Graph Algorithms

TD2 : Graph colouring

1 Some properties of colouring

- 1. What is the chromatic number of an even cycle C_{2n} ? Of an odd cycle C_{2n+1} ?
- 2. Show that a graph is bipartite if and only if it contains no odd cycle.
- 3. Show that for every graph G, there exists an order on the vertices such that the greedy algorithm applied in this order returns a colouring with $\chi(G)$ colours.
- 4. Prove that $\chi(G) \ge |V(G)|/\alpha(G)$, for every graph G.

2 Interval graphs

Given a set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$ where $I_i = [a_i, b_i]$ for every $1 \leq i \leq n$, the interval graph associated with \mathcal{I} is the graph G = (V, E) where $V = \{1, \ldots, n\}$ and $ij \in E$ iff I_i and I_j intersect, i.e. $a_i \leq b_j$ and $a_j \leq b_i$, for every $1 \leq i, j \leq n$.

- 1. Show that in an interval graph, there exists a simplicial vertex, i.e. a vertex v such that N[v] induces a clique.
- 2. Write an algorithm that computes an optimal proper colouring of an interval graph G. You may assume that we know the intervals. The goal complexity is $O(n \ln n + m)$.
- 3. We now want to write an algorithm which computes a proper colouring of any graph G, and uses $\chi(G)$ colours if G is an interval graph (so in particular we don't know the intervals if this is the case). Show that this can be done with the greedy colouring algorithm applied with a reverse degeneracy ordering.

3 Mycielski graphs

In this exercise, we construct a family of triangle-free graphs (so of clique number at most 2) with increasing chromatic number. This shows that $\chi(G)$ can be arbitrarily larger than $\omega(G)$.

Given a graph G, the Mycielskian of G, denoted M(G), is obtained by adding a copy u_i of each vertex $v_i \in V(G)$, and adding a vertex w adjacent to all those copies. In the end, $N_{M(G)}(u_i) = \{w\} \cup N_G(v_i)$, and the vertices $\{u_i\}_i$ form an independent set.

Figure 1: The Mycielskian operation performed on C_5

The Mycielski graphs are a family of graphs $(M_i)_{i \ge 2}$, with $M_2 = K_2$, and $M_{i+1} = M(M_i)$ for every $i \ge 2$.

Figure 2: The first Mycielski graphs

- Let G be a k-chromatic graph, and c a proper k-colouring of G. Show that for every colour i, there exists a vertex v ∈ V(G) such that c(v) = i and all the other colours appear in its neighbourhood.
 Hint: Show that you can reduce the number of colours otherwise.
- 2. Show that for all $i \ge 2$, the graph M_i contains no triangle (i.e. a copy of the complete graph K_3).
- 3. Show by induction that $\chi(M_i) \leq i$, for all $i \geq 2$.
- 4. Show that $\chi(M_i) \ge i$, for all $i \ge 2$.

Hint: Use the result of Question 3.1.