Graph Algorithms

TD3 : Complexity

Throughout this TD, given a graph G, n is its number of vertices, and m its number of edges.

1 Algorithmic complexity

1. Give an explicit implementation of a bucket queue so that one can compute a degeneracy ordering of a given graph G in time O(m).

We need to represent the lists D[i] ith a structure that lets us insert and remove a given element in constant time. To do so, we are going to emulate doubly linked lists for D[i]. For each element in D[i], we need to now its successor and its predecessor in D[i]. We register these values in two vectors succ and pred, of size n = |V(G)|, initialised to Void values, and in D[i] we register the value of the first element.

```
Algorithm 1: Insert (x, d_x)
```

 $\begin{array}{l} \text{if } D[d_x] = Void \text{ then} \\ \mid D[d_x] \leftarrow x \\ \text{else} \\ \quad y \leftarrow D[d_x] \\ \text{pred}[y] \leftarrow x \\ \text{succ}[x] \leftarrow y \\ D[d_x] \leftarrow x \\ \text{end} \end{array}$

Algorithm 2: Remove (x, d_x)

```
z \leftarrow \text{succ}[x]

if pred[x] \neq Void then

\begin{vmatrix} y \leftarrow \text{pred}[x] \\ \text{succ}[y] \leftarrow z \\ \text{pred}[z] \leftarrow y \end{vmatrix}

else

\begin{vmatrix} D[d_x] \leftarrow z \\ \text{end} \\ \text{pred}[x] \leftarrow Void \\ \text{succ}[x] \leftarrow Void \end{vmatrix}
```

2. Write an algorithm in pseudo-code that computes a $\Delta(G)$ -colouring of a connected graph G that is neither complete nor an odd cycle. It should have complexity O(m).

Let G be a connected graph of maximum degree Δ , that is neither complete nor an odd cycle. Let us compute a rooted block-decomposition T of G in time O(|E(G)|).

• First assume that T contains at least 2 blocks. For every block B of G, the maximum degree of G[B] is at most $\Delta - 1$, so one can colour G[B] greedily in any order with Δ colours. We simply colour the blocks of G in a DFS ordering with respect to T, where the first coloured vertex in each block is the articulation point that is shared with the parent block.

Assume now otherwise that G is 2-connected. In order to find an induced P₃ with extremities a, b such that G \ {a, b} is connected, we need to find a vertex x that is not universal, and compute a block decomposition of G \ x. This can be done in time O(|E(G)|). The rest of the operations can be done in time O(|E(G)|).

2 NP-completeness

In this exercise, we study the NP-completeness of the INDEPENDENTSET problem.

1. Reduction from SAT. Let C_1, \ldots, C_r be the clauses in an instance X of SAT. Construct a clique of size $|C_i|$ for every clause C_i , and label its vertices with the literals that appear in C_i . Add an edge between every pair of vertices labelled with opposite literals x and \overline{x} . This returns a graph G_X . Show that the instance X is satisfiable if and only if $\alpha(G_X) \ge r$.

Let us assume that X is satisfiable, and let ϕ be a truth assignment of its boolean variables that certifies the satisfiability of X. For every clause C_i , let x_i be its first literal such that $\phi(x) = \text{True}$. We construct a set I which consists of the vertex labelled x_i from the clique associated to the clause C_i . By construction, if there is an edge between two vertices in I, it lies between two cliques associated to different clauses, and so it links vertices labelled with opposite literals x, \overline{x} . But if a vertex $v \in I$ is labelled x, then $\phi(x) = \text{True}$, so that contradicts the presence of an edge in I. We conclude that I is an independent set, of size r, and so that $\alpha(G_X) \ge r$.

Conversely, let us assume that $\alpha(G_X) \ge r$, and let I be an independent set of size r in G_X . For every $v \in I$ labelled with the literal x, we set $\phi(x) := \text{True}$. Since I is an independent set, we never set a True value to two opposite literals, so this yields a partial truth assignment of the boolean variables of X. Each clause is satisfied with this partial truth assignment, hence X is satisfiable. This concludes the proof.

2. Reduction from COLOR. Let G be a graph. Let $k \cdot G$ be the graph obtained by replacing each vertex $v \in V(G)$ in G with a clique W(v) of size k (denote its vertices v_1, \ldots, v_k), and each edge $uv \in E(G)$ with the complete matching u_1v_1, \ldots, u_kv_k . Show that $\chi(G) \leq k$ if and only if $\alpha(k \cdot G) \geq |V(G)|$.

Assume that $\chi(G) \leq k$, and let c be a proper k-colouring of G. Let $I \leftarrow \emptyset$, and for every vertex $v \in V(G)$ with c(v) = i, we add the vertex $v_i \in V(k \cdot G)$ to I. I is a subset of $V(k \cdot G)$ of size |V(G)|, and we argue that I is independent. Indeed, if there exists and edge $u_i v_j \in G[I]$, then $uv \in E(G)$, and moreover c(u) = i = j = c(v); this contradicts the fact that c is proper. So $\alpha(k \cdot G) \geq |V(G)|$.

Conversely, assume that $\alpha(k \cdot G) \geq |V(G)|$, and let I be an independent set of $k \cdot G$ of size |V(G)|. For each $v \in V(G)$, since W(v) is a clique, it contains at most one vertex of I. Since moreover $V(k \cdot G) = \bigcup_{v \in V(G)} V(W(v))$, then each clique W(v) contains exactly one vertex v_i in I, and we define $c(v) \coloneqq i$. We argue that c is a proper k-colouring of G. Indeed, assume for the sake of contradiction that c(u) = c(v) = i for some edge $uv \in E(G)$. Then G[I] contains the edge $u_i v_i$, a contradiction. So $\chi(G) \leq k$.

3 VERTEXCOVER is FPT

The problem VERTEXCOVER consists in deciding if a graph G contains a vertex cover, that is a set of vertices X such that each edge $e \in E(G)$ has an extremity in X, of size at most k.

1. Prove that the algorithm is correct.

Algorithm 3: VertexCover

Data: G: graph, k: integer **Result:** decides whether G has a vertex cover of size $\leq k$ if $E(G) = \emptyset$ then \mid return True end if k = 0 then \mid return False end $uv \leftarrow$ an edge from E(G) $G_1 \leftarrow G \setminus u$ $G_2 \leftarrow G \setminus v$ return VertexCover ($G_1, k-1$) \lor VertexCover ($G_2, k-1$)

2. Compute its complexity. In what parameter is VERTEXCOVER FPT?