
Graph Algorithms — Home assignment

1 A consequence of Brooks’ Theorem for triangle-free graphs

The goal of this exercice is to prove the following theorem.

Theorem 1 Let G be a graph of clique number ω(G) ≤ 3 and of maximum degree ∆. Then

χ(G) ≤ 3

⌈
∆+ 1

4

⌉
.

Let G be such a graph. Set k :=
⌈
∆+1
4

⌉
. Let (V1, . . . , Vk) be a partition of V (G) that minimises the number of

internal edges (i.e. the number of edges uv such that u, v ∈ Vi for some 1 ≤ i ≤ k).

1. Show that ∆(G[Vi]) ≤ 3, for every 1 ≤ i ≤ k.

Assume for the sake of contradiction that some vertex v ∈ Vi has degree at least 4 in G[Vi]. Let dj be the
degree of v in G[Vj ], for every j ∈ [k]. Then

∑
j∈[k] dj = degG(v) ≤ ∆. By the pigeonhole principle,

there exists j such that dj ≤ ∆/k < 4. Then, by moving v from Vi to Vj , we obtain a new partition with
di − dj > 0 fewer internal edges, a contradiction.

2. Show that χ(G) ≤ 3k, with the help of Brooks’ theorem.

Every graph G[Vi] has maximum degree at most 3 and clique number at most 3, so in particular none of its
connected component is a copy of K4. We conclude by Brooks’ Theorem that they are all 3-colourable. We
introduce three distinct colours to properly colour each of them. Since the colours between G[Vi] and G[Vj ]
are distinct when i ̸= j, there is no conflict on the external edges by taking the union of those colourings;
this yields a proper 3k-colouring of G.

3. Using the above, write an algorithm that computes a proper 3k-colouring of G. What is its complexity?

We use the algorithm Brooks defined in [TD3, Q1.2]. This algorithm takes a connected graph G as an
input, and returns a ∆(G)-colouring if G is not a complete graph nor an odd cycle, in time O(|E(G)|).
We extend it so that it can take as input a non-connected graph of maximum degree at most 3 by applying
Brooks on each connected component of maximum degree 3, and the Greedy Colouring Algorithm on each
connected component of maximum degree ≤ 2. This returns a proper 3-colouring in time O(m), where m is
the number of edges.

Algorithm 1: Colouring
Data: G: graph with m edges
V1 ← V (G)
V2, . . . , Vk ← ∅
while ∃i ∈ [k],∃v ∈ Vi, degG[Vi](v) > 3 do

Move v to the part Vj that contains the least number of neighbours of v.
end
for i ∈ [k] do

ci ← Brooks(G[Vi])
end
return

⋃
i∈[k] ci

The While loop is repeated at most m times, since the number of internal edges decreases by at least 1 at
each iteration. Indeed, the same argument as that of Question 1 ensures that the degree of v in Vj is at most
3.

1



Using a bucket queue similar to the one described in [TD2, Exercise 1.1], we can do the operations in each
iteration of the While loop in time O(∆). So the total complexity of the While loop is O(m∆). The
complexity of each iteration of the For loop is O(|E(G[Vi])|) = O(|Vi|), so the total complexity of the For
loop is O(|V (G)|). We conclude that the total complexity of the algorithm is O(m∆) = O(n∆2), where
n = |V (G)|.

2 List colouring

Given a graph G, a list assignment of G is a function L : V (G)→ 2N. If |L(v)| = k for all v ∈ V (G), we say that
L is a k-list assignment of G. The elements in

⋃
v∈V (G) L(v) are the colours of L, and L(v) is the list of colours

allowed for each vertex v ∈ V (G). A proper L-colouring of G is a proper colouring c of G such that c(v) ∈ L(v)
for every vertex v ∈ V (G) (every vertex gets a colour from its list). In particular, a proper k-colouring of G is a
proper L-colouring with L(v) = {1, . . . , k} for all v ∈ V (G).

The minimum k such that G is L-colourable for every k-list assignment L of G is the list-chromatic number of
G, denoted χℓ(G). The goal of this exercise is to study some properties of list colourings.

1. Given a cycle C, and a 2-list-assignment L of C, show that C is not L-colourable if and only if C is odd and
all lists are the same.

We first note that for every 2-list-assignment L of a path P = x1, . . . , xn, P is greedily L-colourable by
colouring the vertices in the order of the path, since at each step i there is at most one colour from the list
L(vi) which is forbidden for vi.

Let C be a cycle, and L a 2-list assignment where not all the lists are the same. In particular, there exist
two consecutive vertices u, v on C such that L(u) ̸= L(v). Let x ∈ L(u) \ L(v), and set c(u) := x. Then,
colour greedily the path C \ uv in the order of the path, by ending in v. The colour given for v is necessarily
different from x, hence this returns a proper L-colouring of C.

If now L is a 2-list assignment where all lists are the same, then C is L-colourable if and only if C is
2-colourable, so if and only if C is an even cycle.

2. Let n =
(
2k−1
k

)
for some k ≥ 1, and let G = (U, V,E) be the complete bipartite graph Kn,n (i.e. E =

{uv : u ∈ U, v ∈ V }). Let L be a list assignment of G such that, for every subset X of {1, . . . , 2k − 1} of
cardinality k, there exists u ∈ U and v ∈ V such that L(u) = L(v) = X . Show that G is not L-colourable.

Assume for the sake of contradiction that there exists a proper L-colouring c of G. We first show that at
least k different colours appear in U . Indeed, assume otherwise that the set of colours c(U) has size at most
k−1, then there exist k different colours that do not appear in U , and by construction there is a vertex u ∈ U
whose list consist exactly of these k colours, a contradiction. By symmetry, the same holds for V . Since
there are only 2k − 1 different colours, it means that some colour must appear both in U and in V . This
yields a conflict since all edges are present between U and V , a contradiction.

3. Prove that (2, 3)-LIST-COLOUR is NP-complete on the class of bipartite graphs. The reduction is from
3-SAT.

The problem (2, 3)-LIST-COLOUR is a decision problem, and if the answer is positive then a proper L-
colouring of G is a certificate that can be checked in time O(m) by enumerating all the edges and checking
that they induce no conflict for c. So the problem is in NP.

Let X = C1 ∧ · · · ∧ Cn be an instance of 3-SAT, and let x1, . . . , xm the boolean variables of that instance.
We construct a bipartite graph GX = (U, V,E), where each vertex in U represents one of the clauses, each
vertex in V represents one of the boolean variables, and there is an edge uv ∈ U × V whenever the variable
represented by v appears in the clause represented by u. For every vertex u ∈ U representing a clause C, we
let L(u) be the set of literals of the clause C, and for every vertex v ∈ V representing the boolean variable
xi, we let L(v) := [xi, xi] (using an implicit bijection between the set of literals and [2m]).

2



If the graph GX has a proper L-colouring c, we define the truth assignment ϕ by ϕ(xi) := True if c(v) = xi
for the vertex v representing the variable xi, and ϕ(xi) := False otherwise. For every vertex u representing
a clause C, the colour c(u) represents a literal t that is true by ϕ, since the vertex v representing the
corresponding boolean variable must be coloured with c(v) = t. We conclude that every clause C is satisfied
by ϕ, hence X is satisfiable.

Conversely, assume that there exists a truth assignment ϕ that satisfies X . For every vertex v ∈ V representing
the variable xi, let c(v) := xi if ϕ(xi) = True, and c(v) := xi otherwise. For every vertex u representing a
clause C, there exists a literal t of C that is true, and we let c(u) := t. Then it is straightforward that c is a
proper L-colouring of GX .

We conclude that indeed 3-SAT reduces polynomially to (2,3)-LIST-COLOUR, hence (2,3)-LIST-COLOUR

is NP-complete.

4. Prove that 2-LIST-COLOUR is in P.

Let G be a graph, and L : V (G) →
(N
2

)
a 2-list assignment of G. Let us construct an instance X of 2-SAT

that is satisfiable iff G is L-colourable.

To that end, we construct for every vertex v ∈ V (G) and every colour c ∈ L(v) the boolean variable xv,c,
that will be true if v is coloured with c and false otherwise. To force each vertex v to be coloured with a
vertex from its list L(v) = {c1, c2}, we add to X the clause xv,c1 ∨ xv,c2 . To forbid a conflict on each edge
uv ∈ E(G), we add to X the clauses xu,c ∨ xv,c for every c ∈ L(u) ∩ L(v).

Then G is L-colourable iff X is satisfiable. Indeed, if there is a proper L-colouring ϕ of G, then setting xv,c
to true whenever ϕ(v) = c and to false otherwise yields a valuation that satisfies X . Conversely, if X is
satisfiable, then each clause xv,c1 ∨ xv,c2 is satisfied, hence xv,ci must be true for some i ∈ {1, 2}. We then
set ϕ(v) := ci, and we claim that this is a proper L-colouring of G. For each vertex v ∈ V (G), the fact that
ϕ(v) ∈ L(v) follows from the fact that L(v) = {c1, c2}, so ϕ is indeed an L-colouring. The fact that ϕ is
proper is ensured by the clauses of the form xu,c ∨ xv,c that prevent two adjacent vertex to share the same
colour.

It is clear that |X| = O(|G|), so we have just described a polynomial reduction from 2-LIST-COLOUR to
2-SAT. Since 2-SAT is in P, we infer that 2-LIST-COLOUR is also in P, as desired.

5. Prove that χℓ(G) ≤ δ∗(G) + 1 for every graph G.

We extend the Greedy Colouring Algorithm so that it can be applied to L-colourings.

Algorithm 2: Greedy Colouring Algorithm
Data: G: d-degenerate graph with reverse degeneracy ordering V (G) = {v1, . . . , vn}
L: (d+ 1)-list assignment of G

Result: c: a proper L-colouring of G
for i from 1 to n do

c(vi)← minL(vi) \ c(N(vi))
end
return c

Let us prove that Algorithm 2 is correct. Let N−(vi) := {vj ∈ N(vi) : j < i} be the set of neighbours
of vi with a lower index, for all i ∈ [n]. By the property of a reverse degeneracy ordering of G, we have
|N−(vi)| ≤ d for every i ∈ [n]. We note that at step i of the for loop in Algorithm 2, only the vertices with
index lower than i are coloured. Hence, at step i, |c(N(vi))| ≤ |N−(vi)| ≤ d. Since |L(vi)| = d + 1, we
conclude that L(vi) \ c(N(vi)) is non-empty, and so that c(vi) is well-defined.

We have proved that Algorithm 2 correctly constructs a proper L-colouring of G under the assumption that
G is d-degenerate and L is any (d + 1)-list assignment of G. This proves that χℓ(G) ≤ δ∗(G) + 1. We

3



note moreover that one can implement Algorithm 2 with a time complexity of the form O(
∑

i deg(vi)) =
O(|E(G)|).

3 A polytime algorithm for solving 3-COLOUR in dense graphs

In this exercise, G is a graph on n vertices. We say that G is dense if δ(G) ≥ n/2.

1. A dominating set of G is a set of vertices D ⊆ V (G) such that NG[D] = V (G) (every vertex v ∈ V (G) \D
has a neighbour in D). We denote γ(G) the minimum size of a dominating set of G. We will show that the
following greedy algorithm returns a dominating set of G of size at most log2 n+ 1 when G is dense.

Algorithm 3: Greedy Dominating Set
Data: G: graph
Result: D: dominating set of G
V0 ← V (G), i← 0
while Vi ̸= ∅ do

vi ← vertex of V (G) with maximum degree in Vi

Vi+1 ← Vi \N [vi]
i← i+ 1

end
return {v0, . . . , vi}

(a) Let H = (X,Y,E) be a bipartite graph. Show that |X| ad(X) = |Y | ad(Y ).
We have

|X| ad(X) =
∑
x∈X

deg(x) =
∑
x∈X

∑
e∈E(H)

1x∈e =
∑

e∈E(H)

∑
x∈X

1x∈e =
∑

e∈E(H)

1 = |E(H)|.

Likewise,
|Y | ad(Y ) = |E(H)|.

The conclusion follows.
(b) Assume that G is dense. Show that, at each iteration of the loop, the degree of vi in Vi is at least |Vi|/2.

If there is a vertex u ∈ Vi of degree at least |Vi|/2 in Vi, we are done, so we assume that this is not the
case.
Let H be the bipartite subgraph of G induced by the cut (Vi, Vi). For every u ∈ Vi we have

degH(u) = degG(u)− degVi
(u) ≥ δ(G)− |Vi|

2
≥ n

2
− |Vi|

2
.

By (1a), we have

adH(Vi) =
|Vi|
|Vi|

adH(Vi) ≥
|Vi|

n− |Vi|

(
n

2
− |Vi|

2

)
=
|Vi|
2

.

In particular, there exists a vertex u ∈ Vi of degree at least |Vi|/2 in H , as desired.
(c) Show that the algorithm returns a dominating set of G of size at most log2 n+ 1 when G is dense.

Let D := {v0, . . . , vi} be the returned set. By construction, at each step of the loop, Vi = V (G) \⋃i
j=0N [vi]. So when the loop terminates, since we have Vi = ∅, this means that N [D] = V (G), so D

is a dominating set of G.
By (1b), we have |Vi+1| ≤ |Vi|/2 for each i. So after ⌊log2 n⌋ iterations of the loop, we have |Vi| ≤ 1.
Hence after ⌊log2 n⌋+ 1 iterations, the loop terminates. This proves that |D| ≤ log2 n+ 1.

4



2. Let D be a dominating set of G, and ϕ : D → [3] a proper 3-coloring of G[D]. Show that it is possible to test
in polynomial time whether ϕ extends to a proper 3-colouring c of G (we must have c(x) = ϕ(u) for every
u ∈ D).

Hint: Show that this reduces to solving an instance of 2-LIST-COLOUR.

Let L be a list assignment of V (G) \D defined by

L(v) := {1, 2, 3} \ ϕ(ND(v)),

for every v ∈ V (G) \D. Since D is a dominating set, every v has a non-empty neighbourhood ND(v) in D,
hence |L(v)| ≤ 2 for every v.

• If L(v) = ∅ for some v, then we can conclude that ϕ does not extend to a proper 3-colouring of G.

• If |L(v)| = 2 for every v, then (G \ D,L) is an instance of 2-LIST-COLOUR which can be solved in
polynomial time, and which is equivalent to the problem of extending ϕ to G (easy proof omitted).

• Otherwise, we add to D each vertex v with L(v) = {x} for some colour x, and set ϕ(v) := x. We
update the list-assignment L as before, and repeat the above arguments. This process must terminate,
since each of its iterations increases the size of D, while we always have D ⊆ V (G).

3. Using the above, describe a polytime algorithm to solve 3-COLOUR on G when G is dense.

The algorithm can be described as follows.

Algorithm 4: 3-COLOUR

Data: G: dense graph on n vertices
Result: χ(G) ≤ 3?
D ← GreedyDominatingSet(G)
foreach ϕ: (possibly improper) 3-colouring of G[D] do

// We first check whether ϕ is proper
foreach uv ∈ E(G[D]) do

if ϕ(u) = ϕ(v) then
Continue to next value of ϕ

end
end
// Here we now that ϕ is proper, and we use result from previous question.
if ϕ extends to a proper 3-colouring of G then

return True
end

end
return False

The above algorithm runs in polynomial time. It begins by constructing greedily a dominating set D of G of
size at most 1+log2 n, as seen in Question 1. This can be done in time O(|G|) with a suitable implementation.

It then iterates over every 3-colouring of D; there are 3|D| ≤ 31+log2 n = O(nlog2 3) of them. Each iteration
has polynomial cost, so the overall complexity is polynomial.

The algorithm is correct, since if G has a proper 3-colouring c, then ϕ := c|D is a proper 3-colouring of
G[D] that extends to c. The algorithm will therefore return True when it iterates over that specific value of
ϕ. Otherwise, the algorithm returns False, as desired.

4. What can you say when δ(G) ≥ c · n for some absolute constant c > 0?

The same strategy can be used to solve 3-COLOUR in polytime. The only effect of changing c from 1/2 to
any other positive value lies in the computations of Question 1: the degree of vi in Vi is now at least c |Vi|,

5



and so the dominating set produced has size at most 1 + log1/(1−c) n. This size is still logarithmic, so the
complexity of Algorithm 4 remains polynomial.

6


	A consequence of Brooks' Theorem for triangle-free graphs
	List colouring
	A polytime algorithm for solving 3-Colour in dense graphs

