Graph Algorithms
TD?2 : Graph colouring

1 Some properties of colouring

1. What is the chromatic number of an even cycle Coy, ? Of an odd cycle Copy1?

Let G = C), = v1,...,v, be an even cycle. Then x(G) > w(G) = 2. On the other hand, let
c(v;) =1 mod 2 for every i € [n]; cis a proper 2-colouring of G and hence x(G) = 2.

Let G = C,, = Vi,...,v, be an odd cycle. Let ¢(vy,) = 2, and ¢(v;) = i mod 2 for ¢ € [n — 1].
Then c is a proper 3-colouring of G, hence x(G) < 3. In order to prove that x(G) = 3, we need the
following intermediate result.

Claim1 LetH = P, = z1,...,x, be apath on n vertices, and c a proper 2-colouring of /7. Then
c(v;i) = c(vy) iff i = j mod 2 (this is proved easily by induction on |i — j|).

Let us assume for the sake of contradiction that there exists a proper 2-colouring c of G. In particular,
it induces a proper 2-colouring of the path G \ v,. By Claim 1, ¢(v1) # c(v,—1) since n is odd.
The two neighbours of v, in G have different colours, hence there is no available colour for v, a
contradiction.

2. Show that a graph is bipartite if and only if it contains no odd cycle.
If a graph G contains an odd cycle C, then x(G) > x(C) = 3, so G is not bipatrtite.

Reciprocally, let G be a graph that contains no odd cycle, and let 7" be a spanning tree of G. We
can find a proper 2-colouring ¢ of T' by rooting 7' in an arbitrary vertex » € V(G), and letting
c(v) = distr(v, ) mod 2 for every v € V(G). We now argue that ¢ is a proper colouring of H.
Assume otherwise that there exists an edge e = uv € F(H) such that ¢(u) = ¢(v). Since cis a proper
colouring of T', e ¢ E(T'). Let P be the path from u to v in 7', of length at least 2. Then P is properly
2-coloured by ¢, and since ¢(u) = ¢(v), Claim 1 implies that it contains on odd number of vertices.
Then P + uw is an odd cycle in G, a contradiction.

3. Show that for every graph G, there exists an order on the vertices such that the greedy algorithm
applied in this order returns a colouring with x(G) colours.

Let ¢ be a proper k-colouring of G, with k = x(G). Let v1, . .., v, be an ordering of V' (G) such that
c(v;) < ¢(vj) whenever i < j. Let us consider a run of the greedy colouring with that order on the
vertices, and let ¢* be the returned colouring. Let us prove by induction on ¢ that for each vertex v;,
c*(v;) < ¢(v;). When i = 1, this is obvious since vy is the first coloured vertex, with colour 1. When
i > 2, observe that for every neighbour v; of v; such that j < 4, it holds that c¢(v;) < c(v;) (since
c(vj) # c(v;), and so by the induction hypothesis c*(v;) < ¢(v;). So the colour ¢(v;) is available for
v; when the greedy algorithm assigns the colour ¢*(v;), and hence ¢*(v;) < c(v;).

4. Prove that x(G) > |V (G)|/a(G), for every graph G.

Let ¢ be a proper k-colouring of GG, with k = x(G), and let V1, ..., V}, be its colour classes. Each V;
is an independent set, hence |V;| < a(G). On the other hand, the sets (V;);c|x) partition V' (G), hence

n=|V(G)| = Zle |Vi| < k- a(G). We conclude that x(G) = k > n/a(G).



2 Interval graphs

Given a set of intervals Z = {Iy,...,I,} where I; = [a;,b;] for every 1 < i < n, the interval graph
associated with Z is the graph G = (V, E) where V' = {1,...,n} and ij € E iff I; and I; intersect, i.e.
a; < bjand a; < b;, forevery 1 <i,j < n.

1. Show that in an interval graph, there exists a simplicial vertex, i.e. a vertex v such that N[v] induces
a clique.

Let 79 be such that b;, is minimal; we show that 7 is a simplicial vertex. Let i1, i3 be two neighbours
of ¢. By definition, and since b;, is minimal, we have a;; < b;, < b;, and a;, < b, < b;,. So
i1i2 € E, whence G|N (v)] is complete.

2. Write an algorithm that computes an optimal proper colouring of an interval graph G. You may
assume that we know the intervals. The goal complexity is O(nlnn + m).

Let vy, ..., v, be an order obtained by successively extracting simplicial vertices from G. If we know
the intervals, we can simply order the vertices ¢ increasingly with respect to b;, in time O(nlnn)
(where n = |V(G)|). Otherwise, finding a simplicial vertex in G' can be done in time O(m) (where
m = |E(G)|), so construct that ordering can be done in time O(nm).

Run the greedy colouring algorithm on GG with the reverse order. When v is coloured, its coloured
neighbours form a clique (of size £ < w(G) — 1), and so its colour is at most k£ + 1 < w(G). In
the end, the number of colours introduced is at most w(G) < x(G). The complexity of the greedy
colouring algorithm is O(m), so the final complexity is either O(nInn + m) or O(nm).

3. We now want to write an algorithm which computes a proper colouring of any graph G, and uses x(G)
colours if G is an interval graph (so in particular we don’t know the intervals if this is the case). Show
that this can be done with the greedy colouring algorithm applied with a reverse degeneracy ordering.

We argue that in an interval graph G, §*(G) + 1 < w(G), which means that we can instead use a
degeneracy ordering, which can be computed in time O(m). Let H be a subgraph of G of such that
d(H) = 6*(G). Since H contains a simplicial vertex v, w(H) > deg(v)+1 > §(H)+1 > §*(G)+1.
The conclusion follows since w(G) > w(H).

3 Mycielski graphs

Given the graph M;, we decompose V' (M;) into V; = V(M;_;), V/ the set of copies, and w; the vertex
linked to V.

1. Let G be a k-chromatic graph, and c a proper k-colouring of G. Show that for every colour i, there
exists a vertex v € V(G) such that ¢(v) = i and all the other colours appear in its neighbourhood.

Let G be a graph of chromatic number k, and let ¢ be a proper k-colouring of G. Let us assume for
the sake of contradiction that, for some colour i, every vertex v such that ¢(v) = ¢ misses a colour
a, € [k] — i in its neighbourhood. Let us recolour every such vertex v with colour a,, thus creating
some colouring ¢’ of G. Since the recoloured vertices where the ones coloured with i by ¢, they form
an independent set, and so after the recolouring process the colours in their neighbourhood remain
unchanged. So ¢ is a proper colouring of G, and ¢’ uses colours only from [k] — i, so k — 1 different
ones. This contradicts the fact that x(G) = k.

2. Show that for all i > 2, the graph M; contains no triangle (i.e. a copy of the complete graph Ks3).



We prove the result by induction on ¢. The base case ¢ = 2 is trivial. Assume for the sake of
contradiction that M; contains a triangle T = (u1, ug, ug) for some i« > 3. Since the neighbourhood
of w; is an independent set, w; is contained in no triangle, hence w; ¢ T Since V; is an independent
set, [T'N V/| < 1. By the induction hypothesis, M;_; contains no triangle, hence T is not entirely
contained in V; = V(M;_1). We infer that 7' N Vi’ contains exactly one vertex, say u;. Let u} € V; be
the vertex of which uy is a copy, then ug, u3 € N(u}). So (u), ua,us) is a triangle entirely contained
in V;, a contradiction.

. Show by induction that x(M;) < i, forall i > 2.

We know already that x(M2) = x(K2) = 2. Let ¢ > 3, and let ¢ be a proper (i — 1)-colouring
of M;_1 obtained by induction. We let ¢;(v) = ¢;—1(v) for every v € V; = V(M;_1), and we let
¢i(v") == ¢;(v) for the copy v’ € V/ of v. Finally, we let ¢;(w;) := i. It is straightforward that ¢; is a
proper i-colouring of M;.

. Show that x(M;) > i, forall i > 2.

Assume for the sake of contradiction that there exists a proper (i — 1)-colouring ¢ of M;. In particular,
¢ induces a proper (i — 1)-colouring of M;_; on V;. By the result of Question 3.1, for every colour
J € [i — 1], there exists some vertex v; € V; such that ¢(v;) = j and ¢(Npy, , (v5)) = [¢ — 1]\ {7}
Let ’u} € V/ be the copy of v;. Then the colour of U;- is forced to be j, since Ny, , (v;) C Ny, (U;)
We conclude that ¢(V;) = [i — 1], so there remains no colour available for w;, a contradiction.
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