Graph Algorithms

DM

Consignes Tous les résultats du cours et des TD peuvent être utilisés, en répétant leur énoncé avec une référence explicite (e.g. "Tout graphe G est ($\Delta(G)$ +1)-colorable [cours, Chapitre 2]."). Les échanges d'idées entre étudiants sont autorisés, mais il doit y avoir un rendu distinct par étudiant. Une rédaction identique entre deux copies sera considérée comme tricherie, et vaudra 0 sur la partie concernée pour les deux.

1 A consequence of Brooks' Theorem for triangle-free graphs

The goal of this exercice is to prove the following theorem. **Theorem 1** Let G be a triangle-free graph (so $\omega(G) = 2$) of maximum degree Δ . Then

$$\chi(G) \le 3 \left\lceil \frac{\Delta(G) + 1}{4} \right\rceil.$$

Let G be a triangle-free graph. Set $k := \left\lceil \frac{\Delta(G)+1}{4} \right\rceil$. Let (V_1, \ldots, V_k) be a partition of V(G) that minimises the number of internal edges (i.e. the number of edges uv such that $u, v \in V_i$ for some $1 \le i \le k$).

- 1. Show that $\Delta(G[V_i]) \leq 3$, for every $1 \leq i \leq k$. 2 pts
- 2. Show that $\chi(G) \leq 3k$, with the help of Brooks' theorem.
- 3. Using the above, write an algorithm that computes a proper 3k-colouring of G. What is its complexity? 3 pts

2 List colouring

Given a graph G, a list assignment of G is a function $L: V(G) \to 2^{\mathbb{N}}$. If |L(v)| = k for all $v \in V(G)$, we say that L is a k-list assignment of G. The elements in $\bigcup_{v \in V(G)} L(v)$ are the colours of L, and L(v) is the list of colours allowed for each vertex $v \in V(G)$. A proper L-colouring of G is a proper colouring c of G such that $c(v) \in L(v)$ for every vertex $v \in V(G)$ (every vertex gets a colour from its list). In particular, a proper k-colouring of G is a proper L-colouring with $L(v) = \{1, \ldots, k\}$ for all $v \in V(G)$.

The minimum k such that G is L-colourable for every k-list assignment L of G is the *list-chromatic number* of G, denoted $\chi_{\ell}(G)$. The goal of this exercise is to study some properties of list colourings.

- 1. Given a cycle C, and a 2-list-assignment L of C, show that C is not L-colourable if and only if C is odd and all lists are the same.
- 2. Let $n = \binom{2k-1}{k}$ for some $k \ge 1$, and let G = (U, V, E) be the complete bipartite graph $K_{n,n}$ (i.e. $E = \{uv : u \in U, v \in V\}$). Let L be a list assignment of G such that, for every subset X of $\{1, \ldots, 2k-1\}$ of cardinality k, there exists $u \in U$ and $v \in V$ such that L(u) = L(v) = X. Show that G is not L-colourable. 1.5 pt Advice: Consider the cases k = 1 and k = 2 first, then try to generalise the result.
- 3. The problem (2,3)-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment L where all lists have size 2 or 3, is L-colourable. Prove that (2,3)-LIST-COLOUR is NP-complete on the class of bipartite graphs. The reduction is from 3-SAT.
 3 pts

Hint: Consider the incidence graph of the literals and the clauses of a 3-SAT instance.

- 4. Let G be a complete graph, and L a k-list-assignment of G such that each colour appears in at most k lists. Show that G is L-colourable.
 Pint: Reduce the problem of finding a proper L-colouring of G to that of finding a specific matching in a bipartite graph, and use Hall's Theorem.
- Prove that χ_ℓ(G) ≤ δ*(G) + 1 for every graph G.
 Hint: Adapt the Greedy Colouring algorithm.

2 pts

1.5 pt

1 pt

3 Degree choosability

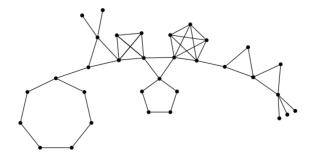


Figure 1: A (connected) Gallai forest.

A graph G is a Gallai forest if every block of G (i.e. every maximal 2-connected subgraph of G) is either a clique or an odd cycle. A graph G is degree-choosable if it is L-colourable for every list assignment $L: V(G) \to 2^{\mathbb{N}}$ with $|L(v)| = \deg(v)$ for every vertex $v \in V(G)$. The goal of this exercise is to prove the following generalisation of Brooks' theorem.

Theorem 2 For every graph G, either G is a Gallai forest, or G is degree-choosable.

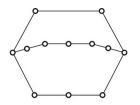


Figure 2: An example of a Theta-graph.

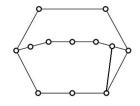


Figure 3: This is not a Theta-graph.

A Theta-graph is the union of three internally disjoint paths with the same extremities. Equivalently, it is a connected graph with degree sequence $3, 3, 2, \ldots, 2$.

- 1. Show that every Theta-graph is degree-choosable.
- 2. Let G be a 2-connected graph that is neither complete nor a cycle. Let us show that G contains a Theta-graph as an **induced** subgraph. Let u, v be two vertices at distance 2 in G, and let $x \in N(u) \cap N(v)$. Let P be a shortest path from u to v in $G \setminus x$, and let C be the cycle formed by P + x.
 - a) If C contains at least one chord, show that there exists a subset $X \subseteq V(C)$ such that G[X] is a Thetagraph.
 - b) If C contains no chord, then C does not cover all vertices in G. Let y ∉ V(C) be a neighbour of some vertex a ∈ V(C), and let Q be a shortest path from y to V(C) \ {a} in G \ a. Show that there exists a subset X ⊆ V(C) ∪ V(Q) such that G[X] is a Theta-graph.
- 3. Let G be a 2-connected graph that is neither complete nor a cycle, and L: V(G) → 2^N a list assignment of G with |L(v)| = deg(v) for every v ∈ V(G). Show that there exists an ordering on V(G) such that one can compute a proper L-colouring of G greedily by colouring the vertices in that order.
 2 pts Hint: Colour some Theta-subgraph last.
- 4. If G is connected, show that G is degree-choosable if one of its blocks is.
- 5. Write an algorithm that computes a proper *L*-colouring of a graph *G* whenever *G* is not a Gallai forest, and $|L(v)| = \deg(v)$ for every vertex $v \in V(G)$. What is its complexity? 3 pts

1.5 pt

1 pt

1.5 pt

2 pts