
Graph Algorithms

TD3 : Complexity

Throughout this TD, given a graph G, n is its number of vertices, and m its number of edges.

1 Algorithmic complexity

1. Give an explicit implementation of a bucket queue so that one can compute a degeneracy ordering of
a given graph G in time O(m).

We need to represent the lists D[i] ith a structure that lets us insert and remove a given element in
constant time. To do so, we are going to emulate doubly linked lists for D[i]. For each element in
D[i], we need to now its successor and its predecessor in D[i]. We register these values in two
vectors succ and pred, of size n = |V (G)|, initialised to Void values, and in D[i] we register the
value of the first element.

Algorithm 1: Insert(x,dx)
if D[dx] = Void then

D[dx]← x
else

y ← D[dx]
pred[y]← x
succ[x]← y
D[dx]← x

end

Algorithm 2: Remove(x,dx)
z ← succ[x]
if pred[x] 6= Void then

y ← pred[x]
succ[y]← z
pred[z]← y

else
D[dx]← z

end
pred[x]← Void
succ[x]← Void

2. Write an algorithm in pseudo-code that computes a ∆(G)-colouring of a connected graph G that is
neither complete nor an odd cycle. It should have complexity O(m).

Let G be a connected graph of maximum degree ∆, that is neither complete nor an odd cycle. Let us
compute a rooted block-decomposition T of G in time O(|E(G)|).

• First assume that T contains at least 2 blocks. For every block B of G, the maximum degree of
G[B] is at most ∆− 1, so one can colour G[B] greedily in any order with ∆ colours. We simply
colour the blocks of G in a DFS ordering with respect to T , where the first coloured vertex in
each block is the articulation point that is shared with the parent block.

1

• Assume now otherwise thatG is 2-connected. In order to find an induced P3 with extremities a, b
such that G \ {a, b} is connected, we need to find a vertex x that is not universal, and compute a
block decomposition of G \ x. This can be done in time O(|E(G)|). The rest of the operations
can be done in time O(|E(G)|).

2 NP-completeness

In this exercise, we study the NP-completeness of the INDEPENDENTSET problem.

1. Reduction from SAT. Let C1, . . . , Cr be the clauses in an instance X of SAT. Construct a clique of
size |Ci| for every clause Ci, and label its vertices with the literals that appear in Ci. Add an edge
between every pair of vertices labelled with opposite literals x and x. This returns a graph GX . Show
that the instance X is satisfiable if and only if α(GX) ≥ r.

Let us assume thatX is satisfiable, and let φ be a truth assignment of its boolean variables that certifies
the satisfiability of X . For every clause Ci, let xi be its first literal such that φ(x) = True. We
construct a set I which consists of the vertex labelled xi from the clique associated to the clause Ci.
By construction, if there is an edge between two vertices in I , it lies between two cliques associated
to different clauses, and so it links vertices labelled with opposite literals x, x. But if a vertex v ∈ I is
labelled x, then φ(x) = True, so that contradicts the presence of an edge in I . We conclude that I is
an independent set, of size r, and so that α(GX) ≥ r.

Conversely, let us assume that α(GX) ≥ r, and let I be an independent set of size r in GX . For every
v ∈ I labelled with the literal x, we set φ(x) := True. Since I is an independent set, we never set a
True value to two opposite literals, so this yields a partial truth assignment of the boolean variables
of X . Each clause is satisfied with this partial truth assignment, hence X is satisfiable. This concludes
the proof.

2. Reduction from COLOR. Let G be a graph. Let k ·G be the graph obtained by replacing each vertex
v ∈ V (G) inGwith a cliqueW (v) of size k (denote its vertices v1, . . . , vk), and each edge uv ∈ E(G)
with the complete matching u1v1, . . . , ukvk. Show that χ(G) ≤ k if and only if α(k ·G) ≥ |V (G)|.
Assume that χ(G) ≤ k, and let c be a proper k-colouring of G. Let I ← ∅, and for every vertex
v ∈ V (G) with c(v) = i, we add the vertex vi ∈ V (k · G) to I . I is a subset of V (k · G) of
size |V (G)|, and we argue that I is independent. Indeed, if there exists and edge uivj ∈ G[I], then
uv ∈ E(G), and moreover c(u) = i = j = c(v); this contradicts the fact that c is proper. So
α(k ·G) ≥ |V (G)|.
Conversely, assume that α(k · G) ≥ |V (G)|, and let I be an independent set of k · G of size |V (G)|.
For each v ∈ V (G), since W (v) is a clique, it contains at most one vertex of I . Since moreover
V (k · G) =

⋃
v∈V (G) V (W (v)), then each clique W (v) contains exactly one vertex vi in I , and we

define c(v) := i. We argue that c is a proper k-colouring of G. Indeed, assume for the sake of
contradiction that c(u) = c(v) = i for some edge uv ∈ E(G). Then G[I] contains the edge uivi, a
contradiction. So χ(G) ≤ k.

3 VERTEXCOVER is FPT

The problem VERTEXCOVER consists in deciding if a graphG contains a vertex cover, that is a set of vertices
X such that each edge e ∈ E(G) has an extremity in X , of size at most k.

1. Prove that the algorithm is correct.

2

Algorithm 3: VertexCover
Data: G: graph, k: integer
Result: decides whether G has a vertex cover of size ≤ k
if E(G) = ∅ then

return True
end
if k = 0 then

return False
end
uv ← an edge from E(G)
G1 ← G \ u
G2 ← G \ v
return VertexCover(G1,k-1) ∨ VertexCover(G2,k-1)

2. Compute its complexity. In what parameter is VERTEXCOVER FPT?

3

	Algorithmic complexity
	NP-completeness
	VertexCover is FPT

