Graph Algorithms — Home Assignment

Rules Every result from the course and the exercise sessions may be used by making an explicit reference to it (e.g. "Every graph G is $(\Delta(G) + 1)$ -colourable [course, Chapter 2]."). Brainstorming between students is allowed, but the redaction in each assignment must be distinct.

1 A consequence of Brooks' Theorem

The goal of this exercice is to prove the following theorem.

Theorem 1 Let G be a graph of clique number $\omega(G) \leq 3$ and maximum degree Δ . Then

$$\chi(G) \le 3\left\lceil \frac{\Delta+1}{4} \right\rceil.$$

Let G be a graph of maximum degree Δ . Set $k := \left\lceil \frac{\Delta+1}{4} \right\rceil$. Let (V_1, \ldots, V_k) be a partition of V(G) that minimises the number of internal edges (i.e. the number of edges uv such that $u, v \in V_i$ for some $1 \le i \le k$).

- 1. Show that $\Delta(G[V_i]) \leq 3$, for every $1 \leq i \leq k$.
- 2. Assume now that $\omega(G) \leq 3$, and show that this implies $\chi(G) \leq 3k$. **Hint.** Use Brooks' theorem.
- 3. Using the above, write a polytime algorithm that computes a proper 3k-colouring of G.

2 List colouring

Given a graph G, a list assignment of G is a function $L: V(G) \to 2^{\mathbb{N}}$. If |L(v)| = k for all $v \in V(G)$, we say that L is a k-list assignment of G. The elements in $\bigcup_{v \in V(G)} L(v)$ are the colours of L, and L(v) is the list of colours allowed for each vertex $v \in V(G)$. A proper L-colouring of G is a proper colouring c of G such that $c(v) \in L(v)$ for every vertex $v \in V(G)$ (every vertex gets a colour from its list). In particular, a proper k-colouring of G is a proper L-colouring with $L(v) = \{1, \ldots, k\}$ for all $v \in V(G)$.

The minimum k such that G is L-colourable for every k-list assignment L of G is the *list-chromatic number* of G, denoted $\chi_{\ell}(G)$. The goal of this exercise is to study some properties of list colourings.

- 1. Given a cycle C, and a 2-list-assignment L of C, show that C is not L-colourable if and only if C is odd and all lists are the same.
- 2. Let $n = \binom{2k-1}{k}$ for some $k \ge 1$, and let G = (U, V, E) be the complete bipartite graph $K_{n,n}$ (i.e. $E = \{uv : u \in U, v \in V\}$). Let L be a list assignment of G such that, for every subset X of $\{1, \ldots, 2k-1\}$ of cardinality k, there exists $u \in U$ and $v \in V$ such that L(u) = L(v) = X. Show that G is not L-colourable. **Hint.** Consider the cases k = 1 and k = 2 first, then try to generalise the result.

3. The problem (2,3)-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment L where all lists have size 2 or 3, is L-colourable. Prove that (2,3)-LIST-COLOUR is NP-complete on the class of bipartite graphs. The reduction is from 3-SAT.

Hint. Consider the incidence graph of the literals and the clauses of a 3-SAT instance.

4. The problem 2-LIST-COLOUR consists in determining whether a graph G, given with a list-assignment L where all lists have size 2, is L-colourable. Prove that 2-LIST-COLOUR is in P.

Hint: You may show that 2-LIST-COLOUR \leq_P 2-SAT.

Prove that χ_ℓ(G) ≤ δ^{*}(G) + 1 for every graph G.
Hint. Adapt the Greedy Colouring algorithm.

3 A polytime algorithm for solving **3-COLOUR** in dense graphs

In this exercise, G is a graph on n vertices. We say that G is *dense* if $\delta(G) \ge n/2$.

1. A *dominating set* of G is a set of vertices $D \subseteq V(G)$ such that $N_G[D] = V(G)$ (every vertex $v \in V(G) \setminus D$ has a neighbour in D). We denote $\gamma(G)$ the minimum size of a dominating set of G. We will show that the following greedy algorithm returns a dominating set of G of size at most $\log_2 n + 1$ when G is dense.

Algorithm 1: Greedy algorithmData: G: graphResult: D: dominating set of G $V_0 \leftarrow V(G), i \leftarrow 0$ while $V_i \neq \emptyset$ do $v_i \leftarrow$ vertex of V(G) with maximum degree in V_i $V_{i+1} \leftarrow V_i \setminus N[v_i]$ $i \leftarrow i+1$ endreturn $\{v_0, \dots, v_i\}$

- (a) Let H = (X, Y, E) be a bipartite graph. Show that $|X| \operatorname{ad}(X) = |Y| \operatorname{ad}(Y)$.
- (b) Assume that G is dense. Show that, at each iteration of the loop, the degree of v_i in V_i is at least $|V_i|/2$. **Hint.** Use the previous result on the bipartite subgraph of G induced by the cut $(V_i, V(G) \setminus V_i)$.
- (c) Show that the algorithm returns a dominating set of G of size at most $\log_2 n + 1$ when G is dense.
- 2. Let D be a dominating set of G, and $\phi: D \to [3]$ a proper 3-coloring of G[D]. Show that it is possible to test in polynomial time whether ϕ extends to a proper 3-colouring c of G (we must have $c(x) = \phi(u)$ for every $u \in D$).

Hint: Show that this reduces to solving an instance of 2-LIST-COLOUR.

- 3. Using the above, describe a polytime algorithm to solve 3-COLOUR on G when G is dense.
- 4. What can you say when $\delta(G) \ge c \cdot n$ for some absolute constant c > 0?