
Graph Algorithms

TD4 : Matchings

1 Consequences of Hall’s Theorem

Let H = (U, V,E) be a d-regular bipartite graph (all degrees in G equal d), for some d ≥ 1.

1. Show that G contains a perfect matching.

We first show that |U | = |V |. Indeed, each edge e has an extremity in U , and the other in V . Hence
d|U | =

∑
u∈U deg(u) counts each edge e ∈ E exactly once; likewise for V . So we have d|U | =

|E| = d|V |, which implies that |U | = |V |.
We now show that H satisfies Hall’s condition. Let X ⊆ U , and let Y = N(X). Let EX and EY be
the sets of edges incident toX and Y respectively. Note that every edge e ∈ EX is incident to Y , hence
EX ⊆ EY . Then, we have d|X| = |EX | ≤ |EY | = d|Y |, which implies that |X| ≤ |Y | = |N(X)|.
By Hall’s theorem, there exists a matching M that saturates U , and since |U | = |V |, M also saturates
V ; this is a perfect matching of H .

2. Show that χ′(H) = d.

We show this by induction on d. If d = 1, then H is a matching and so χ(H) = 1. Assume now
that d ≥ 2. We have seen that H contains a perfect matching M ; let H ′ := H \M . Then H ′ is
(d − 1)-regular, so by the induction hypothesis there exists a proper (d − 1)-edge-colouring c of H ′.
Set c(e) := d for every e ∈M ; this extends c into a proper d-edge-colouring of H .

2 Vertex Cover

Let G be a graph. We denote ν(G) the size of a maximum matching in G, and τ(G) the size of a minimum
vertex cover of G.

1. Show that ν(G) ≤ τ(G) ≤ 2ν(G).

Let M be a maximum matching of G, and let X be a minimum vertex cover of G. Since the edges
in M share no end-points, each of them is covered by a distinct vertex in X , hence τ(G) = |X| ≥
|M | = ν(G). Since M is maximum, every edge e ∈ E(G) is incident to at least one edge e′ ∈ M ,
hence to one extremity of e′. So V (M) is a vertex cover of G, of size 2|M | = 2ν(G).

2. Write a polynomial algorithm that returns a 2-approximation of a minimal vertex cover of G.

Algorithm 1: VertexCover2Approx
Data: G: graph on n vertices
M ← maximum matching of G (cost O(n2.5)
return V (M)

This algorithm returns a vertex cover of G, of size 2ν(G) ≤ 2τ(G), so at most twice the size of an
optimal solution.
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3 More on Kőnig’s Theorem

1. Prove that the following is an equivalent statement of Kőnig’s Theorem. For every bipartite graph H
on n vertices, α(H) = n− ν(H).

In order to show that both statements of Kőnig’s Theorem are equivelent, let us show that α(H) =
n− τ(H).

Let I be a maximum independent set of H , we first prove that I is a vertex cover of H , of size
n−α(H), which implies that τ(H) ≤ n−α(H). Assume otherwise that some edge e ∈ E(H) is not
covered by I . So both its extremities are in I , which contradicts that I is an independent set.

Let now X be a minimum vertex cover of H , we prove that X is an independent set of H , of size
n− τ(H), which implies that α(H) ≥ n− τ(H) and so that τ(H) ≥ n− α(H). Assume otherwise
that there is an edge e induced by X; this means that no extremity of e is in X , hence e is not covered
by X , a contradiction.

2. Write an algorithm that returns a maximum independent set of any given bipartite graph. We suppose
that we have access to an algorithm maxMatching that returns a maximum matching of any (bipartite)
input graph on n vertices in time O(n2.5).

We follow the procedure described in the proof of Kőnig’s Theorem in order to construct a minimum
vertex cover of H , given a maximum matching M .

Algorithm 2: MaxIndependentSet
Data: H = (X,Y,E): bipartite graph
M ← maximum matching of H
U ← X \ V (M)
R← U
while N(R) 6= ∅ do

A← N(R) (by construction, A ⊆ Y )
B ← NM (A) (by construction, B ⊆ X)
R← R ∪A ∪B

end
S ← (X \R) ∪ (Y ∩R) (S is a minimum vertex cover of H)
return V (H) \ S

The total complexity of the while loop is that of an exploration of the graph (through alternating paths),
so O(|E(H)|). The complexity of the algorithm is therefore dominated by that of finding a maximum
matching, hence O(n2.5).
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