
Graph Algorithms — Home Assignment

Rules Every result from the course and the exercise sessions may be used by making an explicit referrence to it
(e.g. “Every graph G is (∆(G)+ 1)-colourable [course, Chapter 2].”). Brainstorming between students is allowed,
but the redaction in each assignment must be distinct.

1 A consequence of Brooks’ Theorem

The goal of this exercice is to prove the following theorem.

Theorem 1 Let G be a graph of clique number ω(G) ≤ 3 and maximum degree ∆. Then

χ(G) ≤ 3

⌈
∆+ 1

4

⌉
.

Let G be a graph of maximum degree ∆. Set k :=
⌈
∆+1
4

⌉
. Let (V1, . . . , Vk) be a partition of V (G) that

minimises the number of internal edges (i.e. the number of edges uv such that u, v ∈ Vi for some 1 ≤ i ≤ k).

1. Show that ∆(G[Vi]) ≤ 3, for every 1 ≤ i ≤ k.

2. Assume now that ω(G) ≤ 3, and show that this implies χ(G) ≤ 3k.

Hint. Use Brooks’ theorem.

3. Using the above, write a polytime algorithm that computes a proper 3k-colouring of G.

2 List colouring

Given a graph G, a list assignment of G is a function L : V (G)→ 2N. If |L(v)| = k for all v ∈ V (G), we say that
L is a k-list assignment of G. The elements in

⋃
v∈V (G) L(v) are the colours of L, and L(v) is the list of colours

allowed for each vertex v ∈ V (G). A proper L-colouring of G is a proper colouring c of G such that c(v) ∈ L(v)
for every vertex v ∈ V (G) (every vertex gets a colour from its list). In particular, a proper k-colouring of G is a
proper L-colouring with L(v) = {1, . . . , k} for all v ∈ V (G).

The minimum k such that G is L-colourable for every k-list assignment L of G is the list-chromatic number of
G, denoted χℓ(G). The goal of this exercise is to study some properties of list colourings.

1. Given a cycle C, and a 2-list-assignment L of C, show that C is not L-colourable if and only if C is odd and
all lists are the same.

2. Let n =
(
2k−1
k

)
for some k ≥ 1, and let G = (U, V,E) be the complete bipartite graph Kn,n (i.e. E =

{uv : u ∈ U, v ∈ V }). Let L be a list assignment of G such that, for every subset X of {1, . . . , 2k − 1} of
cardinality k, there exists u ∈ U and v ∈ V such that L(u) = L(v) = X . Show that G is not L-colourable.

Hint. Consider the cases k = 1 and k = 2 first, then try to generalise the result.

3. The problem (2, 3)-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment
L where all lists have size 2 or 3, is L-colourable. Prove that (2, 3)-LIST-COLOUR is NP-complete on the
class of bipartite graphs. The reduction is from 3-SAT.

Hint. Consider the incidence graph of the literals and the clauses of a 3-SAT instance.

4. The problem 2-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment L
where all lists have size 2, is L-colourable. Prove that 2-LIST-COLOUR is in P.

Hint: You may show that 2-LIST-COLOUR ≤P 2-SAT.

5. Prove that χℓ(G) ≤ δ∗(G) + 1 for every graph G.

Hint. Adapt the Greedy Colouring algorithm.

1

3 A polytime algorithm for solving 3-COLOUR in dense graphs

In this exercise, G is a graph on n vertices. We say that G is dense if δ(G) ≥ n/2.

1. A dominating set of G is a set of vertices D ⊆ V (G) such that NG[D] = V (G) (every vertex v ∈ V (G) \D
has a neighbour in D). We denote γ(G) the minimum size of a dominating set of G. We will show that the
following greedy algorithm returns a dominating set of G of size at most log2 n+ 1 when G is dense.

Algorithm 1: Greedy algorithm
Data: G: graph
Result: D: dominating set of G
V0 ← V (G), i← 0
while Vi ̸= ∅ do

vi ← vertex of V (G) with maximum degree in Vi

Vi+1 ← Vi \N [vi]
i← i+ 1

end
return {v0, . . . , vi}

(a) Let H = (X,Y,E) be a bipartite graph. Show that |X| ad(X) = |Y | ad(Y).

(b) Assume that G is dense. Show that, at each iteration of the loop, the degree of vi in Vi is at least |Vi|/2.
Hint. Use the previous result on the bipartite subgraph of G induced by the cut (Vi, V (G) \ Vi).

(c) Show that the algorithm returns a dominating set of G of size at most log2 n+ 1 when G is dense.

2. Let D be a dominating set of G, and ϕ : D → [3] a proper 3-coloring of G[D]. Show that it is possible to test
in polynomial time whether ϕ extends to a proper 3-colouring c of G (we must have c(x) = ϕ(u) for every
u ∈ D).

Hint: Show that this reduces to solving an instance of 2-LIST-COLOUR.

3. Using the above, describe a polytime algorithm to solve 3-COLOUR on G when G is dense.

4. What can you say when δ(G) ≥ c · n for some absolute constant c > 0?

2

	A consequence of Brooks' Theorem
	List colouring
	A polytime algorithm for solving 3-Colour in dense graphs

