶𝐺𝐴,𝐺𝐶𝐶, 𝑇𝐶𝐴, 𝑇 𝑇𝐴}. The trinucleotides (words of length 3) underlined in blue belong
to 𝑋, while those underlined in red do not. A frameshift is detected immediately, that is within at most 3 nucleotides. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Reading frame retrieval in genes with the maximal 𝐶3 self-complementary trinucleotide circular code 𝑋 = {𝐴𝐴𝐶,𝐴𝐴𝑇 ,𝐴𝐶𝐶,𝐴𝑇𝐶,𝐴𝑇𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐶, 𝐶𝑇𝐺,𝐺𝐴𝐴,𝐺𝐴𝐶,𝐺𝐴𝐺,
𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐺𝐺𝑇 ,𝐺𝑇𝐴,𝐺𝑇𝐶,𝐺𝑇𝑇 , 𝑇𝐴𝐶, 𝑇 𝑇𝐶} identified in genes (1). The trinucleotides underlined in blue belong to 𝑋, while those underlined in red do not. A frameshift
is detected after a few nucleotides, specifically within at most 13 nucleotides. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(1) A code 𝑋 ∈ 𝐶 is maximal (in 𝐶) if

for all 𝑌 ∈ 𝐶, we have𝑋 ⊆ 𝑌 ⇒ 𝑋 = 𝑌 .

(2) A code 𝑋 ∈ 𝐶 is maximum (in 𝐶) if

for all 𝑌 ∈ 𝐶, we have |𝑌 | ≤ |𝑋|.

In other words, a circular code 𝑋 of a class 𝐶 is maximal if it
is not properly contained in any other circular code from the same
class 𝐶. Moreover, it is a maximum circular code if there is no circular
code from the same class 𝐶 that has a strictly larger size than 𝑋. Thus,
a maximum circular code is already maximal but the converse is not
true in general, as we will see in the sequel.

Following earlier works [23], we define the directed graph (𝑋) of
some code 𝑋 ⊆ 𝓁 as follows: for every word 𝑤 = 𝑁1 ⋯𝑁𝑙 ∈ 𝑋 of
length 𝓁, and for every 𝑖 ∈ {1,… ,𝓁 − 1}, we add an edge from the
vertex labelled 𝑁1 ⋯𝑁𝑖 to the vertex labelled 𝑁𝑖+1 ⋯𝑁𝓁 , creating such
vertices if they do not exist already.

Definition 5. Fix 𝓁 ∈ 𝐍 and let 𝑋 ⊆ 𝓁 be an 𝓁-letter code. We define
a directed graph (𝑋) = (𝑉 (𝑋), 𝐸(𝑋)) with vertex set 𝑉 (𝑋) and edge
set 𝐸(𝑋) as follows.

(1) 𝑉 (𝑋) ∶=
{

𝑁1 ⋯𝑁𝑗 , 𝑁𝑗+1 ⋯𝑁𝓁 ∶ 𝑁1𝑁2 ⋯𝑁𝓁 ∈ 𝑋, 1 ≤ 𝑗 ≤
𝓁 − 1}; and

(2) 𝐸(𝑋) ∶=
{

[𝑁1 ⋯𝑁𝑗 , 𝑁𝑗+1 ⋯𝑁𝓁] ∶ 𝑁1𝑁2 ⋯𝑁𝓁 ∈ 𝑋, 1 ≤ 𝑗 ≤
𝓁 − 1}.

The graph (𝑋) is said to be associated with 𝑋. An example of
graph (𝑋) is given in Fig. 3.

The relevance of Definition 5 is witnessed by the following theorem.

Theorem 1 (Fimmel et al., [23]). The following statements hold for every
integer 𝓁 ≥ 2.

(1) A code 𝑋 ⊆ 𝓁 is circular if and only if its associated graph (𝑋)
is acyclic.

(2) A circular code 𝑋 ⊆ 𝓁 is comma-free if and only if the longest
directed path in its associated (acyclic) graph (𝑋) has length at
most 2.

Definition 6. For all positive integers 𝓁 and 𝑖 such that 1 ≤ 𝑖 ≤ 𝓁, we
define the projection on the 𝑖th coordinate 𝜋𝑖 ∶ 𝓁 →  by

𝜋𝑖(𝑁1 ⋯𝑁𝓁) = 𝑁𝑖.

The projections on two coordinates 𝜋𝑖𝑗 ∶ 𝓁 → 2 are defined in a
similar way whenever it makes sense.

Fig. 3. Graph (𝑋) of the tetranucleotide code 𝑋 = {𝐴𝐶𝐺𝑇 ,𝐺𝑇𝑇𝐴, 𝑇𝐴𝐴𝐶}.

Example 3. Let 𝑋 = {𝐴𝐶𝐺,𝐴𝐺𝐴, 𝑇𝐶𝑇 }. Then, the projection 𝜋1 on
the 1st component yields the set 𝜋1(𝑋) = {𝐴, 𝑇 }, the projection 𝜋2 on
the 2nd component leads to 𝜋2(𝑋) = {𝐶,𝐺} and the projection 𝜋3 on
the 3rd component yields 𝜋3(𝑋) = {𝐴,𝐺, 𝑇 }.

We investigate the mixed codes 𝑋 ⊆ 2 ∪ 3 ∪ 4 where the
elements are dinucleotides, trinucleotides and tetranucleotides. We will
also consider mixed codes that contain (di,tri)-nucleotides or (tri,tetra)-
nucleotides only.

The first obstacle that appears when considering proper mixed codes
is the fact that sets of 𝓁-nucleotides of various values of 𝓁 are not
necessarily a code, i.e. they may allow words that have two different
decompositions over the elements of the code. This is in contrast to
𝓁-nucleotide sets (for a fixed 𝓁) which are codes necessarily. The next
subsection deals with examples showing that a mixing of circular codes
over 2 and 3 can be a code but not circular, not a code but circular,
or neither a code nor circular.

2.1. Illustrative examples of mixed codes

Let us consider a mixed code 𝑋 = 𝑋2 ∪𝑋3 ⊆ 2 ∪3 where 𝑋2 ⊆ 2

and 𝑋3 ⊆ 3 are both circular codes. The following examples show that
the mixed set 𝑋 can be not circular and even not a code. In a similar
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Fig. 4. The cyclic graph (𝑋) of the non-circular mixed code 𝑋 from Example 4.

Fig. 5. The acyclic graph (𝑋) of the mixed set 𝑋 that is not a code from Example 5.

way, one can also construct such examples inside 3 ∪ 4 or 2 ∪ 4

but we will restrict ourselves to (di,tri)-nucleotides to show the ideas.

Example 4. Consider the two circular codes 𝑋2 = {𝐺𝑇 } and 𝑋3 =
{𝐴𝐶𝐺, 𝑇𝐴𝐶}. The mixed set 𝑋 = {𝐺𝑇 ,𝐴𝐶𝐺, 𝑇𝐴𝐶} is a code that is
not circular. Indeed, the word 𝑇𝐴𝐶𝐺𝑇𝐴𝐶𝐺 admits the two circular
decompositions 𝑇𝐴𝐶|𝐺𝑇 |𝐴𝐶𝐺 and 𝑇 |𝐴𝐶𝐺|𝑇𝐴𝐶|𝐺. The graph (𝑋)
of 𝑋 (defined naturally for mixed codes; see the next section for a
formal definition) contains the cycle 𝐺 → 𝑇 → 𝐴𝐶 → 𝐺 (Fig. 4).

Example 5. Consider the two circular codes 𝑋2 = {𝐴𝐶,𝐴𝑇 ,𝐺𝐴} and
𝑋3 = {𝐺𝐴𝐴, 𝑇𝐴𝐶}. The mixed set 𝑋 = {𝐴𝐶,𝐴𝑇 ,𝐺𝐴,𝐺𝐴𝐴, 𝑇𝐴𝐶} is
not a code as the word 𝐺𝐴𝐴𝑇𝐴𝐶 has two different decompositions
into words in 𝑋, namely 𝐺𝐴|𝐴𝑇 |𝐴𝐶 and 𝐺𝐴𝐴|𝑇𝐴𝐶. However, the
graph (𝑋) of 𝑋 (naturally defined; see the next section for a formal
definition) is acyclic (Fig. 5).

Example 6. Consider the two circular codes 𝑋2 = {𝐴𝐶} and
𝑋3 = {𝐴𝐶𝐴,𝐶𝐺𝑇 , 𝐶𝑇𝐺,𝐺𝐴𝐶,𝐺𝑇𝑇 , 𝑇𝐶𝑇 }. The mixed set 𝑋 = {𝐴𝐶,
𝐴𝐶𝐴,𝐶𝐺𝑇 , 𝐶𝑇𝐺,𝐺𝐴𝐶,𝐺𝑇𝑇 , 𝑇𝐶𝑇 } is not a code as the word
𝐴𝐶𝐴𝐶𝐺𝑇𝑇𝐶𝑇𝐺𝐴𝐶 has two different decompositions into words in 𝑋,
namely 𝐴𝐶|𝐴𝐶|𝐺𝑇𝑇 |𝐶𝑇𝐺|𝐴𝐶 and 𝐴𝐶𝐴|𝐶𝐺𝑇 |𝑇𝐶𝑇 |𝐺𝐴𝐶. Moreover,
the graph (𝑋) of 𝑋 (naturally defined; see the next section for a formal
definition) contains the cycle 𝐴𝐶 → 𝐴 → 𝐶 → 𝐺𝑇 → 𝑇 → 𝐶𝑇 → 𝐺 →

𝐴𝐶 (Fig. 6).

In the next section, we give a handy criterion for a mixed set to be a
code. Moreover, we construct various examples of maximum and hence
maximal mixed circular codes.

3. Construction of maximum mixed circular codes

Let 𝑋2 ⊆ 2, 𝑋3 ⊆ 3 and 𝑋4 ⊆ 4 be circular codes. We want to
know whether the mixed set 𝑋 ∶= 𝑋2∪𝑋3, respectively 𝑋 ∶= 𝑋3∪𝑋4, is
a circular code. The associated graph (𝑋) of 𝑋 is (𝑋) = (𝑋2)∪(𝑋3),
respectively (𝑋) = (𝑋3) ∪ (𝑋4). The next theorem provides a graph
certificate to the fact that the mixed set 𝑋 is a circular code. Its proof
can be found in Appendix A.1.

Theorem 2. For 𝑖 ∈ {2, 3, 4}, let 𝑋𝑖 ⊆ 𝑖 and set 𝑋 ∶= 𝑋2 ∪ 𝑋3, �̃� ∶=
𝑋3 ∪𝑋4.

Fig. 6. The cyclic graph (𝑋) of the mixed set 𝑋 that is not a code from Example 6.

(1) The mixed set 𝑋 is a code if and only if there exists no directed path
in (𝑋) between a pair of vertices with labels in 𝑋2.

(2) The mixed set �̃� is a code if and only if there exists no directed path
in (�̃�) between a pair of vertices with labels in 𝑋3.

(3) The mixed sets 𝑋 and �̃� are circular codes if and only if 𝑋 and �̃�
are codes and (𝑋) and (�̃�) are acyclic.

Theorem 2 directly implies the following statement.

Corollary 1. For 𝑖 ∈ {1, 2}, let 𝑋𝑖 be a subset of 𝑖 and set 𝑋 ∶= 𝑋1∪𝑋2.
Let ̃(𝑋) be the digraph [24] obtained from (𝑋) by identifying all vertices
of (𝑋) corresponding to the dinucleotides in 𝑋2 (keeping loops and multiple
edges should they arise). The mixed set 𝑋 is a circular code if and only if
the digraph ̃(𝑋) is acyclic. A similar statement holds for mixed subsets �̃� ⊆
3 ∪ 4.

3.1. Construction of maximum mixed circular codes of dinucleotides and
trinucleotides

In this section, we address the question of the existence of max-
imum (and hence maximal) mixed circular codes 𝑋 ⊆ 2 ∪ 3 of
dinucleotides and trinucleotides. We point out that, as it has been
noticed already [25], the notions of maximum and maximal coincide
for dinucleotide circular codes. It is straightforward to see that the
cardinality of a maximum mixed circular code 𝑋 ⊆ 2 ∪ 3 is less
than or equal to 26, because a subset of a circular code is a circular
code, the cardinality of a maximum dinucleotide circular code is 6 and
the cardinality of a maximum trinucleotide circular code is 20. In fact,
the following theorem shows that this simple upper bound is reached.
Even more, we show that any maximal dinucleotide circular code can
be embedded into a maximum mixed circular code of cardinality 26
such that the corresponding trinucleotide part is 𝐶3-comma-free.

Theorem 3. Let 𝐷 ⊆ 2 be a maximal dinucleotide circular code. Then 𝐷
can be embedded into a mixed code 𝑋 ⊆ 2 ∪ 3 such that

(1) The cardinality of 𝑋 is 26 (hence maximum and so maximal);
(2) 𝑋 is a circular code; and
(3) 𝑋 ∩ 3 is a 𝐶3-comma-free code.

Proof. Let 𝐷 ⊆ 2 be a maximal dinucleotide circular code (which is
thus also maximum in this case, as pointed out above). The idea of the
construction of the desired mixed circular code 𝑋 is to use the structure
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of 𝐷 to construct 𝑋3 ⊆ 3 by adding letters to the dinucleotides of 𝐷 in
the first position ensuring at the same time that 𝜋12(𝑋3) ∩ 𝜋23(𝑋3) = ∅.
This construction will then force 𝑋3 to be comma-free and also 𝑋 =
𝐷 ∪𝑋3 to be a code.

As proved by Michel and Pirillo [26] and by Fimmel et al. [25,27],
any maximal dinucleotide circular code is of the following form:

𝐷 =
{

𝑁𝑖𝑁𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 4
}

writing  = {𝑁1, 𝑁2, 𝑁3, 𝑁4}. The code is thus, in particular, maximum.
We now set

𝑋3 ∶=
{

𝑁𝑘𝑁𝑖𝑁𝑗 ∶ 𝑁𝑖𝑁𝑗 ∈ 𝐷 and 𝑖 ≤ 𝑘 ≤ 4
}

.

Explicitly,

𝑋3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1𝑁1𝑁2, 𝑁1𝑁1𝑁3, 𝑁1𝑁1𝑁4, 𝑁2𝑁1𝑁2, 𝑁2𝑁1𝑁3,
𝑁2𝑁1𝑁4, 𝑁2𝑁2𝑁3, 𝑁2𝑁2𝑁4, 𝑁3𝑁1𝑁2, 𝑁3𝑁1𝑁3,
𝑁3𝑁1𝑁4, 𝑁3𝑁2𝑁3, 𝑁3𝑁2𝑁4, 𝑁3𝑁3𝑁4, 𝑁4𝑁1𝑁2,
𝑁4𝑁1𝑁3, 𝑁4𝑁1𝑁4, 𝑁4𝑁2𝑁3, 𝑁4𝑁2𝑁4, 𝑁4𝑁3𝑁4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Consequently, |𝐷 ∪𝑋3| = 26 and 𝜋23(𝑋3) = 𝐷 while 𝜋12(𝑋3) =
{

𝑁𝑖𝑁𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑖 ≤ 4
}

, and hence the two sets 𝜋12(𝑋3) and 𝜋23(𝑋3) are
disjoint. We set 𝑋 ∶= 𝐷 ∪𝑋3.

The key is the following remark. Let 𝑣 be a vertex of (𝑋) labelled
by a dinucleotide 𝑑 = 𝑁𝑖𝑁𝑗 . If 𝑣 has a positive out-degree, then by the
definition, 𝑑 ∈ 𝜋12(𝑋3), that is, 𝑖 ≥ 𝑗 and therefore 𝑑 ∉ 𝐷. Similarly, if 𝑣
has a positive in-degree, then 𝑑 ∈ 𝜋23(𝑋3) = 𝐷. Consequently, no vertex
of (𝑋) labelled by a dinucleotide has both positive in-degree and
positive out-degree. Several consequences readily follow. First, (𝑋)
cannot contain a path starting at a vertex in 𝐷, so Theorem 2(1) implies
that 𝑋 is a code. Second, (𝑋3) contains no path of length greater than 2
and no cycle of length 2. The graph (𝑋3) is thus acyclic and 𝑋3 is
a comma-free circular code. Further, no cycle in (𝑋) can contain a
vertex labelled by a dinucleotide. Since 𝐷 itself is circular, and hence
(𝐷) is acyclic, we infer that (𝑋) is acyclic and hence 𝑋 is a circular
code by Theorem 2.

It remains to show that 𝑋 is a 𝐶3-code. Let 𝑋′
3 ∶=

{

𝑀2𝑀3𝑀1 ∶ 𝑀1
𝑀2𝑀3 ∈ 𝑋3

}

and 𝑋′′
3 ∶=

{

𝑀3𝑀1𝑀2 ∶ 𝑀1𝑀2𝑀3 ∈ 𝑋3
}

be the two
circular shifts of 𝑋3. We show that 𝑋′

3 is a circular code, the argument
being analogue for 𝑋′′

3 .
It follows from the definition of 𝑋3 that

𝑋′
3 =

{

𝑁𝑖𝑁𝑗𝑁𝑘 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 4 and 𝑖 ≤ 𝑘 ≤ 4
}

.

First, observe that a 2-cycle in (𝑋′
3) would readily yield a 2-cycle

in (𝑋), and hence (𝑋′
3) does not contain any 2-cycle. As a result, any

cycle in (𝑋′
3) has length at least 4, and thus contains a directed path

of the form

𝑁𝑖1 → 𝑁𝑖2𝑁𝑖3 → 𝑁𝑖4 → 𝑁𝑖5𝑁𝑖6 → 𝑁𝑖7 ,

where 𝑁𝑖𝑗 ∈  for each 𝑗 ∈ {1,… , 7}. The form of 𝑋′
3 then implies that

4 ≥ 𝑖6 > 𝑖5 > 𝑖4 ≥ 𝑖2 > 𝑖1 ≥ 1,

leading to 𝑖6 = 4, 𝑖5 = 3, 𝑖4 = 𝑖2 = 2 and 𝑖1 = 1. In particular, the
cycle has length more than 4, and every directed path of length 4 on it
starting at a nucleotide must satisfy the above property, which yields a
contradiction. Consequently, 𝑋′

3 is a circular code and we infer that 𝑋
is a 𝐶3-code. □

The next corollary is now immediate.

Corollary 2. The cardinality of a maximum mixed circular code 𝑋 ⊆
2 ∪ 3 is 26.

In fact, we will show in Section 4 that there are exactly 32 self-
complementary maximum mixed circular codes 𝑋 ⊆ 2 ∪ 3 of
cardinality 26.

Remark 4. If 𝐷 is a dinucleotide comma-free circular code then we
can embed it into a comma-free code 𝑋 but 𝑋 will not have cardinal-
ity 26 as the cardinality of a maximum dinucleotide comma-free code
is 5, as shown by Table 2 in [25].

3.2. Construction of maximum mixed circular codes of trinucleotides and
tetranucleotides

As in Theorem 3, we can also construct maximum (and hence
maximal) mixed circular codes 𝑋 ⊆ 3 ∪ 4 of trinucleotides and
tetranucleotides. These codes have a cardinality of 80 for the following
reason. Let 𝑋 ⊆ 3 ∪ 4 be a mixed circular code. Then 𝑋3 ∶=
𝑋 ∩ 3 and 𝑋4 ∶= 𝑋 ∩ 4 are also circular codes. Therefore, 𝑋3 has
cardinality at most 20 and 𝑋4 at most 60 as there are 256 tetranu-
cleotides among which the 16 tetranucleotides of the form 𝑁1𝑁2𝑁1𝑁2
for some 𝑁1, 𝑁2 ∈  cannot be part of a circular code. Any other
tetranucleotide has a conjugacy class of cardinality 4, so we have 60 =
(256 − 16)∕4 conjugacy classes.1

Theorem 4. There are maximum (and hence maximal) mixed circular
codes 𝑋 ⊆ 3 ∪ 4 of trinucleotides and tetranucleotides of cardinality 80.

Proof. We shall construct a maximum mixed circular code 𝑋 ⊆ 3∪4

of cardinality 80 by taking the union of

𝑋3 ∶=
{

𝐴𝐴𝐶,𝐴𝐴𝐺,𝐴𝐴𝑇 , 𝐶𝐴𝐶,𝐶𝐴𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐶𝑇 ,𝐺𝐴𝐶,𝐺𝐴𝐺,
𝐺𝐴𝑇 ,𝐺𝐶𝐺,𝐺𝐶𝑇 ,𝐺𝐺𝑇 , 𝑇𝐴𝐶, 𝑇𝐴𝐺, 𝑇𝐴𝑇 , 𝑇𝐶𝐺, 𝑇𝐶𝑇 , 𝑇𝐺𝑇

}

and

𝑋4

∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐴𝐴𝐴𝑇 ,𝐴𝐴𝐴𝐶,𝐴𝐴𝐴𝐺,𝐴𝐶𝐴𝐺,𝐴𝐶𝐴𝑇 ,𝐴𝐶𝐶𝐺,𝐴𝐶𝐶𝑇 ,𝐴𝐶𝐺𝑇 ,𝐴𝐺𝐴𝑇 ,𝐴𝐺𝐶𝐺,
𝐴𝐺𝐶𝑇 ,𝐴𝐺𝐺𝑇 ,𝐴𝑇𝐶𝐺,𝐴𝑇𝐶𝑇 ,𝐴𝑇𝐺𝑇 , 𝐶𝐴𝐴𝐶,𝐶𝐴𝐴𝐺,𝐶𝐴𝐴𝑇 , 𝐶𝐶𝐴𝐶,𝐶𝐶𝐴𝐺,
𝐶𝐶𝐴𝑇 , 𝐶𝐶𝐶𝐺,𝐶𝐶𝐶𝑇 , 𝐶𝐺𝐶𝑇 , 𝐶𝐺𝐺𝑇 , 𝐶𝑇𝐺𝑇 ,𝐺𝐴𝐴𝐶,𝐺𝐴𝐴𝐺,𝐺𝐴𝐴𝑇 ,𝐺𝐶𝐴𝐶,
𝐺𝐶𝐴𝐺,𝐺𝐶𝐴𝑇 ,𝐺𝐶𝐶𝐺,𝐺𝐶𝐶𝑇 ,𝐺𝐺𝐴𝐶,𝐺𝐺𝐴𝐺,𝐺𝐺𝐴𝑇 ,𝐺𝐺𝐶𝐺,𝐺𝐺𝐶𝑇 ,𝐺𝐺𝐺𝑇 ,
𝑇𝐴𝐴𝐶, 𝑇𝐴𝐴𝐺, 𝑇𝐴𝐴𝑇 , 𝑇𝐶𝐴𝐶, 𝑇𝐶𝐴𝐺, 𝑇𝐶𝐴𝑇 , 𝑇𝐶𝐶𝐺, 𝑇𝐶𝐶𝑇 , 𝑇𝐺𝐴𝐶, 𝑇𝐺𝐴𝐺,
𝑇𝐺𝐴𝑇 , 𝑇𝐺𝐶𝐺, 𝑇𝐺𝐶𝑇 , 𝑇𝐺𝐺𝑇 , 𝑇 𝑇𝐴𝐶, 𝑇 𝑇𝐴𝐺, 𝑇 𝑇𝐴𝑇 , 𝑇 𝑇𝐶𝐺, 𝑇 𝑇𝐶𝑇 , 𝑇 𝑇𝐺𝑇

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

This construction keeps the property that 𝜋123(𝑋4) ∩ 𝜋234(𝑋4) = ∅.
Since 𝑋3 ⊂ 𝜋234(𝑋4), there is no directed path in (𝑋) between two
vertices labelled by elements of 𝑋3. Thus, Theorem 2(2) implies that 𝑋
is indeed a code. In addition, the bipartite digraph induced by  ∪ 3

is acyclic. It remains to check the component induced by 2, which by
the construction is a transitive tournament,2 and hence acyclic too. □

For the reader’s convenience, we state the following remark, which
was checked by computer calculations but can also be inferred by a
construction similar to those in the proofs of Theorems 3 and 4.

Remark 5. Maximum mixed circular codes 𝑋 ⊆ 2 ∪ 4 of dinu-
cleotides and tetranucleotides have cardinality 66. It is the best possible
since the cardinality of a maximum dinucleotide circular code is 6 and
the cardinality of a maximum tetranucleotide circular code is 60.

We finally approach the construction of mixed circular codes con-
taining dinucleotides, trinucleotides and tetranucleotides in the next
section.

3.3. Construction of maximal mixed circular codes of (di,tri,tetra)-
nucleotides

We present a construction of a maximal, yet not maximum, mixed
circular code of (di,tri,tetra)-nucleotides that has cardinality 71. The
code is not maximum as there exist mixed circular codes of (di,tri,tetra)-
nucleotides of cardinality 74 that contain a maximum circular code

1 A conjugacy class of an 𝓁-nucleotide 𝑁1 ⋯𝑁𝓁 ∈ 𝓁 is defined as the set
{

𝑁𝑘 ⋯𝑁𝓁𝑁1 ⋯𝑁𝑘−1 ∶ 1 ≤ 𝑘 ≤ 𝓁
}

; clearly an 𝓁-nucleotide circular code can
contain at most one 𝓁-nucleotide from each conjugacy class.

2 A tournament is an orientation of a complete graph: every pair of distinct
vertices is connected by a single directed edge. The reader is referred to the
book by Bang-Jensen and Gutin [24] for the notion of tournaments and to the
work by Fimmel et al. [23].
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of dinucleotides (hence of size 6) and a maximum circular code of
trinucleotides (hence of size 20). There also exist larger mixed circular
codes of (di,tri,tetra)-nucleotides, for instance of cardinality 81, that
contain only one dinucleotide and a maximum circular code of trinu-
cleotides. We do not know the size of a maximum mixed circular code
of (di,tri,tetra)-nucleotides and this combinatorial problem remains
open.

The following theorem exhibits the structure of some maximal
mixed circular codes. Its proof can be found in Appendix A.2.

Theorem 5. Let 𝑀1 < 𝑀2 < 𝑀3 < 𝑀4 be an ordering of the alphabet .
For a natural number 𝑛 > 1, the set 𝑋(𝑛) ⊆ ≤𝑛 defined by

𝑋(𝑛) ∶= {𝑁𝑚 ⋯𝑁1 ∶ 𝑁𝑖 ∈ , 2 ≤ 𝑚 ≤ 𝑛

𝑎𝑛𝑑 𝑁𝑚 ≥ 𝑁𝑚−1 ≥ ⋯ ≥ 𝑁2 𝑏𝑢𝑡𝑁2 < 𝑁1}

is a maximal mixed circular code.

Theorem 5 allows us to construct the following maximal mixed
circular code.

Corollary 3. There are maximal mixed circular codes in 2 ∪3 ∪4 of
dinucleotides, trinucleotides and tetranucleotides of cardinality 71.

Proof. A maximal mixed circular code 𝑋 ⊆ 2 ∪3 ∪4 is constructed
by removing from the maximal mixed circular code 𝑋′ ⊆ 3 ∪ 4

described in the proof of Theorem 4 all tetranucleotides that are built
from combining two dinucleotides from the corresponding maximal
dinucleotide circular code 𝐷. We now construct a maximal mixed
circular code 𝑋 ⊆ 2 ∪ 3 ∪ 4 of cardinality 71: 𝑋 ∶= 𝑋2 ∪ 𝑋3 ∪ 𝑋4
where

𝑋2 ∶=
{

𝐴𝐶,𝐴𝐺,𝐴𝑇 , 𝐶𝐺,𝐶𝑇 ,𝐺𝑇
}

𝑋3 ∶=
{

𝐴𝐴𝐶,𝐴𝐴𝐺,𝐴𝐴𝑇 , 𝐶𝐴𝐶,𝐶𝐴𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐶𝑇 ,𝐺𝐴𝐶,𝐺𝐴𝐺,
𝐺𝐴𝑇 ,𝐺𝐶𝐺,𝐺𝐶𝑇 ,𝐺𝐺𝑇 , 𝑇𝐴𝐶, 𝑇𝐴𝐺, 𝑇𝐴𝑇 , 𝑇𝐶𝐺, 𝑇𝐶𝑇 , 𝑇𝐺𝑇

}

and

𝑋4

∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐴𝐴𝐶,𝐴𝐴𝐴𝐺,𝐴𝐴𝐴𝑇 , 𝐶𝐴𝐴𝐶,𝐶𝐴𝐴𝐺,𝐶𝐴𝐴𝑇 , 𝐶𝐶𝐴𝐶,𝐶𝐶𝐴𝐺,𝐶𝐶𝐴𝑇 ,
𝐶𝐶𝐶𝐺,𝐶𝐶𝐶𝑇 ,𝐺𝐴𝐴𝐶,𝐺𝐴𝐴𝐺,𝐺𝐴𝐴𝑇 ,𝐺𝐶𝐴𝐶,𝐺𝐶𝐴𝐺,𝐺𝐶𝐴𝑇 ,𝐺𝐶𝐶𝐺,
𝐺𝐶𝐶𝑇 ,𝐺𝐺𝐴𝐶,𝐺𝐺𝐴𝐺,𝐺𝐺𝐴𝑇 ,𝐺𝐺𝐶𝐺,𝐺𝐺𝐶𝑇 ,𝐺𝐺𝐺𝑇 , 𝑇𝐴𝐴𝐶, 𝑇𝐴𝐴𝐺,
𝑇𝐴𝐴𝑇 , 𝑇𝐶𝐴𝐶, 𝑇𝐶𝐴𝐺, 𝑇𝐶𝐴𝑇 , 𝑇𝐶𝐶𝐺, 𝑇𝐶𝐶𝑇 , 𝑇𝐺𝐴𝐶, 𝑇𝐺𝐴𝐺, 𝑇𝐺𝐴𝑇 ,
𝑇𝐺𝐶𝐺, 𝑇𝐺𝐶𝑇 , 𝑇𝐺𝐺𝑇 , 𝑇 𝑇𝐴𝐶, 𝑇 𝑇𝐴𝐺, 𝑇 𝑇𝐴𝑇 , 𝑇 𝑇𝐶𝐺, 𝑇 𝑇𝐶𝑇 , 𝑇 𝑇𝐺𝑇

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

From Theorem 5, we deduce that 𝑋 = 𝑋2 ∪ 𝑋3 ∪ 𝑋4 is indeed a
mixed circular code using the order 𝐴 < 𝐶 < 𝐺 < 𝑇 . Moreover,
it is maximal since any combination of dinucleotides in 𝑋2 has to
be removed from 𝑋4, so a total of

(6
2

)

= 15 tetranucleotides. Thus
71 = 6 + 20 + 60 − 15 is the maximal cardinality for 𝑋. □

Theorem 5 also readily yields the following corollary.

Corollary 4. Let 𝑀1 < 𝑀2 < 𝑀3 < 𝑀4 be any ordering of the alphabet
. Then the following set 𝑋 ⊆ ∗ where

𝑋 ∶= {𝑁𝑚𝑁𝑚−1 ⋯𝑁2𝑁1 ∶ 𝑁𝑖 ∈ , 𝑚 ∈ 𝐍

𝑎𝑛𝑑 𝑁𝑚 ≥ 𝑁𝑚−1 ≥ ⋯ ≥ 𝑁2 𝑏𝑢𝑡𝑁2 < 𝑁1}

is an infinite mixed circular code.

After having constructed several examples of mixed circular codes
of (di,tri,tetra)-nucleotides, we concentrate on the biologically impor-
tant classes of self-complementary circular (and comma-free) codes of
dinucleotides and trinucleotides in the next sections.

Table 1
Growth function of self-complementary mixed circular codes 𝑋 ⊆ 2 ∪ 3 (cardinality
between 3 and 26) as a function of the maximal path length 𝓁 (from 1 to 8) in their
associated graph (𝑋).

|𝑋| 𝓁

1 2 3 4 5 6 7 8 Total

3 28 36 36 0 0 0 0 0 100
4 32 80 64 16 0 8 0 0 200
5 48 392 516 324 80 16 16 0 1392
6 32 560 760 564 88 216 16 0 2236
7 16 1280 2088 3940 760 548 288 112 9032
8 8 1248 2608 4772 952 1960 288 104 11940
9 0 2020 3812 17484 2848 4612 1568 1744 34088
10 0 1400 3880 16572 3640 8724 1568 1560 37344
11 0 1788 3640 38812 5696 16988 3728 9424 80076
12 0 956 3056 30720 6456 21828 3728 7704 74448
13 0 940 1948 49904 6456 33732 4472 24192 121644
14 0 472 1376 35172 6168 33104 4472 18032 98796
15 0 316 560 40396 4208 39728 2872 33712 121792
16 0 176 328 26520 3408 32176 2872 23168 88648
17 0 72 64 21356 1592 29112 968 27120 80284
18 0 40 32 13360 1088 20504 968 17360 53352
19 0 8 0 7404 336 13404 152 12672 33976
20 0 4 0 4432 192 8456 152 7600 20836
21 0 0 0 1648 32 3736 8 3264 8688
22 0 0 0 936 16 2144 8 1832 4936
23 0 0 0 224 0 560 0 400 1184
24 0 0 0 120 0 296 0 208 624
25 0 0 0 16 0 32 0 16 64
26 0 0 0 8 0 16 0 8 32

Total 164 11788 24768 314700 44016 271900 28144 190232 885712

4. Self-complementary mixed circular codes of dinucleotides and
trinucleotides

This section is devoted to the class of self-complementary mixed
circular codes, which are of importance since they can be found on both
strands of the double helix of DNA simultaneously. In particular, we
completely determine the maximum self-complementary mixed circular
codes over 2 ∪ 3 that contain the maximal 𝐶3-self-complementary
circular code (1) found in nature.

4.1. Growth function of self-complementary mixed circular codes of dinu-
cleotides and trinucleotides

The following statement has been established by computer calculus.

Proposition 1. The growth function of self-complementary mixed circular
codes of dinucleotides and trinucleotides varies from cardinality 3 to 26. Its
maximum is reached with 121,792 self-complementary mixed circular codes
of cardinality 15 (see Table 1).

Table 1 displays the number of self-complementary mixed circular
codes 𝑋 ⊆ 2∪3 as a function of the length of a longest directed path
in their associated acyclic graphs. These lengths vary from 1 to 8 by
Theorem 4.2 in Fimmel et al. [28] and by Theorem 2 which naturally
extends to mixed circular codes. A mixed circular code whose maximal
directed path length is less than or equal to 2, 1 respectively, is comma-
free, strong comma-free respectively [29]. Thus there are exactly 164
self-complementary mixed strong comma-free codes and 11,788 +
164=11,952 self-complementary mixed comma-free codes over 2∪3.
We will come back later to the classes of self-complementary (strong)
comma-free codes.

Before we move on to the self-complementary comma-free codes, we
state two propositions proving the entries of Table 1 for cardinalities 3
and 4.
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Proposition 2. The number of self-complementary mixed circular codes 𝑋
of dinucleotides and trinucleotides of cardinality 3 is equal to 100.

Proof. Clearly, such a code 𝑋 can only be the union of a self-
complementary dinucleotide 𝑁1𝑁2= ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝑁1𝑁2) and a self-complementary
trinucleotide circular code of cardinality 2 since self-complemen-
tary trinucleotides do not exist. There are 4 self-complementary dinu-
cleotides 𝐴𝑇 , 𝑇𝐴, 𝐶𝐺 and 𝐺𝐶 and 28 self-complementary trinucleotide
circular codes of cardinality 2 since from the 32 trinucleotide–anti-
trinucleotide pairs, one should exclude the two trivial pairs (𝐴𝐴𝐴, 𝑇𝑇𝑇 )
and (𝐶𝐶𝐶,𝐺𝐺𝐺) as well as the two obvious pairs (𝐴𝑇𝐴, 𝑇𝐴𝑇 )
and (𝐶𝐺𝐶,𝐺𝐶𝐺). Consequently, there are at most 4 ⋅ 28 = 112 self-
complementary circular mixed codes of cardinality 3. Each such code 𝑋
has the form {𝑁1𝑁2𝑁3, 𝑐(𝑁3)𝑐(𝑁2)𝑐(𝑁1), 𝑁𝑐(𝑁)} where 𝑁1, 𝑁2, 𝑁3, 𝑁
∈  such that 𝑁1, 𝑁2 and 𝑁3 are not all equal and if 𝑁1 = 𝑁3
then 𝑁2 ≠ 𝑐(𝑁1).

We assert that 𝑋 is not circular if and only if 𝑋 = {𝑁 ′𝑐(𝑁 ′)𝑁,
𝑐(𝑁)𝑁 ′𝑐(𝑁 ′), 𝑁𝑐(𝑁)} where 𝑁 ∈ 𝐵 and 𝑁 ′ ∈  ⧵ {𝑁}. This will
then imply that exactly 4 ⋅ 3 = 12 additional self-complementary mixed
circular codes of cardinality 3 have to be removed, and we will hence
obtain 112 − 4 ⋅ 3 = 100 mixed self-complementary circular codes of
cardinality 3 overall. It remains to prove the equivalence, one direction
being trivial. For the converse, if 𝑋 is not circular, then (𝑋) must
have a cycle that contains the edge 𝑁 → 𝑐(𝑁). Necessarily, the vertex
preceding 𝑁 on the cycle is labelled by a dinucleotide 𝑑, and has both
positive in-degree and positive out-degree. The definition of 𝑋 thus
yields that either 𝑑 = 𝑁1𝑁2 = 𝑐(𝑁2)𝑐(𝑁1), or 𝑑 = 𝑁2𝑁3 = 𝑐(𝑁3)𝑐(𝑁2);
in particular, 𝑑 is of the form 𝑁 ′𝑐(𝑁 ′). This further implies that 𝑁3 = 𝑁
or 𝑁1 = 𝑐(𝑁), respectively. Consequently, we conclude that 𝑋 =
{𝑁 ′𝑐(𝑁 ′)𝑁, 𝑐(𝑁)𝑁 ′𝑐(𝑁 ′), 𝑁𝑐(𝑁)}, which finishes the proof. □

Proposition 3. The number of self-complementary mixed circular codes
in 2 ∪ 3 of cardinality 4 is 200.

Proof. Analogously to the proof of Proposition 2, such a code 𝑋 can
only be the union of a self-complementary dinucleotide circular code
of cardinality 2 and a self-complementary trinucleotide circular code of
cardinality 2. Therefore

𝑋 = {𝑁1𝑁2𝑁3, 𝑐(𝑁3)𝑐(𝑁2)𝑐(𝑁1),𝑀1𝑀2,𝑀3𝑀4},

where 𝑁1, 𝑁2, 𝑁3,𝑀1,𝑀2,𝑀3,𝑀4 ∈ . Moreover, there are 28 self-
complementary trinucleotide circular codes of cardinality 2 (see the
proof of Proposition 2) and 8 self-complementary dinucleotide circular
codes of cardinality 2, namely

{𝐴𝑇 , 𝐶𝐺}, {𝐴𝑇 ,𝐺𝐶}, {𝑇𝐴,𝐺𝐶}, {𝑇𝐴, 𝐶𝐺}, {𝐴𝐶,𝐺𝑇 }, {𝐴𝐺,𝐶𝑇 },

{𝑇𝐶,𝐺𝐴}, {𝑇𝐺,𝐶𝐴}.

This means that there are at most 8 ⋅ 28 = 224 mixed self-complementary
circular codes of cardinality 4.

Now observe that 𝑋 is not circular if and only if (𝑋) has a cycle
containing a path of the form 𝑑1 → 𝐿1 → 𝐿2 → 𝑑2 where 𝑑1, 𝑑2 ∈
2 are dinucleotides and 𝐿1𝐿2 ∈ {𝑀1𝑀2,𝑀3𝑀4}. As in the proof
of Proposition 2, since every vertex on a cycle has both positive in-
degree and positive out-degree, it follows that 𝑑1 = 𝑁𝑐(𝑁) and 𝑑2 =
𝑁 ′𝑐(𝑁 ′) with 𝑁,𝑁 ′ ∈ . Moreover, since 𝑁𝑐(𝑁)𝐿1 ∈ 𝑋, we infer
that 𝐿2𝑁 ′𝑐(𝑁 ′) must be equal to 𝑐(𝐿1)𝑁𝑐(𝑁) and hence 𝐿2 = 𝑐(𝐿1)
and 𝑁 = 𝑁 ′. Therefore, if 𝑋 is not circular then {𝑀1𝑀2,𝑀3𝑀4} is one
of the 4 codes consisting of self-complementary dinucleotides, and 𝑋
has the form

{𝑁𝑐(𝑁)𝐿1, 𝑐(𝐿1)𝑁𝑐(𝑁), 𝐿1𝑐(𝐿1), 𝐿2𝑐(𝐿2)},

with 𝐿1 ∈ 𝐵, 𝐿2 ∈  ⧵ {𝐿1, 𝑐(𝐿1)} and 𝑁 ∈ . Because the codes
containing a trinucleotide of the form 𝑀𝑐(𝑀)𝑀 for 𝑀 ∈  have
already been excluded, we further deduce that 𝑁 ≠ 𝐿1, and we thus
have to exclude exactly 4 ⋅ 3 ⋅ 2 = 24 additional codes. We obtain 224 −
24 = 200 self-complementary mixed circular codes of cardinality 4
overall. □

We finally show that there are exactly 32 maximum self-
complementary mixed circular codes over 2 ∪3 that have a maximal
cardinality of 26. However, none of them contains the maximal 𝐶3-self-
complementary circular code observed in genes (see Proposition 5). The
proof of the following result is contained in Appendix A.3 and the list
appears in Appendix A.5.

Proposition 4. The cardinality of a maximum self-complementary mixed
circular code over 2 ∪ 3 is 26 and there are 32 of them.

We now consider the maximal 𝐶3-self-complementary trinucleotide
circular code observed in genes. From an evolutionary point of view,
it seems relevant to point out how dinucleotides can be added to this
particular code without compromising its properties.

Proposition 5. Let 𝑌 be a self-complementary mixed circular code
over 2∪3 that contains the maximal 𝐶3-self-complementary trinucleotide
circular code 𝑋 of cardinality 20 observed in genes, defined by (1). Then
𝑌 ∩ 2 ∈ {{𝐴𝑇 }, {𝐺𝐶}, {𝐴𝑇 ,𝐺𝐶}}. In other words,

𝑌 ⊆ {𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶,𝐴𝐴𝑇 ,𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺}.

Proof. Let 𝑌 be as stated in the proposition. We systematically ex-
clude all dinucleotides except for 𝐴𝑇 and 𝐺𝐶. Let us start with the
dinucleotides that are not self-complementary, ignoring the 4 trivial
ones (𝑁𝑁 for 𝑁 ∈ ). If one of them is contained in 𝑌 , then the
complementary dinucleotide must be in 𝑌 as well. There are 4 pairs
of this kind: {𝐺𝐴, 𝑇𝐶}, {𝐴𝐶,𝐺𝑇 }, {𝐴𝐺,𝐶𝑇 } and {𝐶𝐴, 𝑇𝐺}. We first
handle the first two cases. Because both 𝐺𝐴𝑇 and 𝑇𝑇𝐶 belong to 𝑋,
the digraph (𝑋) contains a directed path from 𝐺𝐴 to 𝑇𝐶, and hence
the pair {𝐺𝐴, 𝑇𝐶} cannot belong to 𝑌 . Similarly, the fact that 𝐺𝑇𝑇
and 𝑇𝐴𝐶 belong to 𝑋 forbids the pair {𝐴𝐶,𝐺𝑇 }. For the latter two
cases, if {𝐴𝐺,𝐶𝑇 } ⊆ 𝑌 , then as 𝐺𝑇𝐴 and 𝐺𝐺𝑇 also belong to 𝑌 the
digraph (𝑌 ) would contain a directed cycle, namely

𝐺𝑇 → 𝐴 → 𝐺 → 𝐺𝑇 .

Similarly, the pair {𝐶𝐴, 𝑇𝐺} cannot belong to 𝑌 as both 𝑇𝑇𝐶 and 𝐴𝑇𝑇
do.

Finally, a given self-complementary dinucleotide 𝑁𝑐(𝑁) cannot be
combined with any code that contains the 2 complementary trinu-
cleotides 𝑁 ′𝑐(𝑁 ′)𝑁, 𝑐(𝑁)𝑁 ′𝑐(𝑁 ′) for some 𝑁 ′ ∈ , since the obtained
code would not be circular. Indeed, the associated digraph would
contain the cycle

𝑁 ′𝑐(𝑁 ′) → 𝑁 → 𝑐(𝑁) → 𝑁 ′𝑐(𝑁 ′).

It now suffices to remark that 𝑋 contains the complementary pairs
(𝐴𝑇𝑇 ,𝐴𝐴𝑇 ) and (𝑇𝐴𝐶,𝐺𝑇𝐴), which thus forbids the self-
complementary dinucleotides 𝑇𝐴 and 𝐶𝐺.

We finally note that 𝑌 ∩ 2 can indeed be equal to {𝐴𝑇 ,𝐺𝐶},
as the obtained code is then circular (and self-complementary). The
digraph (𝑌 ) associated with 𝑌 in this case is given in Fig. 7. □

To close this section, we finally consider the parameters for self-
complementary mixed (strong) comma-free codes determined in Ta-
ble 1 and prove their correctness. We also determine explicitly the
4 maximum (hence maximal) self-complementary mixed comma-free
codes of dinucleotides and trinucleotides. The following result was
obtained by an extensive computer calculation — see Table 1.

Proposition 6. The following statements hold.

(1) The growth function of self-complementary mixed strong comma-free
codes of dinucleotides and trinucleotides varies from cardinality 3
to 8.

(2) The growth function of self-complementary mixed comma-free codes
of dinucleotides and trinucleotides varies from cardinality 3 to 20.
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Fig. 7. The graph (𝑌 ) of the maximum self-complementary mixed circular code of dinucleotides and the maximal 𝐶3-self-complementary trinucleotide circular code 𝑋 of
cardinality 20 observed in genes: 𝑌 = {𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶,𝐴𝐴𝑇 ,𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶, 𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺}. The vertices
labelled by a nucleotide 𝐴,𝐶,𝐺, 𝑇 have both ingoing and outgoing edges, the edges between vertices labelled by nucleotides being associated with the dinucleotides 𝐴𝑇 and 𝐺𝐶.
The vertices labelled by one of the dinucleotides 𝐴𝐺,𝐶𝐶, 𝑇𝐶, 𝑇𝐺 have no outgoing edge, while those labelled by one of the dinucleotides 𝐶𝐴,𝐶𝑇 ,𝐺𝐴,𝐺𝐺 have no ingoing edge.
The vertices labelled by one of the 7 remaining dinucleotides 𝐴𝐴,𝐴𝐶,𝐴𝑇 ,𝐺𝐶,𝐺𝑇 , 𝑇𝐴, 𝑇 𝑇 all have both ingoing and outgoing edges.

As it turns out, there are only a few maximum self-complementary
mixed comma-free codes over 2 ∪ 3. See Appendix A.4 for a proof.

Proposition 7. The cardinality of a maximum self-complementary mixed
comma-free code of dinucleotides and trinucleotides is 20 and there are
exactly 4 of them:

• {𝐴𝐶,𝐺𝑇 ,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝑇 ,𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,
𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶};

• {𝐶𝐴, 𝑇𝐺, 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺, 𝑇𝐴𝐴, 𝑇 𝑇𝐴,𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,
𝐶𝑇𝐴, 𝑇𝐴𝐺,𝐶𝐴𝐺,𝐶𝑇𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺};

• {𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,𝐴𝑇𝑇 ,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,
𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺};

• {𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴, 𝑇 𝑇𝐴,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,
𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶}.

5. Discussion and conclusion

In this section, some possible biological implications of the theory
of mixed codes are discussed. Based on the new insights and hypotheses
regarding the genesis of the genetic code, we suggest some poten-
tial biological functions of mixed circular codes in primitive genetic
processes. As already mentioned in the introduction, various scientists
assume that the coding of amino acids was first done by dinucleotides
or tetranucleotides, and only later by trinucleotides. Therefore it is
plausible to assume that the mixed codes could have had a function
in a transitional coding process.

Self-complementary mixed circular codes, in particular of dinu-
cleotides and trinucleotides, could have operated in the primitive soup
for constructing the modern genetic code and the genes. They could be
involved in two stages: a first stage directly without anticodon-amino
acid interactions to form peptides from prebiotically amino acids, and
a second stage using these interactions [30]. The absence of a code, as
proposed by Noller [31] and Krupkin et al. [32], could be explained,

from our point of view, by the lack of knowledge in the variety and the
complexity of codes. We suggest some potential functional implications
of mixed circular codes in these two stages.

A mixing of dinucleotides and trinucleotides with its property of
reading frame retrieval could have been involved in the Implicated
Site Nucleotides (ISN) of RNA interacting with the amino acids at the
primitive step of life (review in [33]). According to a great number
of biological experiments, the ISN structure contains nucleotides in
fixed and variable positions, as well as an important trinucleotide for
interacting with the amino acid. The general structure of the aptamers
binding amino acids, in particular its nucleotide length, its amino acid
binding loop and its nucleotide position, is still an open problem.
Likewise, aptamers without enrichment for 𝐺𝑙𝑛, 𝐿𝑒𝑢 and 𝑉 𝑎𝑙 are not ex-
plained so far. Similar arguments could hold for the ribonucleopeptides
which could be involved in a primitive T box riboswitch functioning
as an aminoacyl-tRNA synthetase and a peptidyl-transferase ribozyme
[34]. Circularity could have been necessary for determining the posi-
tion of nucleotide motifs in the primitive construction of the genetic
code [35].

For the second stage, many schemes have suggested that a simpler
code based on dinucleotides preceded the modern trinucleotide genetic
code (see, for instance, [17,19,22]), the two first codon sites being
associated with the dinucleotide code. One scheme is the 𝐺𝐶 code: 𝐺𝐺
coding for 𝐺𝑙𝑦, 𝐶𝐶 coding for 𝑃𝑟𝑜, 𝐺𝐶 coding for 𝐴𝑙𝑎 and 𝐶𝐺 coding
for 𝐴𝑟𝑔 [36]. A second dinucleotide code coding 14 amino acids, the 20
amino acids except the six structurally and synthetically complex amino
acids 𝐻𝑖𝑠, 𝐿𝑦𝑠, 𝑀𝑒𝑡, 𝑃ℎ𝑒, 𝑇 𝑟𝑝 and 𝑇 𝑦𝑟, was proposed based on a strong
correlation between the first codon sites and the biosynthetic pathways
of the amino acids they encode, as well as a strong relationship between
the second codon sites and the hydrophobicity of the amino acids [37].
Such approaches have been much criticized and abandoned. The central
argument is that the reading frame with dinucleotides is incompatible
with the reading frame with trinucleotides, leading to gene sequences

8
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Fig. 8. An evolutionary hypothesis of self-complementary mixed circular codes of dinucleotides and trinucleotides leading to the maximal 𝐶3-self-complementary trinucleotide
circular code 𝑋 of cardinality 20 observed in genes (1). Here 𝑆𝑀𝐶𝓁 means a self-complementary mixed circular code of maximal path length 𝓁 (see Table 1), while 𝑆𝐶8 means
a self-complementary circular code of maximal path length 8.

unreadable, problem synthesized shortly with the following sentence
‘‘letters belonging to the first position of the next codon would be
consistently misread as being the last letter of the preceding codon’’
[38]. We prove in this paper the existence of mixed circular codes, in
particular of dinucleotides and trinucleotides. Thus, there are sequences
which can be constructed with dinucleotides and trinucleotides such
that their frame can be read unambiguously. In other words, primitive
genetic codes mixing dinucleotides and trinucleotides are possible and
could be a transition code between an earlier dinucleotide code and the
modern trinucleotide code.

Fig. 8 proposes an evolutionary hypothesis of self-complementary
mixed circular codes 𝑆𝑀𝐶𝓁 of dinucleotides and trinucleotides ac-
cording to a hierarchy related to their combinatorial complexity with
the maximal path length 𝓁 (from 1 to 8) in their associated graph 
(see Table 1). As the maximal path length 𝓁 is related to the window
nucleotide length of reading frame retrieval, the self-complementary
mixed circular codes 𝑆𝑀𝐶1 are more constraint than those 𝑆𝑀𝐶8. The
maximal 𝐶3-self-complementary trinucleotide circular code 𝑋 observed
in genes (1) could have come from a self-complementary mixed circular
code 𝑆𝑀𝐶8 of dinucleotides and trinucleotides with the deletion of the
two dinucleotides 𝐴𝑇 and 𝐺𝐶.

9
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Proposition 5 proves that the maximal 𝐶3-self-complementary trin-
ucleotide circular code 𝑋 observed in genes can be mixed with self-
complementary dinucleotide circular codes. It can be mixed with at
most the two dinucleotides {𝐴𝑇 ,𝐺𝐶}, each dinucleotide being self-
complementary and beginning with a purine nucleotide. The other
two self-complementary dinucleotides 𝑇𝐴 and 𝐶𝐺 are excluded from
such a mixing with 𝑋. We have no biological explanation of this new
combinatorial property of 𝑋 so far.

After having initiated the circular code theory in genes in 1996,
we have opened here a new line of mathematical research on circular
codes. We have proved that mixed codes of dinucleotides, trinucleotides
and tetranucleotides can be circular. Furthermore, we have identi-
fied several new combinatorial properties with the self-complementary
mixed circular codes of dinucleotides and trinucleotides. These results
have been related to some potential biological functions of mixed cir-
cular codes in primitive genetic processes. We are currently extending
this research work to different finite alphabets.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix

A.1. Proof of Theorem 2

Proof. First note that for every edge 𝑒 = 𝑤𝑤′ ∈ 𝐸(𝑋), the concatena-
tion 𝑤𝑤′ of the labels of the end-vertices of 𝑒 yields an element of 𝑋,
by the definition of (𝑋).

(1) Assume that there exists a directed path 𝑤1,… , 𝑤𝑟 in (𝑋) such
that both 𝑤1 and 𝑤𝑟 belong to 𝑋2. Then the word 𝑤 ∶= 𝑤1 ⋯𝑤𝑟 has an
ambiguous decomposition. Indeed, if 𝑟 is odd then both 𝑤1|𝑤2𝑤3|…
|𝑤2𝑖𝑤2𝑖+1|… |𝑤𝑟−1𝑤𝑟 and 𝑤1𝑤2|… |𝑤2𝑖−1𝑤2𝑖|… |𝑤𝑟−2𝑤𝑟−1|𝑤𝑟 are de-
compositions of 𝑤 into elements of 𝑋. If 𝑟 is even then both 𝑤1|𝑤2𝑤3|…
|𝑤2𝑖𝑤2𝑖+1|… |𝑤𝑟−2𝑤𝑟−1|𝑤𝑟 and 𝑤1𝑤2|… |𝑤2𝑖−1𝑤2𝑖|… |𝑤𝑟−1𝑤𝑟 are de-
compositions of 𝑤 into elements of 𝑋.

Conversely, assume that the mixed set 𝑋 is not a code. So there are
elements of 𝑋∗ admitting several decompositions into elements of 𝑋,
and we can choose a minimal one 𝑤 (meaning that no substring of 𝑤
has more than one decomposition into elements of 𝑋). Let 𝑤1|… |𝑤𝑟 ∈
𝑋𝑟 and 𝑤′

1|… |𝑤′
𝑟′ ∈ 𝑋𝑟′ be two such decompositions of 𝑤. Since 𝑤 is

minimal, 𝑤1 ≠ 𝑤′
1 and 𝑤𝑟 ≠ 𝑤′

𝑟′ , and hence we may assume without
loss of generality that 𝑤1 ∈ 𝑋2 and 𝑤′

1 ∈ 𝑋3. Similarly, either 𝑤𝑟 ∈ 𝑋2
and 𝑤′

𝑟′ ∈ 𝑋3, or 𝑤𝑟 ∈ 𝑋3 and 𝑤′
𝑟′ ∈ 𝑋2. Both cases being similar

to analyse, let us suppose that the latter one occurs. We show that 𝑤𝑖
overlaps 𝑤′

𝑖 for each 𝑖 ∈ {1,… , 𝑟}, and that 𝑤′
𝑖 overlaps 𝑤𝑖+1 for

each 𝑖 ∈ {1,… , 𝑟−1}. We set 𝑥2𝑖−1 ∶= 𝑤𝑖 ⊓𝑤′
𝑖 and 𝑥2𝑖 ∶= 𝑤′

𝑖 ⊓𝑤𝑖+1, and
we also show that there is a path in (𝑋) from 𝑤1 = 𝑥1 to 𝑥2𝑖−1. We
proceed by a (finite) induction on the index 𝑖.

(i) If 𝑖 = 1 then 𝑤′
1 = 𝑤1𝑁 for some 𝑁 ∈ , so 𝑤1 overlaps 𝑤′

1.
Further, 𝑤′

1 ⊓ 𝑤2 = 𝑁 , and hence 𝑤′
1 overlaps 𝑤2. By defini-

tion, 𝑤1 = 𝑥1 and so (𝑋) contains a (trivial) path from 𝑤1
to 𝑥1.

(ii) Fix 𝑖 ∈ {2,… , 𝑟} and assume, by induction, that 𝑤𝑖−1 over-
laps 𝑤′

𝑖−1, that 𝑤′
𝑖−1 overlaps 𝑤𝑖, and also that (𝑋) contains

a path from 𝑥1 to 𝑥2𝑖−3. If 𝑤𝑖 does not overlap 𝑤′
𝑖 , then 𝑤𝑖 is

contained in 𝑤′
𝑖−1. Since each of them has length either 2 or 3, and

moreover 𝑤′
𝑖−1 overlaps 𝑤𝑖, it follows that 𝑤𝑖 is a suffix of 𝑤′

𝑖−1.
Consequently, the word 𝑤′

1 ⋯𝑤′
𝑖−1 admits two decompositions

into elements of 𝑋, which is forbidden by the minimality of 𝑤.
As a result, 𝑤𝑖 overlaps 𝑤′

𝑖 , and for the same reason if 𝑖 < 𝑟
then 𝑤′

𝑖 overlaps 𝑤𝑖+1. It follows that 𝑤′
𝑖−1 = 𝑥2𝑖−3𝑥2𝑖−2 and 𝑤𝑖 =

𝑥2𝑖−2𝑥2𝑖−1. Therefore, (𝑋) contains an edge from 𝑥2𝑖−3 to 𝑥2𝑖−2
and an edge from 𝑥2𝑖−2 to 𝑥2𝑖−1, which can be used to extend the
path from 𝑥1 to 𝑥2𝑖−3 into a path from 𝑥1 to 𝑥2𝑖−1.

Applying the above with 𝑖 = 𝑟, we deduce that (𝑋) contains a path
from 𝑤1 to 𝑥2𝑟−1 = 𝑤′

𝑟′ , which are two dinucleotides contained in 𝑋2.
(2) The proof of the statement of the theorem for �̃� is analogous to

(1).
(3) Assume that (𝑋) contains a directed cycle 𝑤1,… , 𝑤𝑟. If 𝑟 is odd

then the cyclic word 𝑤1 ⋯𝑤𝑟𝑤1 ⋯𝑤𝑟 has two circular decompositions
into words on 𝑋∗, namely

𝑤1𝑤2|… |𝑤𝑟𝑤1|… |𝑤𝑟−1𝑤𝑟| and
𝑤1|… |𝑤𝑟−1𝑤𝑟|𝑤1𝑤2|… |𝑤𝑟−2𝑤𝑟−1|𝑤𝑟.

The case where 𝑟 is even is similar, the word 𝑤1 ⋯𝑤𝑟 admitting the two
circular decompositions 𝑤1𝑤2|… |𝑤𝑟−1𝑤𝑟| and 𝑤1|𝑤2𝑤3|… |𝑤𝑟−2𝑤𝑟−1|

𝑤𝑟.
Conversely, assume that 𝑋 is a code that contains a word with

two circular decompositions 𝑤1|… |𝑤𝑟 and 𝑤′
1|… |𝑤′

𝑟′ into elements
of 𝑋. Assume without loss of generality, that |𝑤1| ≤ |𝑤′

1|. Then we
may assume that for every index 𝑖, the word 𝑤𝑖 overlaps 𝑤′

𝑖 and 𝑤′
𝑖

overlaps 𝑤𝑖+1. Indeed, otherwise one would be either the suffix or
the prefix of the other, which would give a word that has two (non-
circular) decompositions into elements of 𝑋, thereby contradicting the
fact that 𝑋 is a code. Setting 𝑥2𝑖−1 ∶= 𝑤𝑖 ⊓ 𝑤′

𝑖 and 𝑥2𝑖 ∶= 𝑤′
𝑖 ⊓ 𝑤𝑖+1, it

follows that 𝑥1 → ⋯ → 𝑥2𝑟 → 𝑥1 is a directed cycle in (𝑋), which ends
the proof. □

A.2. Proof of Theorem 5

Proof. The following property, coined Property O for future references,
directly follows from the definition of 𝑋(𝑛).

(O): Let 𝑤 and 𝑤′ be two words in 𝑋(𝑛). If 𝑤 overlaps 𝑤′, then
either 𝑤′ is a suffix of 𝑤, or 𝑤 ⊓ 𝑤′ = 𝑁 ∈ .

In particular, Property O implies that a word in 𝑋(𝑛) cannot be
a prefix of another word in 𝑋(𝑛). This readily implies that 𝑋(𝑛) is
code. Indeed, suppose on the contrary that there is a concatenation of
words 𝑤 = 𝑤1 ⋯𝑤𝑘 from 𝑋(𝑛) that has a second decomposition 𝑤 =
𝑤′

1 ⋯𝑤′
𝑙 with 𝑤′

𝑖 ∈ 𝑋(𝑛). Up to considering such a word 𝑤 of minimal
length, we may assume that 𝑤1 ≠ 𝑤′

1 and |𝑤1| < |𝑤′
1|. However, this

implies that 𝑤1 is a prefix of 𝑤′
1, a contradiction. Thus 𝑋(𝑛) is a code.

Property O also allows us to show that 𝑋(𝑛) is a circular code. Sup-
pose, on the contrary, that 𝑤 is a word admitting two different circular
decompositions 𝑤1 ⋯𝑤𝓁 and 𝑤′

1 ⋯𝑤′
𝑘 into words in 𝑋(𝑛), with 𝓁 ≥ 2.

The fact that 𝑋(𝑛) is a code implies that if 𝑤𝑖 overlaps 𝑤′
𝑗 , then 𝑤′

𝑗
cannot be a suffix of 𝑤𝑖. Consequently, Property O implies that 𝑤𝑖 ⊓𝑤′

𝑗
is a one-letter word. In particular, 𝑤1 overlaps 𝑤′

1, which overlaps 𝑤2,
from which it follows that 𝑤′

1 has length 2. We therefore infer that
|𝑤′

𝑖| = 2 for each 𝑖 ∈ {1,… , 𝑘} and |𝑤𝑖| = 2 for each 𝑖 ∈ {1,… ,𝓁}.
This implies that 𝑤 is a strictly increasing sequence of nucleotides, a
contradiction.

It remains to show that 𝑋(𝑛) is a maximal circular code. We proceed
by induction on the integer 𝑛 ≥ 2, the statement following from
Theorem 3 when 𝑛 ∈ {2, 3}. Assume that 𝑋(𝑘) is maximal for all 𝑘 ≤ 𝑛
and set 𝑋 ∶= 𝑋(𝑛+1) ⊆ ≤𝑛+1. Assume furthermore that 𝑋 is not
maximal, i.e. there is a word 𝑤 ∈ ≤𝑛+1 such that 𝑋 ∪ {𝑤} is a circular
code. Since 𝑋 ∩ ≤𝑛 = 𝑋(𝑛) is a maximal mixed circular code by the
induction hypothesis, 𝑤 = 𝐿𝑛+1 ⋯𝐿1 ∈ 𝑛+1. The construction of 𝑋
and the fact that 𝑤 ∉ 𝑋 imply that 𝑤 can be decomposed into words
from 𝑋 ∩ ≤𝑛 and a word of the form 𝑣 = 𝑁𝓁 ⋯𝑁1 where 𝑁𝓁 ≥
⋯ ≥ 𝑁1 and 𝓁 ≥ 0, with 𝑣 = 𝜀 if 𝓁 = 0. Let 𝑤 = 𝑤1 ⋯𝑤𝑡𝑣 be
such a decomposition, where 𝑡 can be zero — implying that 𝑤 = 𝑣.
If 𝑣 = 𝜀, then 𝑤 and 𝑤1 ⋯𝑤𝑡 are two decompositions of 𝑤 into words
from 𝑋∪{𝑤}, which contradicts that 𝑋∪{𝑤} is a code. We deduce that
𝑣 ≠ 𝜀. We now distinguish two cases.

(i) If 𝑡 = 0, then 𝑤 = 𝑣 = 𝑁𝑛+1 ⋯𝑁1 with 𝑁𝑛+1 ≥ 𝑁𝑛 ≥ ⋯ ≥ 𝑁1.
Clearly, we cannot have 𝑁𝑛+1 = ⋯ = 𝑁1 as this would contradict
the circularity of 𝑋 ∪ {𝑤}. Therefore, 𝑁1 < 𝑁𝑛+1. As a result,
𝑁𝑛 ⋯𝑁1𝑁𝑛+1 ∈ 𝑋, which contradicts the circularity of 𝑋 ∪ {𝑤}.
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Fig. 9. The directed graph associated with each of the 8 maximum self-complementary
dinucleotide circular codes in the proof of Proposition 4. For instance, for the first listed
code, one has 𝑁1 = 𝐴 and 𝑁2 = 𝐶.

(ii) If 𝑡 ≠ 0, then 𝑣 = 𝑁𝓁 ⋯𝑁1 with 𝓁 ≤ 𝑛 − 1. Consequently the
word 𝑤𝑀1𝑀2 has two different decompositions over 𝑋 ∪ {𝑤},
namely 𝑤𝑀1𝑀2 = 𝑤1 ∣ … ∣ 𝑤𝑡 ∣ 𝑣𝑀1𝑀2 since 𝑀1𝑀2 ∈ 𝑋
and 𝑣𝑀1𝑀2 has length at most 𝑛 + 1 and hence belongs to 𝑋 as
well, a contradiction to the assumption that 𝑋∪{𝑤} is a code. □

A.3. Proof of Proposition 4

Proof. A circular code over 𝓁 intersects each conjugacy class of
length 𝓁 in at most one 𝓁-nucleotide. We proceed by finding all
self-complementary mixed circular codes contained in 2 ∪ 3 that
intersect each such conjugacy class in exactly one element, hence
having cardinality 20 + 6 = 26. There are exactly 32 of them.

Let 𝑋 be such a self-complementary mixed circular code over 2 ∪
3. It follows that 𝑋2 ∶= 𝑋 ∩ 2 is one of the 8 maximum (of
cardinality 6) self-complementary dinucleotide circular codes:

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺}, {𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 ,𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐴𝑇 ,𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶}, {𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 , 𝑇𝐴, 𝐶𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴, 𝐶𝐺}, {𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶}.

We note that the directed graphs associated with all these 8 codes
are isomorphic to the directed graph depicted in Fig. 9. In particular,
𝑋2 yields a total order < on  such that 𝑋 < 𝑌 implies that 𝑐(𝑌 ) <
𝑐(𝑋). Let us write  = {𝑁1, 𝑁2, 𝑁3, 𝑁4} with 𝑁𝑖 < 𝑁𝑗 if 𝑖 < 𝑗 (in
particular, 𝑐(𝑁𝑖) = 𝑁5−𝑖). We set 𝐷 ∶= {𝑁1, 𝑁2} and 𝐹 ∶= 𝑐(𝐷).
Notice that 𝐷 < 𝐹 , that is, 𝑑 < 𝑓 for each (𝑑, 𝑓 ) ∈ 𝐷 × 𝐹 , and hence
𝑑𝑓 ∈ 𝑋2 for each (𝑑, 𝑓 ) ∈ 𝐷 × 𝐹 , as this will be implicitly used in
the forthcoming arguments. Since 𝑋 is self-complementary, it contains
no element in 𝑋2𝐷 ∪ 𝐹𝑋2 for if 𝑤 ∈ 𝑋 ∩ 𝐹𝑋2, then 𝑐(𝑤) ∈ 𝑋 ∩ 𝑋2𝐷
and thus (𝑋) would contain a directed path (of length 3) between two
vertices labelled by elements of 𝑋2.3

We shall prove that there are exactly four valid ways to extend 𝑋2,
which in total will give the 32 different codes 𝑋. Recall that 𝑋 has to
contain exactly one element in each conjugacy class. We proceed by
finding necessary conditions implying which element must be chosen
in each conjugacy class. It will remain 6 conjugacy classes with po-
tentially 2 elements that can be chosen. We shall see that only four
choices are valid. At the same time, all choices ensure the following
condition, which allows one to see that (𝑋) has no directed cycle: if a
dinucleotide 𝑤 ∈ 2 has an in-neighbour 𝑁𝑖 and an out-neighbour 𝑁𝑗 ,
then 𝑁𝑗 > 𝑁𝑖. It is obviously a necessary condition, for otherwise (𝑋)
would contain the directed cycle 𝑁𝑖 → 𝑤 → 𝑁𝑗 → 𝑁𝑖, and is also
sufficient as one readily checks. This property also helps checking
that (𝑋) has no directed path between two dinucleotides in 𝑋2.

Let  be the set of self-complementary dinucleotides in 2, i.e.
 = {𝐴𝑇 , 𝑇𝐴, 𝐶𝐺,𝐺𝐶}. The self-complementarity of 𝑋 implies that it
contains no element in 𝐷 ∪ 𝐹, because (𝑋) contains no directed
cycle of length 3.

3 Recall that if 𝐼 and 𝐽 are two sets, then 𝐼𝐽 = {𝑖𝑗 ∶ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} is the set
of all concatenations of words 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 .

The words in 𝐷𝐹 yield 16 conjugacy classes, and the two above
properties directly determine the element that belongs to 𝑋 for 10 of
them, and leave exactly two choices for each of the remaining classes:
the code 𝑋 must contain

𝑁1𝑁1𝑁4, 𝑁1𝑁2𝑁3, 𝑁1𝑁2𝑁4, 𝑁1𝑁3𝑁4, 𝑁1𝑁4𝑁4, 𝑁2𝑁1𝑁3, 𝑁2𝑁2𝑁3,

𝑁2𝑁3𝑁3, 𝑁2𝑁3𝑁4, 𝑁2𝑁4𝑁3.

In the conjugacy class of 𝑁1𝑁4𝑁3, the code 𝑋 must contain 𝑁1𝑁4𝑁3
as otherwise it would contain 𝑁4𝑁3𝑁1 thus creating the cycle 𝑁2 →

𝑁4𝑁3 → 𝑁1 → 𝑁2. This implies that 𝑋 contains 𝑁2𝑁1𝑁4. Simi-
larly, 𝑋 must contain 𝑁2𝑁3𝑁3. This implies that 𝑁3𝑁3𝑁1 ∉ 𝑋 and
hence 𝑁1𝑁3𝑁3 ∈ 𝑋. It thus remains 2 complementary conjugacy
classes in 𝐷𝐹 for which we have two choices, namely that of 𝑁1𝑁1𝑁3
and that of 𝑁2𝑁4𝑁4.

There are 4 classes that have not been mentioned yet: those of
elements in 𝐷3 ∪ 𝐹 3. Similarly as above, those 4 classes are composed
of 2 pairs of complementary classes, and only 2 elements in each
class can be valid choices. In total, the 6 remaining classes are that
of 𝑁1𝑁1𝑁3, of 𝑁1𝑁1𝑁2, of 𝑁2𝑁2𝑁1 and of their anti-trinucleotides.
Note that all eight choices are valid. Indeed, since every dinucleotide
that appears both as a prefix and as a suffix cannot have an in-
neighbour 𝑁𝑖 and an out-neighbour 𝑁𝑗 with 𝑁𝑖 > 𝑁𝑗 , we infer
that one of 𝑁2𝑁2𝑁1 and 𝑁2𝑁1𝑁1 does not belong to 𝑋. Similarly,
one of 𝑁3𝑁1𝑁1 and 𝑁1𝑁1𝑁2 does not belong to 𝑋. Using that 𝑋 is
self-complementary, we deduce that only four choices can be valid:

(𝑁1𝑁1𝑁3, 𝑁2𝑁4𝑁4, 𝑁1𝑁1𝑁2, 𝑁3𝑁4𝑁4, 𝑁2𝑁2𝑁1, 𝑁4𝑁3𝑁3),

(𝑁1𝑁1𝑁3, 𝑁2𝑁4𝑁4, 𝑁1𝑁1𝑁2, 𝑁3𝑁4𝑁4, 𝑁2𝑁1𝑁2, 𝑁3𝑁4𝑁3),

(𝑁1𝑁1𝑁3, 𝑁2𝑁4𝑁4, 𝑁2𝑁1𝑁1, 𝑁4𝑁4𝑁3, 𝑁2𝑁1𝑁2, 𝑁3𝑁4𝑁3),

(𝑁3𝑁1𝑁1, 𝑁4𝑁4𝑁2, 𝑁2𝑁1𝑁1, 𝑁4𝑁4𝑁3, 𝑁2𝑁1𝑁2, 𝑁3𝑁4𝑁3).

Each of these choices ensures the aforementioned property of in-
neighbours and out-neighbours of dinucleotides in (𝑋). It follows that
we obtain precisely 4 different codes for each of the 8 different orders
on , for a total of 32 different maximum self-complementary mixed
circular codes in 2 ∪ 3. □

A.4. Proof of Proposition 7

Proof. There are 4 maximum self-complementary trinucleotide
comma-free codes of 16 trinucleotides (Tables 3a and 3b in [39]). There
are 4 maximum dinucleotide comma-free codes of 5 dinucleotides [40]:

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 }, {𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐺𝐶},

{𝐴𝐺,𝐶𝑇 , 𝐶𝐴, 𝑇𝐺, 𝐶𝐺}, {𝐺𝐴, 𝑇𝐶, 𝐶𝐴, 𝑇𝐺, 𝑇𝐴}.
(*)

All of them consist of 2 complementary pairs of dinucleotides
and 1 self-complementary dinucleotide, e.g. {𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 } =
{𝐴𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝐴𝐶), 𝐴𝐺, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝐴𝐺), 𝐴𝑇 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝐴𝑇 )}. In Case 1 below, we prove that
a dinucleotide comma-free code containing 2 complementary pairs of
dinucleotides can be mixed with a self-complementary trinucleotide
comma-free code of cardinality at most 14. Thus all mixed circular
codes containing one of the maximal codes (*) above have cardinality
at most 19.

Let us now consider self-complementary dinucleotide comma-free
codes of cardinality 4. It is clear due to the comma-freeness that
either 2 dinucleotides in the code must be self-complementary, i.e.
of the form 𝑁1𝑁2 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝑁1𝑁2), and the other 2 complementary to
each other, or none of the 4 is self-complementary, i.e. they form 2
complementary pairs. Thus a self-complementary mixed comma-free
code of cardinality 20 can only be the union of a self-complementary
dinucleotide comma-free code of cardinality 4 and a maximum (if
possible) self-complementary trinucleotide comma-free code.
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Fig. 10. The directed graph associated with the 4 codes in Case 1. For instance, for 𝑋1,
one has 𝑁1 = 𝐴, 𝑁2 = 𝐶, 𝑁3 = 𝐺 and 𝑁4 = 𝑇 .

Case 1: Let us consider first the case that a self-complementary din-
ucleotide comma-free code of cardinality 4 contains no self-
complementary dinucleotides. In this case, we obtain allover
four possibilities:

𝑋1 = {𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 }, 𝑋2 = {𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶},

𝑋3 = {𝐴𝐺,𝐶𝑇 , 𝐶𝐴, 𝑇𝐺}, 𝑋4 = {𝐺𝐴, 𝑇𝐶, 𝐶𝐴, 𝑇𝐺}.

We notice that the directed graphs associated with these 4
codes are all isomorphic to the graph depicted in Fig. 10. With-
out loss of generality, it thus suffices to consider the case of 𝑋1.
We also note that the graph associated with 𝑋1 contains 2
directed paths of length 2, namely 𝐴 → 𝐶 → 𝑇 and 𝐴 → 𝐺 →

𝑇 . The existence of these paths means that the trinucleotide
code 𝑋 mixed with 𝑋1 can neither intersect the set 2𝐴∪𝑇2,
nor contains trinucleotides of the form

𝑑𝐶, 𝐶𝑑; or 𝑑𝐺, 𝐺𝑑 (+)

where 𝑑 ∈ 2 is a self-complementary dinucleotide, as this
would creates a directed path of length 3 in the associated
graph. For instance, for 𝑑𝐶 (⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑐(𝑑𝐶) = 𝐺𝑑), one would obtain
the directed path 𝐴 → 𝐺 → 𝑑 → 𝐶.
Since no trinucleotide in 𝑋 can start with 𝑇 or ends with 𝐴,
there are allover 3 ⋅ 4 ⋅ 3 = 36 trinucleotides remaining. After
removing the 2 trivial trinucleotides and all trinucleotides
satisfying (+)

(𝐺𝐶𝐺,𝐺𝐺𝐶,𝐺𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐶,𝐶𝐴𝑇 , 𝐶𝐺𝐺,𝐺𝐶𝐶,𝐴𝑇𝐶,𝐴𝑇𝐺),

we still have 24 trinucleotides remaining. However, among
these there are 8 cyclically equivalent pairs (𝐶𝐴𝐺∕𝐴𝐺𝐶,𝐺𝐴𝐶∕
𝐴𝐶𝐺,𝐴𝐶𝐶∕𝐶𝐴𝐶,𝐶𝐶𝑇 ∕𝐶𝑇𝐶 and their anti-trinucleotides): at
most one member of each of these 8 pairs can be in 𝑋 (be-
cause 𝑋 is circular), so |𝑋| ≤ 16. The remaining 8 trinucleotides
are 𝐴𝐴𝐶,𝐴𝐴𝐺,𝐴𝐴𝑇 ,𝐴𝐶𝑇 and their anti-trinucleotides 𝐺𝑇𝑇 ,
𝐶𝑇𝑇 ,𝐴𝑇𝑇 ,𝐴𝐺𝑇 .
So 𝑋 has cardinality 16 if and only if it contains an element in
each of the 16 aforementioned conjugacy classes. We show that
this does not happen, and hence 𝑋 has cardinality at most 14.
Specifically, we prove that if 𝑋 intersects the conjugacy class
of 𝐶𝐶𝑇 , and hence also that of its complement 𝐴𝐺𝐺, then it
cannot intersect all remaining classes — and hence avoids at
least 2 of them. So suppose that 𝑋 intersects the conjugacy class
of 𝐶𝐶𝑇 . Then either 𝐶𝐶𝑇 or 𝐶𝑇𝐶 belongs to 𝑋 (as we already
know that 𝑇𝐶𝐶 ∉ 𝑋). If 𝐶𝐶𝑇 ∈ 𝑋 then, because 𝐴𝐶 ∈ 𝑋1, the
code 𝑋 cannot contain trinucleotides starting with 𝐶𝑇 , which
forbids 𝐶𝑇𝑇 and its complement 𝐴𝐴𝐺. Similarly, if 𝐶𝑇𝐶 ∈ 𝑋
then, because 𝐶𝑇 ∈ 𝑋1, the code 𝑋 cannot contain trinu-
cleotides ending with 𝐶𝑇 , which forbids 𝐴𝐶𝑇 and its comple-
ment 𝐴𝐺𝑇 . Consequently, 𝑋 has cardinality at most 14.

Case 2: Let us consider now the case that a self-complementary din-
ucleotide comma-free code of cardinality 4 contains 2 self-
complementary dinucleotides. In this case, we obtain allover
four possibilities:

𝑋1 = {𝐴𝐶,𝐺𝑇 ,𝐴𝑇 ,𝐺𝐶}, 𝑋2 = {𝐶𝐴, 𝑇𝐺, 𝑇𝐴, 𝐶𝐺},

Fig. 11. The directed graph associated with the 4 codes in Case 2. For instance, for 𝑋1,
one has 𝑁1 = 𝐴, 𝑁2 = 𝐺, 𝑁3 = 𝐶 and 𝑁4 = 𝑇 .

𝑋3 = {𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺}, 𝑋4 = {𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶}.

Let us point out that, similarly as in Case 1, the directed graphs
associated with these 4 codes are isomorphic, this times to the
directed graph depicted in Fig. 11. Without loss of generality,
it thus suffices to consider the case of 𝑋1.
We first note that 𝑐(𝜋1(𝑋1)) = 𝜋2(𝑋1), in particular 𝜋1(𝑋1) ∩
𝜋2(𝑋1) = ∅. Furthermore we observe that the trinucleotide
code, being self-complementarity, must be contained in 𝜋1(𝑋1)
𝜋2(𝑋1). Indeed, suppose that the trinucleotide code con-
tains 𝛼𝑑 with 𝛼 ∈ 𝜋2(𝑋1) = {𝐶, 𝑇 } and 𝑑 ∈ 2. Being self-
complementary, the trinucleotide code must contain ⃖⃖ ⃖⃖⃖⃖⃖𝑐(𝑑)𝑐(𝛼).
In addition, 𝑋1 contains the self-complementary dinucleotide
𝑐(𝛼)𝛼. As a result, the directed graph associated to the mixed
code would contain the directed path

⃖⃖ ⃖⃖⃖⃖⃖𝑐(𝑑) → 𝑐(𝛼) → 𝛼 → 𝑑.

We infer that

𝑋 = 𝜋1(𝑋1)𝜋2(𝑋1) = {𝑁1𝑁2𝑁3|𝑁1 ∈ {𝐴,𝐺},

𝑁3 ∈ {𝐶, 𝑇 }, 𝑁2 ∈ },

which is a maximal self-complementary comma-free code since

𝜋1(𝑋) ∩ 𝜋3(𝑋) = ∅, 𝜋1(𝑋) = 𝑐(𝜋3(𝑋))

[29]. By mixing the dinucleotide and the trinucleotide codes,
we obtain a mixed self-complementary comma-free code since
𝜋1(𝑋) ∩ 𝜋2(𝑋1) = ∅ = 𝜋3(𝑋) ∩ 𝜋1(𝑋1), hence no directed
path in the directed graph associated with 𝑋 can be extended
using an edge from the directed graph associated with 𝑋1.
There is therefore exactly one way to extend 𝑋1 into a self-
complementary mixed comma-free code of cardinality 20, and
consequently in total exactly 4 different maximum self-
complementary mixed comma-free codes. □

A.5. List of the 32 maximum self-complementary mixed circular codes of
dinucleotides and trinucleotides with cardinality 26

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,

𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,

𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐴𝐴𝐺,𝐶𝑇𝑇 ,

𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶,

𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},
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{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 ,𝐺𝐶, 𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐺𝐴, 𝑇𝐶𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐺𝐴, 𝑇𝐶𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶,𝐴𝑇 ,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐺𝐴, 𝑇𝐶𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶, 𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐴𝐶,𝐺𝑇 ,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 ,𝐴𝑇 , 𝐶𝐺,𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,

𝐴𝑇𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 , 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 , 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 , 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝐺𝐴, 𝑇𝐶𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 , 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 , 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐴𝐺,𝐶𝑇 , 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴,𝐴𝐶𝐶,𝐺𝐺𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝐺𝐴, 𝑇𝐶𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐴𝐴𝐺,𝐶𝑇𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴, 𝐶𝐺,𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺,𝐴𝐺𝐺,𝐶𝐶𝑇 , 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴, 𝐶𝐺,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐴, 𝑇𝐴𝐺,

𝐶𝐴𝐺,𝐶𝑇𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐶𝐶𝐺,𝐶𝐺𝐺,𝐶𝑇𝐶,𝐺𝐴𝐺},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶, 𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶, 𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶, 𝑇𝐴𝐴,

𝑇 𝑇𝐴,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶},

{𝐶𝐴, 𝑇𝐺,𝐺𝐴, 𝑇𝐶, 𝑇𝐴,𝐺𝐶,𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 , 𝑇𝐴𝐴,

𝑇 𝑇𝐴, 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶,𝐺𝐶𝐴, 𝑇𝐺𝐶,

𝐺𝐺𝐴, 𝑇𝐶𝐶,𝐺𝑇𝐴, 𝑇𝐴𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴,𝐺𝐶𝐶,𝐺𝐺𝐶}.
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