Graph Algorithms — Home Assignment

Rules Every result from the course and the exercise sessions may be used by making an explicit referrence to it
(e.g. “Every graph G is (A(G) + 1)-colourable [course, Chapter 2].”). Brainstorming between students is allowed,
but the redaction in each assignment must be distinct.

1 A consequence of Brooks’ Theorem

The goal of this exercice is to prove the following theorem.
Theorem 1 Letr G be a graph of clique number w(G) < 3 and maximum degree . Then
A+1

xX(G) <3 {4} .

Let G be a graph of maximum degree A. Set k := [%]. Let (Vi,..., V%) be a partition of V(&) that
minimises the number of internal edges (i.e. the number of edges uv such that u,v € V; for some 1 < i < k).

1. Show that A(G[V;]) < 3, forevery 1 <i < k.

2. Assume now that w(G) < 3, and show that this implies x(G) < 3k.

Hint. Use Brooks’ theorem.

3. Using the above, write a polytime algorithm that computes a proper 3k-colouring of G.

2 List colouring

Given a graph G, a list assignment of G is a function L: V(G) — 2N, If |L(v)| = k for all v € V(G), we say that
L is a k-list assignment of G. The elements in (J,cy () L(v) are the colours of L, and L(v) is the list of colours
allowed for each vertex v € V(G). A proper L-colouring of G is a proper colouring ¢ of G such that ¢(v) € L(v)
for every vertex v € V(G) (every vertex gets a colour from its list). In particular, a proper k-colouring of G is a
proper L-colouring with L(v) = {1,...,k} forallv € V(G).

The minimum £ such that G is L-colourable for every k-list assignment L of G is the list-chromatic number of
G, denoted x¢(G). The goal of this exercise is to study some properties of list colourings.

1. Given acycle C, and a 2-list-assignment L of C, show that C' is not L-colourable if and only if C' is odd and
all lists are the same.

2. Letn = (%k_l) for some k£ > 1, and let G = (U, V, E) be the complete bipartite graph K,, , (i.e. £ =
{uv : w € U,v € V}). Let L be a list assignment of G such that, for every subset X of {1,...,2k — 1} of
cardinality k, there exists u € U and v € V such that L(u) = L(v) = X. Show that G is not L-colourable.

Hint. Consider the cases £ = 1 and k& = 2 first, then try to generalise the result.
3. The problem (2, 3)-LiST-COLOUR consists in determining whether a graph G, given with a list-assignment

L where all lists have size 2 or 3, is L-colourable. Prove that (2, 3)-LIST-COLOUR is NP-complete on the
class of bipartite graphs. The reduction is from 3-SAT.

Hint. Consider the incidence graph of the literals and the clauses of a 3-SAT instance.

4. The problem 2-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment L
where all lists have size 2, is L-colourable. Prove that 2-LIST-COLOUR is in P.

Hint: You may show that 2-L1ST-COLOUR <p 2-SAT.

5. Prove that x,(G) < 0*(G) + 1 for every graph G.
Hint. Adapt the Greedy Colouring algorithm.

3 A polytime algorithm for solving 3-COLOUR in dense graphs
In this exercise, G is a graph on n vertices. We say that G is dense if §(G) > n/2.

1. A dominating set of G is a set of vertices D C V(G) such that N [D] = V(G) (every vertex v € V(G) \ D
has a neighbour in D). We denote (G) the minimum size of a dominating set of G. We will show that the
following greedy algorithm returns a dominating set of G of size at most logy 7 + 1 when G is dense.

Algorithm 1: Greedy algorithm

Data: G: graph

Result: D: dominating set of G

W+ V(G),i+0

while V; # () do
v; < vertex of V(G) with maximum degree in V;
Vig1 < Vi \ N[vj]
1< 1+1

end

return {vg, ..., v;}

(a) Let H = (X,Y, F) be a bipartite graph. Show that | X |ad(X) = |Y]ad(Y).
(b) Assume that G is dense. Show that, at each iteration of the loop, the degree of v; in Vj is at least |V;|/2.
Hint. Use the previous result on the bipartite subgraph of G induced by the cut (V;, V(G) \ V;).

(c) Show that the algorithm returns a dominating set of GG of size at most logs n 4+ 1 when G is dense.

2. Let D be a dominating set of G, and ¢: D — [3] a proper 3-coloring of G[D]. Show that it is possible to test
in polynomial time whether ¢ extends to a proper 3-colouring ¢ of G (we must have c¢(x) = ¢(u) for every
u € D).

Hint: Show that this reduces to solving an instance of 2-LIST-COLOUR.
3. Using the above, describe a polytime algorithm to solve 3-COLOUR on GG when G is dense.

4. What can you say when §(G) > ¢ - n for some absolute constant ¢ > 0?

	A consequence of Brooks' Theorem
	List colouring
	A polytime algorithm for solving 3-Colour in dense graphs

