
Input Similarity from the Neural Network Perspective

Guillaume Charpiat1 Nicolas Girard2 Loris Felardos1 Yuliya Tarabalka2,3

1 TAU team, Inria Saclay, LRI, Université Paris-Sud
2 Université Côte d’Azur, Inria Sophia-Antipolis

3 LuxCarta Technology
firstname.lastname@inria.fr

Abstract

We first exhibit a multimodal image registration task, for which a neural network
trained on a dataset with noisy labels reaches almost perfect accuracy, far beyond
noise variance. This surprising auto-denoising phenomenon can be explained as
a noise averaging effect over the labels of similar input examples. This effect
theoretically grows with the number of similar examples; the question is then to
define and estimate the similarity of examples.
We express a proper definition of similarity, from the neural network perspective,
i.e. we quantify how undissociable two inputs A and B are, taking a machine
learning viewpoint: how much a parameter variation designed to change the output
for A would impact the output for B as well?
We study the mathematical properties of this similarity measure, and show how to
use it on a trained network to estimate sample density, in low complexity, enabling
new types of statistical analysis for neural networks. We analyze data by retrieving
samples perceived as similar by the network, and are able to quantify the denoising
effect without requiring true labels. We also propose, during training, to enforce
that examples known to be similar should also be seen as similar by the network,
and notice speed-up training effects for certain datasets.

1 Motivation: Dataset self-denoising

In remote sensing imagery, data is abundant but noisy [17]. For instance RGB satellite images and
binary cadaster maps (delineating buildings) are numerous but badly aligned for various reasons (an-
notation mistakes, atmosphere disturbance, elevation variations...). In a recent preliminary work [7],
we tackled the task of automatically registering these two types of images together with neural
networks, considering as ground truth a dataset of hand-picked relatively-well-aligned areas [16], and
hoping the network would be able to learn from such a dataset of imperfect alignments. Learning
with noisy labels is indeed an active topic of research [24, 18, 15].

For this, we designed an iterative approach: train, then test on the training set and re-align it accord-
ingly; repeat (for 3 iterations). The results were surprisingly good, yielding far better alignments than
the ground truth it learned from, both qualitatively (Figure 1) and quantitatively (Figure 2, obtained
on manually-aligned data): the median registration error dropped from 18 pixels to 3.5 pixels, which
is the best score one could hope for, given intrinsic ambiguities in such registration task. To check
that this performance was not due to a subset of the training data that would be perfectly aligned,
we added noise to the ground truth and re-trained from it: the new results were about as good again
(dashed lines). Thus the network did learn almost perfectly just from noisy labels.

An explanation for this self-denoising phenomenon is proposed in [14] as follows. Let us consider a
regression task, with a L2 loss, and where true labels y were altered with i.i.d. noise ε of variance v.

Published (in a slightly different version) at NeurIPS 2019, Vancouver, Canada.

ar
X

iv
:2

10
2.

05
26

2v
1

 [
cs

.L
G

]
 1

0
Fe

b
20

21

Figure 1: Qualitative alignment results [7]
on a crop of bloomington22 from the Inria
dataset [16]. Red: initial dataset annota-
tions; blue: aligned annotations round 1;
green: aligned annotations round 2.

Figure 2: Accuracy cumulative distributions [7] mea-
sured with the manually-aligned annotations of bloom-
ington22 [16]. Read as: fraction of image pixels whose
registration error is less than threshold τ .

Suppose a same input x appears n times in the training set, thus with n different labels yi = y + εi.
The network can only output the same prediction for all these n cases (since the input is the same),
and the best option, considering the L2 loss, is to predict the average 1

n

∑
i yi, whose distance to the

true label y is O(v√
n

). Thus a denoising effect by a factor
√
n can be observed. However, the exact

same point x is not likely to appear several times in a dataset (with different labels). Rather, relatively
similar points may appear, and the amplitude of the self-denoising effect will be a function of their
number. Here, the similarity should reflect the neural network perception (similar inputs yield the
same output) and not an a priori norm chosen on the input space.

The purpose of this article is to express the notion of similarity from the network’s point of view.
We first define it, and study it mathematically, in Section 2, in the one-dimensional output case for
the sake of simplicity. Higher-dimensional outputs are dealt with in Section 3. We then compute,
in Section 4, the number of neighbors (i.e., of similar samples), and propose for this a very fast
estimator. This brings new tools to analyze already-trained networks. As they are differentiable and
fast to compute, they can be used during training as well, e.g., to enforce that given examples should
be perceived as similar by the network (c.f . Section 5). Finally, in Section 6, we apply the proposed
tools to analyze a network trained with noisy labels for a remote sensing image alignment task, and
formalize the self-denoising phenomenon, quantifying its effect, extending [14] to real datasets.

2 Similarity

2.1 Notions of similarities

The notion of similarity between data points is an important topic in the machine learning literature,
obviously in domains such as image retrieval, where images similar to a query have to be found;
but not only. For instance when training auto-encoders, the quality of the reconstruction is usually
quantified as the L2 norm between the input and output images. Such a similarity measure is however
questionable, as color comparison, performed pixel per pixel, is a poor estimate of human perception:
the L2 norm can vary a lot with transformations barely noticeable to the human eye such as small
translations or rotations (for instance on textures), and does not carry semantic information, i.e.
whether the same kind of objects are present in the image.

Therefore, so-called perceptual losses [12] were introduced to quantify image similarity: each image
is fed to a standard pre-trained network such as VGG, and the activations in a particular intermediate
layer are used as descriptors of the image [5, 6]. The distance between two images is then set as the
L2 norm between these activations. Such a distance carries implicitly semantic information, as the
VGG network was trained for image classification. However, the choice of the layer to consider is
arbitrary. In the ideal case, one would wish to combine the information from all layers, as some are
more abstract and some more detail-specific. But then the particular weights chosen to combine the
different layers would also be arbitrary. Would it be possible to get a canonical similarity measure,
well posed theoretically?

2

More importantly, the previous litterature does not consider the notion of input similarity from the
point of view of the neural network that is being used, but from the point of view of another one
(typically, VGG) which aims at imitating human perception. A notable exception [13] transposes
to machine learning the concept of influence functions in statistics [9]. The differences with our
definition of similarity might seem slight at first glance but they have important consequences:
first, making use of the loss (and of its gradient and its Hessian) in the similarity measure has the
issue that the expressed quantities are not intrinsic to the neural network but also depend on the
optimization criterion used during training, which is problematic in the case of noisy labels as, at
training convergence, the gradient of the loss with respect to the output points in random directions
(remaining label noise that the network is not able to overfit). Second, the inverse of the Hessian
appears in influence functions, while our definition makes use of gradients only. Another interesting
related work [25] expresses neural networks as a kernel between test point and training points. Once
again however the kernel definition relies on the training criterion.

As a supplementary motivation for this study, neural networks are black boxes difficult to interpret,
and showing which samples a network considers as similar would help to explain its decisions. Also,
the number of such similar examples would be a key element for confidence estimation at test time.

In this section we define a proper, intrinsic notion of similarity as seen by the network, relying on
how easily it can distinguish different inputs.

2.2 Similarity from the point of view of the parameterized family of functions

Let fθ be a parameterized function, typically a neural network already trained for some task, and x,x′

possible inputs, for instance from the training or test set. For the sake of simplicity, let us suppose in
a first step that fθ is real valued. To express the similarity between x and x′, as seen by the network,
one could compare the output values fθ(x) and fθ(x′). This is however not very informative, and a
same output might be obtained for different reasons.

Instead, we define similarity as the influence of x over x′, by quantifying how much an additional
training step for x would change the output for x′ as well. If x and x′ are very different from the
point of view of the neural network, changing fθ(x) will have little consequence on fθ(x′). Vice
versa, if they are very similar, changing fθ(x) will greatly affect fθ(x′) as well.

θ

f (x’)
θ

v

v’
f (x)

Figure 3: Moves in the space of out-
puts. We quantify the influence of a
data point x over another one x′ by
how much the tuning of parameters θ
to obtain a desired output change v for
fθ(x) will affect fθ(x′) as well.

Formally, if one wants to change the value of fθ(x) by a small quantity ε, one needs to update θ by
δθ = ε ∇θfθ(x)

‖∇θfθ(x)‖2 . Indeed, after the parameter update, the new value at x will be:

fθ+δθ(x) = fθ(x) +∇θfθ(x) · δθ +O(‖δθ‖2) = fθ(x) + ε+O(ε2).

This parameter change induces a value change at any other point x′ :

fθ+δθ(x
′) = fθ(x

′) +∇θfθ(x′) · δθ +O(‖δθ‖2) = fθ(x
′) + ε

∇θfθ(x′) · ∇θfθ(x)

‖∇θfθ(x)‖2
+O(ε2).

Therefore the kernel kNθ (x,x′) =
∇θfθ(x) · ∇θfθ(x′)
‖∇θfθ(x)‖2

represents the influence of x over x′: if one

wishes to change the output value fθ(x) by ε, then fθ(x′) will change by ε kNθ (x,x′). In particular,
if kNθ (x,x′) is high, then x and x′ are not distinguishable from the point of view of the network, as
any attempt to move fθ(x) will move fθ(x′) as well (see Fig. 3). We thus see kNθ (x,x′) as a measure
of similarity. Note however that kNθ (x,x′) is not symmetric.

3

Symmetric similarity: correlation Two symmetric kernels natural arise: the inner product:

kIθ(x,x′) = ∇θfθ(x) · ∇θfθ(x′) (1)

and its normalized version, the correlation:

kCθ (x,x′) =
∇θfθ(x)

‖∇θfθ(x)‖
· ∇θfθ(x

′)

‖∇θfθ(x′)‖
(2)

which has the advantage of being bounded (in [−1, 1]), thus expressing similarity in a usual meaning.

2.3 Properties for vanilla neural networks

Intuitively, inputs that are similar from the network perspective should produce similar outputs;
we can check that kCθ is a good similarity measure in this respect (all proofs are deferred to the
Appendix):

Theorem 1. For any real-valued neural network fθ whose last layer is a linear layer (without any
parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any
inputs x and x′,

∇θfθ(x) = ∇θfθ(x′) =⇒ fθ(x) = fθ(x
′) .

Corollary 1. Under the same assumptions, for any inputs x and x′,

kCθ (x,x′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) ,
hence kCθ (x,x′) = 1 =⇒ fθ(x) = fθ(x

′) .

Furthermore,

Theorem 2. For any real-valued neural network fθ without parameter sharing, if ∇θfθ(x) =
∇θfθ(x′) for two inputs x,x′, then all useful activities computed when processing x are equal to the
ones obtained when processing x′.

We name useful activities all activities ai(x) whose variation would have an impact on the output,
i.e. all the ones satisfying dfθ(x)

dai
6= 0. This condition is typically not satisfied when the activity is

negative and followed by a ReLU, or when it is multiplied by a 0 weight, or when all its contributions
to the output cancel one another (e.g., a sum of two neurons with opposite weights: fθ(x) =
σ(ai(x))− σ(ai(x))).

Link with the perceptual loss For a vanilla network without parameter sharing, the gradient
∇θfθ(x) is a list of coefficients ∇wji fθ(x) = dfθ(x)

dbj
ai(x), where wji is the parameter-factor that

multiplies the input activation ai(x) in neuron j, and of coefficients ∇bjfθ(x) = dfθ(x)
dbj

for neuron

biases, which we will consider as standard parameters bj = wj0 that act on a constant activation
a0(x) = 1, yielding∇wj0fθ(x) = dfθ(x)

dbj
a0(x). Thus the gradient∇θfθ(x) can be seen as a list of all

activation values ai(x) multiplied by the potential impact on the output fθ(x) of the neurons j using
them, i.e. dfθ(x)dbj

. Each activation appears in this list as many times as it is fed to different neurons.
The similarity between two inputs then rewrites:

kIθ(x,x′) =
∑

activities i

λi(x,x
′) ai(x) ai(x

′) where λi(x,x
′) =

∑
neuron j using ai

dfθ(x)

dbj

dfθ(x
′)

dbj

are data-dependent importance weights. Such weighting schemes on activation units naturally
arise when expressing intrinsic quantities; the use of natural gradients would bring invariance to
re-parameterization [19, 20]. On the other hand, the inner product related to the perceptual loss would
be ∑

activities i 6=0

λlayer(i) ai(x) ai(x
′)

for some arbitrary fixed layer-dependent weights λlayer(i).

4

2.4 Properties for parameter-sharing networks

When sharing weights, as in convolutional networks, the gradient ∇θfθ(x) is made of the same
coefficients (impact-weighted activations) but summed over shared parameters. Denoting by S(i) the
set of (neuron, input activity) pairs where the parameter wi is involved,

kIθ(x,x′) =
∑

params i

 ∑
(j,k)∈Si

ak(x)
dfθ(x)

dbj

 ∑
(j,k)∈Si

ak(x′)
dfθ(x

′)

dbj


Thus, in convolutional networks, kIθ similarity does not imply similarity of first layer activations
anymore, but only of their (impact-weighted) spatial average. More generally, any invariance
introduced by a weight sharing scheme in an architecture will be reflected in the similarity measure
kIθ , which is expected as kIθ was defined as the input similarity from the neural network perspective.

Note that this type of objects was recently studied from an optimization viewpoint under the name of
Neural Tangent Kernel [11, 2] in the infinite layer width limit.

3 Higher output dimension

Let us now study the more complex case where fθ(x) is a vector
(
f iθ(x)

)
i∈[1,d] in Rd with d > 1.

Under a mild hypothesis on the network (output expressivity), always satisfied unless specially
designed not to:
Theorem 3. The optimal parameter change δθ to push fθ(x) in a direction v ∈ Rd (with a force
ε ∈ R), i.e. such that fθ+δθ(x) − fθ(x) = εv, induces at any other point x′ the following output
variation:

fθ+δθ(x
′)− fθ(x′) = εKθ(x

′,x)Kθ(x,x)−1 v + O(ε2) (3)
where the d× d kernel matrix Kθ(x

′,x) is defined by Kij
θ (x′,x) = ∇θf iθ(x′) · ∇θf

j
θ (x).

The similarity kernel is now a matrix and not just a single value, as it describes the relation between
moves v ∈ Rd. Note that these matrices Kθ are only d× d where d is the output dimension. They
are thus generally small and easy to manipulate or inverse.

Normalized similarity matrix The unitless symmetrized, normalized version of the kernel (3) is:

KC
θ (x,x′) = Kθ(x,x)−1/2 Kθ(x,x

′) Kθ(x
′,x′)−1/2 . (4)

It has the following properties: its coefficients are bounded, in [−1, 1]; its trace is at most d; its
(Frobenius) norm is at most

√
d; self-similarity is identity: ∀x, KC

θ (x,x) = Id; the kernel is
symmetric, in the sense that KC

θ (x′,x) = KC
θ (x,x′)T .

Similarity in a single value To summarize the similarity matrix KC
θ (x,x′) into a single real value

in [−1, 1], we consider:
kCθ (x,x′) =

1

d
TrKC

θ (x,x′) . (5)

It can be shown indeed that if kCθ (x,x′) is close to 1, then KC
θ (x,x′) is close to Id, and reciprocally.

See Appendix C for more details and a discussion about the links between 1
d TrKC

θ (x,x′) and∥∥KC
θ (x,x′)− Id

∥∥
F

.

Metrics on output: rotation invariance Similarity in Rd might be richer than just estimating
distances in L2 norm. For instance, for our 2D image registration task, the network could be known
(or desired) to be equivariant to rotations. The similarity between two output variations v and v′ can
be made rotation-invariant by applying the rotation that best aligns v and v′ beforehand. This can
actually be easily computed in closed form and yields:

kC,rotθ (x,x′) =
1

2

√∥∥KC
θ (x,x′)

∥∥2
F

+ 2 detKC
θ (x,x′) .

Note that other metrics are possible in the output space. For instance, the loss metric quantifies the
norm of a move v by its impact on the loss dL(y)

dy

∣∣
fθ(x)

(v). It has a particular meaning though, is not
intrinsic, and is not always relevant, e.g. in the noisy label case seen in Section 1.

5

The case of classification tasks When the output of the network is a probability distribution
pθ,x(c), over a finite number of given classes c for example, it is natural from an information theoretic
point of view to rather consider f cθ (x) = − log pθ,x(c). This is actually the quantities computed in
the pre-softmax layer from which common practice directly computes the cross-entropy loss.

It turns out that the L2 norm of variations δf in this space naturally corresponds to the Fisher
information metric, which quantifies the impact of parameter variations δθ on the output probability
pθ,x, as KL(pθ,x||pθ+δθ,x). The matrices Kθ(x,x) =

(
∇θf cθ (x) · ∇θf c

′

θ (x)
)
c,c′

and Fθ,x =

Ec
[
∇θf cθ (x) ∇θf cθ (x)T

]
are indeed to each other what correlation is to covariance. Thus the

quantities defined in Equation (5) already take into account information geometry when applied to
the pre-softmax layer, and do not need supplementary metric adjustment.

Faster setup for classification tasks with many classes In a classification task in d classes with
large d, the computation of d× d matrices may be prohibitive. As a workaround, for a given input
training sample x, the classification task can be seen as a binary one (the right label cR vs. the other
ones), in which case the d outputs of the neural network can be accordingly combined in a single real
value. The 1D similarity measure can then be used to compare any training samples of the same class.

When making statistics on similarity values Ex′
[
kCθ (x,x′)

]
, another possible task binarization

approach is to sample an adversary class cA along with x′, and hence consider∇θf cRθ (x)−∇θf cAθ (x).
Both approaches will lead to similar results in Section 5.

4 Estimating density

In this section, we use similarity to estimate input neighborhoods and perform statistics on them.

4.1 Estimating the number of neighbors

Given a point x, how many samples x′ are similar to x according to the network? This can be
measured by computing kCθ (x,x′) for all x′ and picking the closest ones, i.e. e.g. the x′ such that
kCθ (x,x′) > 0.9. More generally, for any data point x, the histogram of the similarity kCθ (x,x′) over
all x′ in the dataset (or a representative subset thereof) can be drawn, and turned into an estimate of
the number of neighbors of x. To do this, several types of estimates are possible:

• hard-thresholding, for a given threshold τ ∈ [0, 1]: Nτ (x) =
∑

x′ 1kCθ (x,x′)>τ

• soft estimate: NS(x) =
∑

x′ k
C
θ (x,x′)

• less-soft positive-only estimate (α > 0): N+
α (x) =

∑
x′ 1kCθ (x,x′)>0 k

C
θ (x,x′)α

In practice we observe that kCθ is very rarely negative, and thus the soft estimate NS can be justified
as an average of the hard-thresholding estimate Nτ over all possible thresholds τ :∫ 1

τ=0

Nτ (x)dτ =
∑
x′

∫ 1

τ=0

1kCθ (x,x′)>τ dτ =
∑
x′

kCθ (x,x′) 1kCθ (x,x′)>0 = N+
1 (x) ' NS(x)

4.2 Low complexity of the soft estimate NS(x)

The soft estimate NS(x) is rewritable as:∑
x′

kCθ (x,x′) =
∑
x′

∇θfθ(x)

‖∇θfθ(x)‖
· ∇θfθ(x

′)

‖∇θfθ(x′)‖
=
∇θfθ(x)

‖∇θfθ(x)‖
· g with g =

∑
x′

∇θfθ(x′)
‖∇θfθ(x′)‖

and consequently NS(x) can be computed jointly for all x in linear time O(|D|p) in the dataset
size |D| and in the number of parameters p, in just two passes over the dataset, when the output
dimension is 1. For higher output dimensions d, a similar trick can be used and the complexity
becomes O(|D|d2p). For classification tasks with a large number d of classes, the complexity can be
reduced to O(|D|p) through an approximation consisting in binarizing the task (c.f . end of Section 3).

6

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (log)

3

4

5

6

7

Ne
ig

hb
or

 c
ou

nt
 (l

og
)

Avg of all measures across all samples

neighbors_soft
neighbors_less_soft_n_2
neighbors_less_soft_n_3
neighbors_less_soft_n_4
neighbors_hard_t_0.5
neighbors_hard_t_0.6
neighbors_hard_t_0.7
neighbors_hard_t_0.8
neighbors_hard_t_0.9
neighbors_hard_t_0.925
neighbors_hard_t_0.95
neighbors_hard_t_0.975
neighbors_hard_t_0.99

Figure 4: Density estimation using the various approaches
(log scale). All approaches behave similarly and show good
results, except the ones with extreme thresholds.

Figure 5: Validation accuracy of a
neural network trained on MNIST
with and without the similarity cri-
terion (note that the x-axis is the
number of minibatches presented
to the network, not of epochs).

4.3 Test of the various estimators

In order to rapidly test the behavior of all possible estimators, we applied them to a toy problem
where the network’s goal is to predict a sinusoid. To change the difficulty of the problem, we vary its
frequency, while keeping the number of samples constant. Appendix D gives more details and results
for the toy problem. Fig.4 shows for each estimator (with different parameters when relevant), the
result of their neighbor count estimation. When the frequency f of the sinusoid to predict increases,
the number of neighbors decreases in 1

f for every estimator. This aligns with our intuition that as
the problem gets harder, the network needs to distinguish input samples more to achieve a good
performance, thus the amount of neighbors is lower. In particular we observe that the proposedNS(x)
estimator behaves well, thus we will use that one in bigger studies requiring an efficient estimator.

4.4 Further potential uses for fitness estimation

When the number of neighbors of a training point x is very low, the network is able to set any label to
x, as this won’t interfere with other points, by definition of our similarity criterion kθ(x,x′). This
is thus a typical overfit case, where the network can learn by heart a label associated to a particular,
isolated point.

On the opposite, when the set of neighbors of x is a large fraction of the dataset, comprising varied
elements, by definition of kθ(x,x′) the network is not able to distinguish them, and consequently it
can only provide a common output for all of them. Therefore it might not be able to express variety
enough, which would be a typical underfit case.

The quality of fit can thus be observed by monitoring the number of neighbors together with the
variance of the desired labels in the neighborhoods (to distinguish underfit from just high density).

Prediction uncertainty A measure of the uncertainty of a prediction fθ(x) could be to check how
easy it would have been to obtain another value during training, without disturbing the training of
other points. A given change v of fθ(x) induces changes kIθ(x,x

′)
‖∇θfθ(x)‖2v over other points x′ of the

dataset, creating a total L1 disturbance
∑

x′ ‖
kIθ(x,x

′)
‖∇θfθ(x)‖2v‖. The uncertainty factor would then be

the norm of v affordable within a disturbance level, and quickly approximable as ‖∇θfθ(x)‖
2∑

x′ k
I
θ(x,x

′)
.

5 Enforcing similarity

The similarity criterion we defined could be used not only to estimate how similar two samples are
perceived, after training, but also to incite the network, during training, to evolve in order to consider
these samples as similar.

7

Asking two samples to be treated as similar If two inputs x and x′ are known to be similar (from
a human point of view), one can enforce their similarity from the network perspective, by adding to
the loss the term: −kCθ (x,x′) .

Asking a distribution of samples to be treated as similar By extension, to enforce the similarity
of a subset S of training samples, of size n = |S|, one might consider the average pairwise similarity
kCθ over all pairs, or the standard deviation of the gradients. Both turn out to be equivalent to
maximizing the norm of the gradient mean µ = 1

n

∑
i∈S

∇θfθ(xi)
‖∇θfθ(xi)‖ :

1

n(n− 1)

∑
i,j∈S,i6=j

kCθ (xi, xj) =
n

n− 1
‖µ‖2 − 1

n− 1
and var

i∈§

∇θfθ(xi)
‖∇θfθ(xi)‖

= 1− ‖µ‖2 .

In practice, common deep learning platforms are much faster when using mini-batches, but then return
only the gradient sum

∑
i∈B∇θfθ(xi) over a mini-batch B, not individual gradients, preventing the

normalization of each of them to compute kCθ or µ. So instead we compare means of un-normalized
gradients, over two mini-batches B1 and B2 comprising each nB samples from S, which yields the
criterion:

nB
‖µ1 − µ2‖2

‖µ1‖‖µ2‖
where µk =

1

n

∑
i∈Bk

∇θfθ(xi) .

The factor nB counterbalances the 1√
nB

variance reduction effect due to averaging over nB samples.

Group invariance The distributions of samples asked to be seen as similar could be group orbits [3].
A differential formulation of group invariance enforcement is also proposed in Appendix E.2.

Complexity The double-backpropagation routine, available on common deep learning platforms,
allows the optimization of such criteria [4, 10, 22, 8], roughly doubling the computational time of a
gradient step.

Dynamics of learning Our approach enforces similarity not just at the output level, but within the
whole internal computational process. Therefore, during training, information is provided directly to
each parameter instead of being back-propagated through possibly many layers. Thus the dynamics
of learning are expected to be different, especially for deep networks.

To test this hypothesis, we train a small network on MNIST with and without the similarity criteria
acting as an auxiliary loss (see Fig. 5). As a result, we observe an acceleration of the convergence
very early in the learning process. It is worth noting that this effect can be observed across a wide
range of different neural architectures. We performed additional experiments on toy datasets as
well as on CIFAR10 with no or only negligible improvements. All together this suggests that using
the similarity criteria during training may be beneficial to specific datasets as opposed to specific
architectures, and indeed, as the class intra-variability in CIFAR10 is known to be high, considering
all examples of a class of CIFAR10 as similar is less relevant.

6 Dataset self-denoising

We now go back to the task described in Section 1 and show how input similarity can be used to
analyse experimental results and bring theoretical guarantees about robustness to label noise.

6.1 Similarity experimentally observed between patches

We studied the multi-round training scheme of [7] by applying our similarity measure to a sampling
of input patches of the training dataset for one network per round. The principle of the multiple
round training scheme is to reduce the noise of the annotations, obtaining aligned annotations in
the end (more details in Appendix F). For a certain input patch, we computed its similarity with all
the other patches for the 3 networks. With those similarities we can compute the nearest neighbors
of that patch, see Fig. 6. The input patch is of a suburb area with sparse houses and individual
trees. The closest neighbors look similar as they usually feature the same types of buildings, building

8

Figure 6: Example of nearest neighbors for a patch. Each line corresponds to a round. Each patch
has its similarity written under it.

(a) Round 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1276.7

(b) Round 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2486.3

(c) Round 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 394.6

Figure 7: Histograms of similarities for one patch across rounds.

arrangement and vegetation. However sometimes the network sees a patch as similar when it is not
clear from our point of view (for example patches with large buildings).

For more in-depth results, we computed the histogram of similarities for the same patch, see Fig. 7.
We observe that round 2 shows different neighborhood statistics, in that the patch is closer to all
other patches than in other rounds. We observe the same behavior in 19 other input patches (see
Appendix F). An hypothesis for this phenomenon is that the average gradient was not 0 at the end of
that training round (due to optimization convergence issues, e.g.), which would shift all similarity
histograms by a same value.

Qualitatively, for patches randomly sampled, their similarity histograms tend to be approximately
symmetric in round 2, but with a longer left tail in round 1 and a longer right tail in round 3.
Neighborhoods thus seem to change across the rounds, with fewer and fewer close points (if removing
the global histogram shift in round 2). A possible interpretation is that this would reflect an increasing
ability of the network to distinguish between different patches, with finer features in later training
rounds.

6.2 Comparison to the perceptual loss

We compare our approach to the perceptual loss on a nearest neighbor retrieval task. We notice that
the perceptual loss sometimes performs reasonably well, but often not. For instance, we show in
Fig. 8 the closest neighbors to a structured residential area image, for the perceptual loss (first row:
not making sense) and for our similarity measure (second row: similar areas).

6.3 From similarity statistics to self-denoising effect estimation

We now show how such similarity experimental computations can be used to solve the initial problem
of Section 1, by explicitly turning similarity statistics into a quantification of the self-denoising effect.

Let us denote by yi the true (unknown) label for input xi, by ỹi the noisy label given in the dataset,
and by ŷi = fθ(xi) the label predicted by the network. We will denote the (unknown) noise by
εi = ỹi − yi and assume it is centered and i.i.d., with finite variance σε. The training criterion

9

Pe
rc

ep
tu

al
Si

m
ila

ri
ty

Source | Closest neighbor patches

Figure 8: Closest neighbors to the leftmost patch, using the perceptual loss (first row) and our
similarity definition (second row).

is E(θ) =
∑
j ||ŷj − ỹj ||2. At convergence, the training leads to a local optimum of the energy

landscape: ∇θE = 0, that is,
∑
j(ŷj − ỹj)∇θŷj = 0. Let’s choose any sample i and multiply by

∇θŷi : using kIθ(xi,xj) = ∇θŷi.∇θŷj , we get:∑
j

(ŷj − ỹj) kIθ(xj ,xi) = 0.

Let us denote by kINθ (xj ,xi) = kIθ(xj ,xi)
(∑

j k
I
θ(xj ,xi)

)−1
the column-normalized kernel, and

by Ek[a] =
∑
j aj k

IN
θ (xj ,xi) the mean value of a in the neighborhood of i, that is, the weighted

average of the aj with weights kIθ(xj ,xi) normalized to sum up to 1. This is actually a kernel
regression, in the spirit of Parzen-Rosenblatt window estimators. Then the previous property can be
rewritten as Ek[ŷ] = Ek[ỹ] . As Ek[ỹ] = Ek[y] + Ek[ε] , this yields:

ŷi − E
k
[y] = E

k
[ε] + (ŷi − E

k
[ŷ])

i.e. the difference between the predicted ŷi and the average of the true labels in the neighborhood of i
is equal to the average of the noise in the neighborhood of i, up to the deviation of the prediction ŷi
from the average prediction in its neighborhood.

We want to bound the error ‖ŷi − Ek[y]‖ without knowing neither the true labels y nor the noise ε.
One can show that Ek[ε] ∝ varε(Ek[ε])1/2 = σε ‖kINθ (·,xi)‖L2. The denoising factor is thus the
similarity kernel norm ‖kINθ (·,xi)‖L2, which is between 1/

√
N and 1, depending on the neighbor-

hood quality. It is 1/
√
N when all N data points are identical, i.e. all satisfying kCθ (xi,xj) = 1. On

the other extreme, this factor is 1 when all points are independent: kIθ(xi,xj) = 0 ∀i 6= j. This
way we extend noise2noise [14] to real datasets with non-identical inputs.

In our remote sensing experiment, we estimate this way a denoising factor of 0.02, consistent across
all training rounds and inputs (±10%), implying that each training round contributed equally to
denoising the labels. This is confirmed by Fig. 2, which shows the error steadily decreasing, on a
control test where true labels are known. The shift (ŷi − Ek[ŷ]) on the other hand can be directly
estimated given the network prediction. In our case, it is 4.4px on average, which is close to the
observed median error for the last round in Fig. 2. It is largely input-dependent, with variance 3.2px,
which is reflected by the spread distribution of errors in Fig. 2. This input-dependent shift thus
provides a hint about prediction reliability.

It is also possible to bound (ŷi − Ek[ŷ]) = Ek[ŷi − ŷ] using only similarity information (without
predictions ŷ). Theorem 1 implies that the application: ∇θfθ(x)

‖∇θfθ(x)‖ 7→ fθ(x) is well-defined, and it can
actually be shown to be Lipschitz with a network-dependent constant (under mild hypotheses). Thus

‖fθ(x)− fθ(x′)‖ 6 C

∥∥∥∥ ∇θfθ(x)

‖∇θfθ(x)‖
− ∇θfθ(x′)
‖∇θfθ(x′)‖

∥∥∥∥ =
√

2C
√

1− kCθ (x,x′) ,

yielding ‖ŷi − ŷj‖ 6
√

2C
√

1− kCθ (xi,xj) and thus
∣∣Ek[ŷi − ŷ]

∣∣ 6 √2C Ek
[√

1− kCθ (xi, ·)
]
.

10

7 Conclusion

We defined a proper notion of input similarity as perceived by the neural network, based on the
ability of the network to distinguish the inputs. This brings a new tool to analyze trained networks,
in plus of visualization tools such as grad-CAM [23]. We showed how to turn it into a density
estimator, which was validated on a controlled experiment, and usable to perform fast statistics
on large datasets. It opens the door to underfit/overfit/uncertainty analyses or even control during
training, as it is differentiable and computable at low cost. We also showed that any desired similarity
could be enforced during training, at reasonable cost, and noticed a dataset-dependent boosting effect
that should be further studied along with robustness to adversarial attacks, as such training differs
significantly from usual methods. Finally, we extended noise2noise [14] to the case of non-identical
inputs, thus expressing self-denoising effects as a function of inputs’ similarities. The code is available
at https://github.com/Lydorn/netsimilarity .

Acknowledgments

We thank Victor Berger and Adrien Bousseau for useful discussions. This work benefited from the sup-
port of the project EPITOME ANR-17-CE23-0009 of the French National Research Agency (ANR).

References
[1] Kyle Bradbury, Benjamin Brigman, Leslie Collins, Timothy Johnson, Sebastian Lin, Richard Newell,

Sophia Park, Sunith Suresh, Hoel Wiesner, and Yue Xi. Aerial imagery object identification dataset for
building and road detection, and building height estimation, July 2016.

[2] Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable programming. arXiv
preprint arXiv:1812.07956, 2018.

[3] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on
machine learning, pages 2990–2999, 2016.

[4] Harris Drucker and Yann Le Cun. Double backpropagation increasing generalization performance. In
IJCNN-91-Seattle International Joint Conference on Neural Networks, volume 2, pages 145–150. IEEE,
1991.

[5] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional neural
networks. In Advances in neural information processing systems, pages 262–270, 2015.

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

[7] Nicolas Girard, Guillaume Charpiat, and Yuliya Tarabalka. Noisy Supervision for Correcting Misaligned
Cadaster Maps Without Perfect Ground Truth Data. In IGARSS, July 2019. URL https://hal.inria.
fr/hal-02065211.

[8] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. In Advances in Neural Information Processing Systems, pages 5767–5777,
2017.

[9] Frank R. Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974. ISSN 01621459. URL http://www.jstor.org/
stable/2285666.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. In Advances
in neural information processing systems, pages 529–536, 1995.

[11] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–8580, 2018.

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pages 694–711. Springer, 2016.

[13] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pages 1885–1894. PMLR, 2017.

11

https://github.com/Lydorn/netsimilarity
https://hal.inria.fr/hal-02065211
https://hal.inria.fr/hal-02065211
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666

[14] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and Timo
Aila. Noise2noise: Learning image restoration without clean data. In International Conference on Machine
Learning, pages 2971–2980, 2018.

[15] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li. Learning from noisy
labels with distillation. In Proceedings of the IEEE International Conference on Computer Vision, pages
1910–1918, 2017.

[16] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. Can semantic labeling
methods generalize to any city? the Inria aerial image labeling benchmark. In IGARSS, 2017.

[17] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images from noisy data. In Proceedings
of the 29th International conference on machine learning (ICML-12), pages 567–574, 2012.

[18] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with noisy
labels. In Advances in neural information processing systems, pages 1196–1204, 2013.

[19] Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 03 2015. ISSN 2049-8772. doi: 10.1093/imaiai/iav006.
URL https://doi.org/10.1093/imaiai/iav006.

[20] Yann Ollivier. Riemannian metrics for neural networks II: recurrent networks and learning symbolic data
sequences. Information and Inference: A Journal of the IMA, 4(2):154–193, 03 2015. ISSN 2049-8772.
doi: 10.1093/imaiai/iav007. URL https://doi.org/10.1093/imaiai/iav007.

[21] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org , 2017.

[22] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-encoders:
Explicit invariance during feature extraction. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, pages 833–840. Omnipress, 2011.

[23] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on Computer Vision, pages 618–626, 2017.

[24] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080, 2014.

[25] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection for
explaining deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31, pages 9291–
9301. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf.

A Code

The whole code (image registration, experiments to test density estimators, enforcing similarity...) is
available on the following github repository: https://github.com/Lydorn/netsimilarity .

B Proofs of the properties of the 1D similarity kernel

We give here the proofs at the properties of the 1-dimensional-output similarity kernel.

B.1 Proof of Theorem 1

Theorem 1. For any real-valued neural network fθ whose last layer is a linear layer (without any
parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any
inputs x and x′,

∇θfθ(x) = ∇θfθ(x′) =⇒ fθ(x) = fθ(x
′) .

12

https://doi.org/10.1093/imaiai/iav006
https://doi.org/10.1093/imaiai/iav007
https://proceedings.neurips.cc/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf
https://github.com/Lydorn/netsimilarity

Proof. If the last layer is linear, the output is of the form fθ(x) =
∑
i wiai(x)+b, wherewi and b are

parameters in R and ai(x) activities from previous layers. The gradient∇θfθ(x) contains in particular
as coefficients the derivatives dfθ(x)dwi

= ai(x). Thus∇θfθ(x) = ∇θfθ(x′) =⇒ ai(x) = ai(x
′) ∀i in

the last layer. The outputs can be then rebuilt: fθ(x) =
∑
i wiai(x)+b =

∑
i wiai(x

′)+b = fθ(x
′).

If the output is of the form fθ(x) = σ(c(x)) with c(x) =
∑
i wiai(x) + b, then the gradient equality

implies dfθ(x)
db = dfθ(x

′)
db , whose value is σ′(c(x)) = σ′(c(x′)). Then, as σ′(c(x)) ai(x) = dfθ(x)

dwi
=

dfθ(x
′)

dwi
= σ′(c(x′)) ai(x

′), we can deduce ai(x) = ai(x
′) for all i provided σ′(c(x)) 6= 0. In

that case, from these identical activities one can rebuild identical outputs. Otherwise, σ′(c(x)) =
σ′(c(x′)) = 0, which is not possible with strictly monotonous activation functions, such as tanh or
sigmoid. For ReLU, σ′(c(x)) = 0 =⇒ σ(c(x)) = 0 and thus fθ(x) = fθ(x

′) = 0. The same
reasoning holds for other activation functions with only one flat piece (such as the ReLU negative
part), i.e. for which the set σ(σ′−1({0})) is a singleton.

B.2 Proof of Corollary 1

Corollary 1. Under the same assumptions, for any inputs x and x′,

kCθ (x.x′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) ,
hence kCθ (x.x′) = 1 =⇒ fθ(x) = fθ(x

′) .

Proof. kCθ (x.x′) = 1 means ∇θfθ(x)
‖∇θfθ(x)‖ ·

∇θfθ(x′)
‖∇θfθ(x′)‖ = 1, which implies ∃α ∈ R∗, ∇θfθ(x) =

α∇θfθ(x′). We need to show that α = 1. Under the assumptions of Theorem 1, following its proof:

• either the last layer is linear, the output is of the form fθ(x) =
∑
i wiai(x) + b, and then

∇bfθ(x) = α∇bfθ(x′) while dfθ(x)
db = 1 and dfθ(x

′)
db = 1, hence α = 1;

• either the output is of the form fθ(x) = σ(c(x)) with c(x) =
∑
i wiai(x) + b, and then

σ′(c(x)) = ∇bfθ(x) = α∇bfθ(x′) = ασ′(c(x′)), while, for any i, σ′(c(x)) ai(x) =
dfθ(x)
dwi

= αdfθ(x
′)

dwi
= ασ′(c(x′)) ai(x

′). Thus, supposing σ′(c(x)) 6= 0, we obtain ai(x) =

ai(x
′) ∀i, and thus we can rebuild from the activities c(x) = c(x′), from which σ′(c(x)) =

σ′(c(x′)) and thus α = 1. Otherwise, σ′(c(x)) = σ′(c(x′)) = 0 and the two full gradients
∇θfθ(x) and∇θfθ(x′) are 0 and thus equal.

The conditions for kCθ (x.x′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) to hold are actually much weaker: it
is sufficient that in the whole network architecture there exists one useful neuron (in the sense of the
next paragraph) of that type (so called linear but actually affine).

B.3 Proof of Theorem 2

Theorem 2. For any real-valued neural network fθ without parameter sharing, if ∇θfθ(x) =
∇θfθ(x′) for two inputs x,x′, then all useful activities computed when processing x are equal to the
ones obtained when processing x′.

We name useful activities all activities whose variation would have an impact on the output, i.e. all the
ones satisfying dfθ(x)

dai
6= 0. This condition is typically not satisfied when the activity is multiplied by 0,

i.e. wi = 0, or when it is negative and followed by a ReLU, or when all its contributions to the output
annihilate together (e.g., a sum of two neurons with opposite weights: fθ(x) = σ(ai(x))−σ(ai(x))).

Proof. Let ai(x) be a useful activity (for x). It is fed to at least one useful neuron, whose pre-
activation output is of the form c(x) =

∑
i wiai(x) + b. Then dfθ(x)

db = dfθ(x)
dc 6= 0 (the output of the

neuron is useful), and dfθ(x)
dwi

= dfθ(x)
db ai(x). From the gradient equality, ai(x) = dfθ(x)

dwi
/dfθ(x)db =

dfθ(x
′)

dwi
/dfθ(x

′)
db = ai(x

′).

13

C Higher output dimension

We expand here all the mathematical aspects of the homonymous section of the article.

C.1 Derivation

Let us now study the case where fθ(x) is a vector in Rd with d > 1.

The optimal parameter change δθ to push fθ(x) in a direction v (with a force ε) is less straightforward
to obtain. First, one can define as many gradients as output coordinates: ∇θf iθ(x), for i ∈ J1, dK.

This family of gradients can be shown to be linearly independent, unless the architecture of the
network is specifically built not to. If for instance each output coordinate has its own bias parameter,
i.e. writes in the form f iθ(x) = bi + gθ(x) or σ(bi + gθ(x)) with a strictly monotonous activation
function σ, then the derivative w.r.t. bi will be 1 (or σ′) only in the i-th gradient and 0 in the other ones.
Thus the j-th gradient contains in particular the subvector (df

j

dbi
)i = (δi=j)i, and the gradients are

consequently independent. In the case where all coordinates depend on all biases, but not identically,
as with a softmax, the argument stays true.

Any parameter variation δθ ∈ Rp can then be uniquely decomposed as:

δθ =

d∑
i=1

αi∇f iθ(x) + γ

where αi ∈ R and where γ ∈ Rp is orthogonal to all coordinate gradients. This parameter variation
induces an output variation:

fθ+δθ(x)− fθ(x) = ∇θfθ(x) δθ +O(‖δθ‖2)

=

(∑
i

αi∇θf iθ(x) · ∇f jθ (x)

)
j

+ 0 +O(‖δθ‖2)

= Cα+O(‖α‖2)

where C is the correlation matrix of the gradients: Cij = ∇θf iθ(x) · ∇f jθ (x). It turns out that C is
invertible:

Cα = 0 =⇒ αCα = 0 =⇒ α∇θfθ(x)∇θfθ(x)α = 0

=⇒ ‖∇θfθ(x)α‖2 = 0 =⇒
∑
i

αi∇f iθ(x) = 0

=⇒ α = 0 as the∇θf iθ(x) are linearly independent. Thus, for a desired output move in the direction
v with amplitude ε, i.e. fθ+δθ(x)− fθ(x) = εv, one can compute the associated linear combination
α = εC−1v and thus the smallest associated parameter change δθ =

∑
i αi∇f iθ(x).

The output variation induced at any other point x′ by this parameter change is then:

fθ+δθ(x
′)− fθ(x′) =

(
∇θf iθ(x′) · δθ

)
i
+O(‖δθ‖2)

=

∑
j

αj∇θf iθ(x′) · ∇θf
j
θ (x)


i

+O(‖δθ‖2).

= εKθ(x
′,x)Cθ(x)−1 v + O(ε2) (6)

where the d× d kernel matrix Kθ(x,x
′) is defined by Kij

θ (x,x′) = ∇θf iθ(x) · ∇θf jθ (x′), and where
the matrixCθ(x) = Kθ(x,x) is the previously defined self-correlation matrixC. Its role is equivalent
of the normalization by ‖∇θfθ(x)‖2 in the 1D case, in plus of decorrelating the gradients.

The interpretation of (3) is that if one moves the output for point x by v, then the output for point x′
will be moved also, by Mv, with M = Kθ(x,x

′)Kθ(x,x)−1. Note that these matrices M or K are
only d× d where d is the output dimension. They are thus generally small and easy to manipulate or
inverse.

14

C.2 Normalized cross-correlation matrix

The normalized version of the kernel (3) is:

KC
θ (x,x′) = Cθ(x)−1/2 Kθ(x,x

′) Cθ(x
′)−1/2 (7)

which is symmetric in the sense that KC
θ (x′,x) = KC

θ (x,x′)T .

A matrix KC
θ (x,x′) with small coefficients means that x and x′ are relatively independent, from a

neural network point of view (moves at x won’t be transferred to x′). On the opposite, the highest
possible dependency is KC

θ (x,x) = Id.

To study properties of this similarity measure, note that KC
θ (x,x′) = (GNx)T GNx′ with GNx =

Gx(GTxGx)−1/2, where Gx = ∇θf(x) : it is the product of normalized, decorrelated versions of
the gradient. Indeed, at any point x, the normalized gradient matrix GNx satisfies: (GNx)T GNx =
KC
θ (x,x) = Kθ(x,x)−1/2Kθ(x,x)Kθ(x,x)−1/2 = Id and consequently GNx can be seen as an

orthonormal family of vectors GN,ix .

The L2 (Frobenius) norm of the ortho-normalized gradient GNx is thus:∥∥GNx ∥∥2F = Tr((GNx)T GNx) = Tr(Id) = d .

At point x′, GNx′ is also an orthonormal family, but possibly arranged differently or generating a
different subspace of Rp. IfGNx andGNx′ generate the same subspace, then their product (GNx)T GNx′ is
an orthogonal matrix Q (change of basis) and its L2 (Frobenius) norm is then

∥∥Q∥∥2
F

= Tr(QTQ) =

Tr(Id) = d. Otherwise, (GNx)T GNx′ can be seen as a projection from one subspace to another one,
each vector GN,jx′ is projected onto the ortho-normal family (GN,ix)i, and as a projection decreases

the Euclidean norm,
∑
i

(
GN,ix ·GN,jx′

)2
6
∥∥GN,jx′

∥∥2 = 1. Thus:

∥∥KC
θ (x,x′)

∥∥
F

=

√∑
ij

(
GN,ix ·GN,jx′

)2
6
√
d .

Moreover, any coefficient of the kernel matrix satisfies:∣∣∣KC,ij
θ (x,x′)

∣∣∣ =
∣∣∣GN,ix ·GN,jx′

∣∣∣ 6 ∥∥GN,ix

∥∥
2

∥∥GN,jx′

∥∥
2

= 1

as each vector GN,ix is unit-norm. This implies in particular that the trace is bounded:

−d 6 Tr(KC
θ (x,x′)) 6 d.

To sum up, the similarity matrix KC
θ (x,x′) satisfies the following properties:

• its coefficients are bounded, in [−1, 1]
• its trace is at most d
• its (Frobenius) norm is at most

√
d

• self-similarity is identity: ∀x, KC
θ (x,x) = Id

• the kernel is symmetric, in the sense that KC
θ (x′,x) = KC

θ (x,x′)T .

C.3 Similarity in a single value

Note that when the trace is close to its maximal value d, the diagonal coefficients are close to 1, and
their contribution to the Frobenius norm squared is close to d. Therefore, all non-diagonal coefficients
are close to 0, and the matrix is close to Id. And reciprocally, a matrix close to Id has a trace close to
d. Thus, two related ways to quantify similarity in a single real value in [−1, 1] appear:

• the distance to the identity D =
∥∥KC

θ (x,x′)− Id
∥∥
F

, which can be turned into a similarity
as 1− 1√

d
D or 1− 1

2dD
2, since D ∈ [0, 2

√
d]

• the normalized trace: 1
d TrKC

θ (x,x′), which is also the alignment with the identity:
1
dK

C
θ (x,x′) ·F Id, where ·F denotes the Frobenius inner product (i.e. coefficient by coeffi-

cient).

15

The link between these two quantities can be made explicit by developing:∥∥KC
θ (x,x′)− Id

∥∥2
F

=
∥∥KC

θ (x,x′)
∥∥2
F
− 2Tr(KC

θ (x,x′)) + d

which rewrites as: (
1− D2

2d

)
=

Tr(KC
θ (x,x′))

d
+

1

2

(
1−

∥∥KC
θ (x,x′)

∥∥2
F

d

)
.

The last term lies in [0, 1] and measures the mismatch between the vector subspaces generated by the
two families of gradients

(
∇θf i(x)

)
i

and
(
∇θf i(x′)

)
i
. It is 1 when fθ(x) and fθ(x′) can be moved

independently, and 0 when they move jointly (though not necessarily in the same direction).

As our two similarity measures 1− D2

2d and 1
dTr(KC

θ (x,x′)) have same optimum (Id) and are closely
related, in the sequel we will focus on the second one and define:

kCθ (x,x′) =
1

d
TrKC

θ (x,x′) . (8)

C.4 Metrics on output: rotation-invariance

Similarity in Rd, to compare v and v′ = Mv, might be richer than just checking whether the vectors
are equal or close in L2 norm.

For instance, one could quotient the output space by the group of rotations, in order to express a
known or desired equivariance of the network to rotations. If the output is the predicted motion of
some object described in the input, one could wish indeed that if the input object is rotated by an
angle φ, then the output should be rotated as well with the same angle.

In that case, given two inputs x and x′ and associated output variations v and v′, without knowing
the rotation angle if applicable, one could consider all possible rotated versions Rφv′ = RφMv,
where Rφ is the rotation matrix with angle φ, and pick the best angle φ that maximizes the alignment
v · RφMv, i.e. such that RφM is the closest to the d × d identity matrix. This can be computed
easily in closed form, for instance in the 2-dimensional case as follows.

The 2 × 2 matrix of interest (Eq. 4) can be written as the product of two p × 2 matrices of the
form G(GTG)−1/2, where G is the matrix containing the gradient of all coordinates. Rotating the
coordinates of G amounts to considering GRφ(RTφG

TGRφ)−1/2 = G(GTG)−1/2Rφ instead. Thus
the effect of rotation is just right-multiplying our 2×2 matrixM of interest (Eq. 4) byRφ. We are thus
interested into getting MRφ as close as possible to the 2× 2 identity. For our trace-based similarity
kernel (Eq. 5), this amounts to maximizing Tr(MRφ) = cos(φ)(M11 +M22) + sin(φ)(M12−M21)
w.r.t. φ, whose optimal value is:

kC,rotθ (x,x′) =
1

2

√
(M11 +M22)2 + (M12 −M21)2

=
1

2

√∥∥M∥∥2
F

+ 2 detM

where M = KC
θ (x,x′). This quantity is indeed rotation-invariant, as the Frobenius norm and the

determinant do not change upon rotations. Note that one could also consider instead the subspace
match 1

d

∥∥M∥∥2
F

. The main difference between the two is that the first one penalizes mirror symmetries
(through detM) while the second one does not.

Note that other metrics are possible in the output space. For instance, the loss metric quantifies the
norm of a move v by its impact on the loss dL(y)

dy

∣∣∣
fθ(x)

(v). It has a particular meaning though, and is

relevant only if well designed and not noisy, as seen in the remote sensing image registration example.
Note also that in such a case the associated similarity would not be intrinsic anymore to the neural
network as it depends on the loss.

16

0.0 0.2 0.4 0.6 0.8 1.0
alpha

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(a) Function to predict.

0.0 0.2 0.4 0.6 0.8 1.0
alpha

950

1000

1050

1100

1150

1200

1250

Ne
ig

hb
or

s s
of

t

(b) Neighbors soft estimate.

Figure 9: Toy problem with the frequency f = 2.

D Estimating density

D.1 Toy problem

The toy problem used in the paper to test the various estimators for neighbor count estimation consists
of predicting a one dimensional function, namely a sinusoid (such as in Fig.9 (a)). We can easily
change the difficulty of the problem by using different values of frequency. The neural network would
perform this mapping: y = sin(2πfx), x ∈ [0, 1].

A problem arises however when estimating the number of neighbors because the input space has
2 boundaries at x = 0 and x = 1, leading to fewer neighbors when x approaches either of those
boundaries. To avoid this problem, we transform the input space to a 2D circle. Namely, the task
is now y = sin(2πfα(x)), x ∈ {(cos(2πα), sin(2πα)), α ∈ [0, 1]}, with the input space having no
boundaries.

The dataset is generated with n=2048 input points. The network used is fully-connected and has 5
hidden layers of 64 neurons trained with the Adam optimizer for 80 epochs with a base learning
rate of 1e−4. An experiment consist of training the network on a dataset generated with a specific
frequency f. Each experiment was repeated 5 times, in order to take the median of every result to
limit the variance due to the neural network stochastic training.

We can see in Fig.9 (b) the proposed soft estimate kCθ for each input point (projected to 1D). As
expected we observe that the number of neighbors drops when the curvature is high: the objective
changes quickly and the network adjusts to better distinguish inputs in places of higher curvature.

D.2 Other possible uses

Density homogeneity as an optimization criterion The estimations above are meant to be done
post-training. This said, one could control density explicitly, by computing the number of neighbors
for all points, and asking it to be in a reasonable range, or in a reasonable proportion q of the dataset

size D, by adding e.g. to the loss
∑
i

(
NS(xi)
D − q

)2
. Online learning could also make use of such

tools, to sample first lowly-populated areas, where uncertainty is higher.

E Enforcing similarity

We give here a few more details on the homonymous section of the paper.

E.1 Complexity

A gradient descent step on this quantity for a given pair (x,x′) (in a mini-batch approach, e.g.)
requires the computation of the gradient ∇θkCθ (x,x′) = ∇θ (∇θfθ(x) · ∇θfθ(x′)). While a naive
approach would require the computation of a second derivative, i.e. a matrix of size p× p where p is

17

Alpha
0.0 0.2 0.4 0.6 0.8 1.0

Curvature (log)

01234
5678

Ne
ig

hb
or

s_
So

ft

600

800

1000

1200

1400

Al
ph

a 0.00.20.40.60.81.0
Curvature (log)

0 1 2 3 4 5 6 7 8

Ne
ig
hb

or
s_
So

ft

600

800

1000

1200

1400

n = 2048, f = 1
n = 2048, f = 2
n = 2048, f = 4
n = 2048, f = 8

Alpha
0.0 0.2 0.4 0.6 0.8 1.0 Curvature (log)0 1 2 3 4 5 6 7 8

Ne
ig

hb
or

s_
So

ft

600

800

1000

1200

1400

Figure 10: 3D plot of neighbors soft with varying frequency. Script and data to plot interactively
in attached files. Run the bash script "main_plot_exps.paper.sh" to reproduce this exact figure.
Alternatively use "main_plot_exps.py" with arguments of your choosing to plot different values (run
"python main_plot_exps.py -h" to see possible arguments).

the number of parameters, it is actually possible to compute ∇θkCθ (x,x′) = ∇θ
∑
i
dfθ(x)
dθi

dfθ(x
′)

dθi
in

linear time O(p), taking advantage of the serial structure of the computational graph. The framework
enabling such computations is already available on common deep learning platforms, initially intended
for the computation of∇x∇θfθ(x) for some variations on GANs.

E.2 Group invariance

Dataset augmentation is a standard machine learning technique; when augmenting the dataset by a
group transformation of the input (e.g., translation, rotation...) or by small intensity noise, new samples
are artificially created, to augment the dataset size and hope for invariance to such transformations.
One can ask the network to consider orbits of samples as similar with the technique above.

Furthermore, if the group infinitesimal elements are expressible as differential operators ek, one
could require directly, for all x, invariance in the tangent plane in the directions of these differential
operators:

‖∂x∇θf(x) · ek(x)‖2

which is the limit of 1
ε2 ‖∇θfθ(x)−∇θfθ (x + εek(x)) ‖2 when ε→ 0. For instance, in the case of

image translations, the operator is e : x 7→ ∇xx(x) where x denotes spatial coordinates in the image
x, as x(x+ τ) = x(x) + τ · ∇xx(x) +O(τ2). This is however not recommended, as representing
a translation with such a spatially-local operator does not take into account the spatially-irregular
nature of image intensities.

Note that to the opposite of standard robustification techniques considering regularizers such as∑
x ‖∇θfθ(x)‖2, we ask not gradients to be always small, but to be smooth, and in certain directions

only.

18

E.3 Dynamics of learning: Experimentation details

The results in figure 6 show the average and standard deviation over 60 runs for each curve. The
x-axis is the number of batches to the network is trained on (with a batch size of 16). The y-axis is
the accuracy metric on the whole validation set. The network architecture is made of 2 convolutions
layers (with a kernel size of 5), 2 linear layers and uses PReLU non-linearities. We used Adam with a
learning rate of 1e-3 and no weight decay.

We tested other architecures on MNIST: one with residual blocks, one deeper (8 convolutions) and
one with tanh non-linearities. Similar results were observed on all cases. Additional tests were
performed on CIFAR10 with a VGG architecture and only negligible benefits were observed.

F Noisy Map Alignment Analysis

The task here it to align maps in the form of a list of polygons with remote sensing images while
using only the available noisy annotations. We analyze the model developed in a previous work
[7]. Specifically, the model is trained in a multiple-rounds training scheme to iteratively align the
available noisy annotations, which provides a better ground truth used to train a better model in the
next round. An open question is why multiple rounds are needed in this noisy supervision setting,
and why not all the noise can be removed in a single training step.

More specifically, the model is made out of 4 neural networks. Each is trained on a different resolution
(in terms of ground pixel size) and are applied in a multi-resolution pyramidal manner. In all our
experiments we only analyzed the networks trained for a ground pixel size of 4 time smaller than the
reference ground pixel size which is 0.3m. We used the already-trained networks for each round, of
which there are 3.

The network was trained with small patches of (image, misaligned map) pairs from images of the
Inria dataset [16] and the Bradbury dataset [1]. Ideally we would want to compute the similarities
of every possible pairs of inputs, with a small patch size of 124 px. However, given that a typical
image of the training dataset is 1250× 1250 px (after rescaling) and there are a few hundred of them
(328 from the Inria dataset, only counting images where OSM annotations [21]), this would result in
32800 patches. The resulting amount of similarities to compute would be around half a billion. As
the network has a few million of parameters and the output is 2D, each computation of similarity
takes around 0.5s. To make any computation feasible, we first sample 10 patches per image from the
328 of the Inria dataset. Those patches are chosen at random, as long as there is at least one building
lying fully in the patch. As some images have rather sparse buildings, some images give less than 10
patches. We thus obtain 3045 patches representing the dataset. The amount of similarities to compute
would be close to 5 million. To study all patches globally, we can use the soft neighbors estimator kCθ
which has a linear complexity and allows us to compute the amount of neighbors for all 3045 patches
in under an hour. However it is also interesting to go in deeper detail and compute similarities for
some input pairs. We thus furthermore reduce the amount of pairs by estimating all similarities only
for a very small number of patches, for example 10. This results in a 10× 3045 similarity matrix.

F.1 Soft estimate on a sampling of the training dataset

In this section we present the results of computing the soft neighbors estimator kCθ on the 3045
sampled patches of inputs. We obtain results for the 3 networks of the 3 rounds of the noisy-
supervision multi-rounds training scheme. Fig.11 shows a histogram of the soft neighbors estimations.
It additionally representative input patches for each bin of the histogram. Those representative patches
are chosen so that their neighbor count is closest to the right edge of that bin. We especially observe
that inputs in round 2 have more neighbors than the other 2 rounds. This particularity of round 2 will
be seen throughout the remaining results. It is the round that aligns the most the annotations (see
the Fig.2 on accuracy cumulative distributions in the paper). Round 3 does not perform any more
alignment, that might be the reason why its results are different from those of round 2.

F.2 Similarities on pairs of input patches

In this section are the results for the computation of similarities between pairs of input patches. In
a first experiment, for every round we chose the 10 patches shown in Fig.11, and computed their

19

similarities with all the other 3045 patches. In order to visualize this data, we computed the 10-nearest
neighbors in terms of similarity for each of those patches, see Fig.12, 13, 14. We computed the
histogram of similarities as well, see Fig.15.

In a second experiment, to better compare between rounds, we used another set of 10 patches, this
time the same set for each round. Specifically, we sampled 10 patches from the bloomington22 image
of the Inria dataset. As just before we computed the 10-nearest neighbors (Fig.16, 17, 18) and the
histogram of similarities(Fig.19) for a visualization of those measures.

Generally speaking, inputs in round 2 have more neighbors and the 10-nearest ones are closer than in
other rounds (see Fig.12, 13, 14 and Fig.16, 17, 18). For each parch, its closest neighbors generally
(for similarity > 0.8) look similar from a human point of view. For example patches with sparse
houses and trees have the same kind of neighbors. The same can be said for patches with parking
lots and big roads. Another group are patches that are almost empty of buildings, with a lot of low
vegetation. Other patch nearest neighbors are more difficult to interpret. In Fig.15 and Fig.19 we can
see that for round 2, the spread of the similarities of the selected patches is smaller and the peak of the
histogram are closer to the right, meaning all patches are closer than in other rounds. Additionally in
Fig.15 we can observe that the bottom patch has closer neighbors than the top patch, this is because
the top patch corresponds to the left patch in 11 and the bottom one corresponds to the right patch in
11.

G Proof details of the self-denoising effect quantification

G.1 Magnitude of kernel-smoothed i.i.d. noise

We show here that Ek[ε] ∝ varε(Ek[ε])1/2 = σε ‖kINθ ‖L2.

Let us denote by Eε[] and varε() the expectation and variance with respect to the random variable ε.
As a reminder, by assumptions in the noise definition, ε = (εi)i is a random, i.i.d. noise, centered
and of variance σε.

This is not to be confused with the symbol Ek[], which was defined as, for any vector field a:

E
k
[a] =

∑
j

aj k
IN
θ (xj ,xi) ,

i.e. as the mean value of a in the neighborhood of i, that is, the weighted average of the aj with
weights kINθ (xj ,xi), which are positive and sum up to 1.

Given a network and its associated kernel kINθ , we are interested in to knowing the typical values of
Ek[ε] for random ε. First, the expectation over the noise of Ek[ε] is:

E
ε

[
E
k
[ε]

]
= E

ε

∑
j

εj k
IN
θ (xj ,xi)

 =
∑
j

E
ε
[εj] k

IN
θ (xj ,xi) = 0

as ε is a centered noise. Thus the random variable Ek[ε] is also centered, and therefore its typical
values are described by its standard deviation, which is the square root of its variance:

E
k
[ε] ∝ var

ε

(
E
k
[ε]

)1/2

.

20

The variance can be computed as follows:

var
ε

(
E
k
[ε]

)
= E

ε


∑

j

εj k
IN
θ (xj ,xi)

2


= E
ε

∑
j

ε2j
(
kINθ (xj ,xi)

)2 as ε is i.i.d.

= σ2
ε

∑
j

(
kINθ (xj ,xi)

)2
= σ2

ε

∥∥kINθ (·,xi)
∥∥2
L2

.

As the weights pj = kINθ (xj ,xi), for given i and varying j, are positive and sum up to 1, they form
a probability distribution. Hence the value of

∥∥kINθ (·,xi)
∥∥2
L2

= ‖p‖2L2 satisfies:

• ‖p‖L2 6 1, as
∑
j p

2
j 6

∑
j pj = 1, with equality only when pj = p2j ∀j, that is, all

pj = 0 except for one pj∗ = 1, which means kIθ(xj ,xi) = 0 ∀j 6= i, which means that all
data samples are fully independent from the network’s point of view.

• ‖p‖L2 > 1√
N

as 1 =
∑
j 1× pj 6 ‖1‖L2 ‖p‖L2 =

√
N ‖p‖L2 (Cauchy-Bunyakovsky-

Schwarz), with equality reached for the uniform distribution: pj = 1
N ∀j, where N is the

number of data samples. This implies that all kCθ (xj ,xi) are equal, for all i, j, hence they
are all equal to kCθ (xi,xi) = 1. This is the case studied in [14]: all input points are identical.

The denoising factor ‖kINθ (·,xi)‖L2, which depends on the data point xi considered, thus expresses
where the neighborhood of xi lies, between these two extremes (all xj very different from xi, or all
identical).

Note: the results above remain valid when the output is higher-dimensional, under the supplementary
assumption that the covariance matrix of the noise is proportional to the Identity matrix (i.e., the
noises on the various coefficients of the label vector are independent from each other, and follow the
same law, with standard deviation σε). If not, the expression for covarε (Ek[ε]) is more complex,
as Σε and kINθ interact. Note that when the output is of dimension d, the kernel kINθ (xj ,xi)

is a d × d matrix, thus the denoising factor
∥∥kINθ (·,xi)

∥∥2
L2

has to be replaced with the matrix∑
j k

IN
θ (xj ,xi) k

IN
θ (xj ,xi)

T , which can be summarized by its trace, which is the L2 norm of the

Frobenius norms:
∥∥∥∥∥kINθ (·,xi)

∥∥
F

∥∥∥2
L2

.

G.2 The function: gradient 7→ output is Lipschitz

Theorem 1 implies that the application: ∇θfθ(x)
‖∇θfθ(x)‖ 7→ fθ(x) is well-defined. We show here that this

application is also Lipschitz, with a network-dependent constant, under mild hypotheses.

We consider the same assumptions as in Theorem 1 : fθ is a real-valued network, whose last layer
is a linear layer or a standard activation function thereof (such as sigmoid, tanh, ReLU...), without
parameter sharing (in that last layer). We will also require that the derivative of the activation function
is bounded, which is a safe assumption for all networks meant to be trained by gradient descent.
Another, technical property (bounded input space) will be assumed in order to imply bounded
gradients. A side note indicates how to rewrite the desired property if the input space is not bounded.

Let x and x′ be any two inputs. We want to bound |fθ(x)− fθ(x′)| by ‖u − u′‖2 times some
constant, where u = ∇θfθ(x)

‖∇θfθ(x)‖ and u′ = ∇θfθ(x′)
‖∇θfθ(x′)‖ .

Let us denote the non-normalized gradients by v = ∇θfθ(x) and v′ = ∇θfθ(x′). We have u = v
‖v‖

and u′ = v′

‖v′‖ .

21

We will proceed in two steps: bounding |fθ(x)− fθ(x′)| by ‖v − v′‖2, and then ‖v − v′‖2 by
‖u− u′‖2. The first step is easy and actually sufficient to bound with a non-normalized similarity
kernel kθ = v ·v′ the shift from the average prediction in the neighborhood. The second step provides
a more elegant bound, in that it makes use of the normalized similarity kernel kCθ = u · u′, but that
bound is a priori not as tight and requires more assumptions.

Case where the last layer is linear

The output of the network is of the form

fθ(x) =
∑
i

wiai(x) + b ,

where wi and b are parameters in R and ai(x) activities from previous layers. Thus:

|fθ(x)− fθ(x′)| =

∣∣∣∣∣∑
i

wi (ai(x)− ai(x′))

∣∣∣∣∣
6 ‖w‖2 ‖a(x)− a(x′)‖2

6 ‖w‖2
√∑

i

(vi − v′i)2

where the sum is taken over parameters i in the last layer only, using the fact that activities ai in the
last layer are equal to some of the coefficients of the gradient: vi := ∂fθ(x)

∂wi
= ai(x).

Note that the derivative with respect to the shift b is vb := ∂fθ(x)
∂b = 1, which ensures that the norm

of v is at least 1. This implies:

‖u− u′‖2 > |ub − u′b| =

∣∣∣∣ 1

‖v‖
− 1

‖v′‖

∣∣∣∣
which, combined with:

|vi − v′i| = ‖v′‖
∣∣∣∣ 1

‖v′‖
vi −

v′i
‖v′‖

∣∣∣∣ = ‖v′‖
∣∣∣∣ui − u′i +

(
1

‖v′‖
− 1

‖v‖

)
vi

∣∣∣∣
yields:

|vi − v′i| 6 ‖v′‖
(
|ui − u′i | + ‖u− u′‖2 |vi|

)
6 ‖v′‖ ‖u− u′‖2 (1 + |vi|)

from which we finally obtain:

|fθ(x)− fθ(x′)| 6

‖w‖2 ‖v′‖√∑
i

(1 + |vi|)2

 ‖u− u′‖2

which is the bound we were searching for. For the term between brackets to be bounded by a network-
dependent constant, one can suppose for instance that the derivative of the activation functions is
bounded (which is usually the case for networks meant to be trained by gradient descent), and that
the input space is bounded as well; in such cases indeed all coefficients of the gradient vector v or v′
are bounded, as derivatives of a function composed of constant linear applications (except for the first
layer which is a linear application whose factors are bounded inputs, when seen as an application
defined on parameters) and of bounded-derivatives activation functions.

Note for unbounded input spaces: If the input space is not bounded, the gradients are not bounded
absolutely, as for instance the gradient with respect to a weight in the first layer is the input itself
(times a chain product). In that case the application x 7→ v still satisfy a bound of the form
‖v‖ 6 (1 + ‖x‖)A, with A a network-dependent constant (product of determiners of layer weight
matrices and of the bound on activation function derivatives to the power: network depth), and thus
the application u 7→ fθ(x) still satisfies a bound of the form, for any x, x′:

|fθ(x)− fθ(x′)| 6 B (1 + ‖x‖) (1 + ‖x′‖) ‖u− u′‖2 .

22

The last statement in the paper then becomes∣∣ E
k
[ŷi − ŷ]

∣∣ 6
√

2B (1 + ‖xi‖) max
j

(1 + ‖xj‖) E
k

[√
1− kCθ (xi, ·)

]
which in practice rewrites as the original formulation:∣∣ E

k
[ŷi − ŷ]

∣∣ 6
√

2C E
k

[√
1− kCθ (xi, ·)

]
by taking C = Bmaxj (1 + ‖xj‖)2, considering the actual diameter of the given dataset.

Case where the last layer is an activation function of a linear layer

The output of the network is of the form

fθ(x) = σ

(∑
i

wiai(x) + b

)
,

and, as the derivative of σ is assumed to be bounded, and as the weights wi are fixed, fθ(x) is a
Lipschitz function of the last layer activities ai(x). Therefore:

|fθ(x)− fθ(x′)| 6 K ‖a(x)− a(x′)‖2 .
We will denote by α and α′ the derivatives with respect to the shift b, which are this time:

α := vb :=
∂fθ(x)

∂b
= σ′

∣∣∣∣∑
i wiai(x)+b

and α′ := v′b :=
∂fθ(x

′)

∂b
= σ′

∣∣∣∣∑
i wiai(x

′)+b

.

We proceed as previously:

‖u− u′‖2 > |ub − u′b| =

∣∣∣∣ α‖v‖ − α′

‖v′‖

∣∣∣∣
which, combined with:

|ai − a′i| =

∣∣∣∣viα − v′i
α′

∣∣∣∣ =
‖v′‖
α′

∣∣∣∣ α′

α‖v′‖
vi −

v′i
‖v′‖

∣∣∣∣ =
‖v′‖
α′

∣∣∣∣ui − u′i +
vi
α

(
α′

‖v′‖
− α

‖v‖

) ∣∣∣∣
yields:

|ai − a′i| 6
‖v′‖
α′

(
|ui − u′i | + ‖u− u′‖2 |ai|

)
6
‖v′‖
α′

(1 + |ai|) ‖u− u′‖2
from which we finally obtain:

|fθ(x)− fθ(x′)| 6

K ‖v′‖
α′

√∑
i

(1 + |ai|)2

 ‖u− u′‖2 .

Note that α′ is actually a factor of each coefficient of v′, as the derivative of fθ(x′) with respect
to any parameter is a chain rule starting with ∂fθ(x

′)
∂b = σ′

∣∣∣∑
i wiai(x

′)+b
= α′. To bound the term

between brackets, the same assumptions as previously are sufficient. One can assume that α and α′
are not 0, as, if they are, the problem is of little interest (u or u′ being then not defined).

G.3 Additional proof detail

The kernel kCθ (x,x′), by definition, is the L2 inner product between two unit vectors:

kCθ (x,x′) =
∇θfθ(x)

‖∇θfθ(x)‖
· ∇θfθ(x

′)

‖∇θfθ(x′)‖
.

As, for any two unit vectors a and b:
‖a− b‖2 = a2 + b2 − 2 a · b = 2 (1− a · b) ,

we get: ∥∥∥∥ ∇θfθ(x)

‖∇θfθ(x)‖
− ∇θfθ(x′)
‖∇θfθ(x′)‖

∥∥∥∥ =
√

2
√

1− kCθ (x,x′) .

23

G.4 Data augmentation as a label denoising technique

Data augmentation can be seen as label denoising, as it multiplies the number of neighbors. Indeed,
in the infinite sampling limit, where the dataset becomes a probability distribution over all possible
images, adding a transformed copy x′ = Tφ x of a given point x (e.g. rotating it with an angle αφ
and adding small noise εφ) means adding (x′, l(x)) to the dataset, where l(x) is the desired label for
x. But if (x′, l(x′)) was already in the dataset, this amounts to enriching the possible labels for x′.
Supposing Tφ is an invertible transformation parameterized by φ, full data augmentation (i.e. for all
possible φ, applied on all points x) enriches x′ with all labels l(T−1φ (x′)). In case of i.i.d. label noise,
data augmentation will thus reduce this noise by a factor

√
number of copies.

24

250 500 750 1000 1250 1500 1750 2000

Neighbors soft
0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

↑ ↑ ↑ ↑
↑

↑

↑

↑

↑

↑

(a) Round 1

2000 2200 2400 2600 2800

Neighbors soft
0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

↑ ↑ ↑ ↑ ↑
↑

↑

↑

↑

↑

(b) Round 2

600 800 1000 1200 1400 1600 1800 2000

Neighbors soft
0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

↑ ↑
↑

↑
↑

↑

↑

↑

↑

↑

(c) Round 3

Figure 11: Histogram of the soft estimate of neighbors on 3045 patches. Horizontal scale is different
for each.

25

Source 1 0.933 0.838 0.804 0.749 0.748 0.741 0.704 0.699 0.687

Source 1 0.628 0.623 0.622 0.61 0.61 0.609 0.605 0.583 0.569

Source 1 0.867 0.795 0.79 0.776 0.745 0.743 0.721 0.713 0.704

Source 1 0.844 0.829 0.816 0.813 0.808 0.803 0.786 0.783 0.783

Source 1 0.752 0.737 0.729 0.722 0.718 0.71 0.709 0.707 0.707

Source 1 0.676 0.669 0.665 0.664 0.662 0.651 0.65 0.648 0.645

Source 1 0.834 0.83 0.82 0.818 0.817 0.816 0.815 0.813 0.8

Source 1 0.791 0.779 0.777 0.776 0.776 0.773 0.769 0.767 0.766

Source 1 0.905 0.882 0.881 0.88 0.879 0.876 0.875 0.871 0.867

Source 1 0.946 0.944 0.938 0.936 0.933 0.931 0.931 0.927 0.924

Figure 12: Round 1: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.11 for that round.

26

Source 1 0.736 0.731 0.724 0.724 0.723 0.722 0.72 0.72 0.719

Source 1 0.836 0.831 0.828 0.82 0.813 0.811 0.811 0.81 0.806

Source 1 0.875 0.873 0.867 0.858 0.85 0.844 0.84 0.84 0.838

Source 1 0.911 0.91 0.9 0.897 0.897 0.897 0.892 0.887 0.886

Source 1 0.899 0.89 0.89 0.884 0.882 0.881 0.881 0.877 0.876

Source 1 0.903 0.901 0.9 0.899 0.899 0.898 0.897 0.896 0.896

Source 1 0.927 0.921 0.919 0.919 0.918 0.916 0.915 0.914 0.913

Source 1 0.946 0.939 0.939 0.939 0.934 0.933 0.931 0.929 0.928

Source 1 0.971 0.971 0.97 0.968 0.967 0.966 0.965 0.965 0.964

Source 1 0.989 0.989 0.988 0.988 0.988 0.987 0.987 0.986 0.986

Figure 13: Round 2: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.11 for that round.

27

Source 1 0.862 0.851 0.832 0.79 0.789 0.783 0.778 0.774 0.773

Source 1 0.887 0.879 0.862 0.857 0.851 0.841 0.834 0.826 0.825

Source 1 0.876 0.86 0.856 0.855 0.841 0.833 0.829 0.808 0.806

Source 1 0.753 0.738 0.735 0.728 0.726 0.725 0.723 0.722 0.718

Source 1 0.691 0.666 0.66 0.656 0.642 0.64 0.632 0.63 0.629

Source 1 0.788 0.78 0.777 0.777 0.773 0.773 0.771 0.769 0.768

Source 1 0.788 0.78 0.775 0.774 0.771 0.766 0.765 0.764 0.762

Source 1 0.777 0.774 0.77 0.763 0.761 0.759 0.758 0.754 0.749

Source 1 0.852 0.849 0.836 0.835 0.825 0.825 0.825 0.824 0.823

Source 1 0.873 0.871 0.871 0.871 0.868 0.865 0.863 0.863 0.862

Figure 14: Round 3: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.11 for that round.

28

(a) Round 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 358.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 525.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 699.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 875.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1053.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1232.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1411.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1590.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1769.0

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1947.7

(b) Round 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2020.2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2080.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2176.4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2268.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 2359.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2450.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2541.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2632.4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2723.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2814.6

(c) Round 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 523.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 675.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 816.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 960.0

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1106.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1252.4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1398.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1543.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1689.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1835.3

Figure 15: Histograms of similarities shown for the same 10 patches as Fig.11 and Fig.12, 13, 14.

29

Source 1 0.725 0.712 0.708 0.708 0.704 0.697 0.696 0.696 0.696

Source 1 0.847 0.837 0.828 0.809 0.807 0.806 0.804 0.799 0.787

Source 1 0.687 0.673 0.669 0.653 0.635 0.631 0.627 0.622 0.622

Source 1 0.785 0.781 0.781 0.781 0.774 0.769 0.767 0.759 0.759

Source 1 0.755 0.747 0.744 0.739 0.738 0.734 0.73 0.73 0.73

Source 1 0.83 0.83 0.818 0.818 0.817 0.815 0.815 0.813 0.813

Source 1 0.616 0.589 0.587 0.578 0.573 0.569 0.563 0.559 0.557

Source 1 0.721 0.715 0.708 0.705 0.705 0.7 0.699 0.698 0.691

Source 1 0.585 0.567 0.546 0.546 0.516 0.511 0.511 0.493 0.493

Source 1 0.76 0.76 0.759 0.758 0.758 0.754 0.754 0.752 0.752

Figure 16: Round 1: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.

30

Source 1 0.912 0.897 0.895 0.894 0.892 0.887 0.886 0.886 0.886

Source 1 0.932 0.93 0.926 0.925 0.92 0.92 0.919 0.919 0.919

Source 1 0.944 0.943 0.943 0.941 0.938 0.938 0.937 0.936 0.936

Source 1 0.921 0.919 0.917 0.915 0.914 0.913 0.912 0.911 0.908

Source 1 0.949 0.945 0.943 0.94 0.938 0.938 0.937 0.937 0.936

Source 1 0.914 0.909 0.907 0.906 0.904 0.904 0.902 0.9 0.9

Source 1 0.772 0.757 0.756 0.749 0.747 0.736 0.734 0.734 0.733

Source 1 0.855 0.855 0.855 0.855 0.855 0.855 0.854 0.854 0.853

Source 1 0.952 0.948 0.946 0.943 0.941 0.938 0.936 0.936 0.933

Source 1 0.97 0.968 0.968 0.967 0.967 0.964 0.964 0.963 0.963

Figure 17: Round 2:k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.

31

Source 1 0.746 0.733 0.733 0.732 0.71 0.705 0.703 0.702 0.702

Source 1 0.748 0.742 0.741 0.736 0.729 0.727 0.726 0.717 0.712

Source 1 0.914 0.881 0.864 0.841 0.839 0.815 0.788 0.783 0.775

Source 1 0.877 0.858 0.854 0.849 0.843 0.843 0.84 0.835 0.834

Source 1 0.819 0.818 0.81 0.804 0.802 0.783 0.779 0.769 0.768

Source 1 0.721 0.714 0.712 0.707 0.699 0.695 0.683 0.679 0.678

Source 1 0.921 0.891 0.887 0.877 0.855 0.851 0.839 0.839 0.818

Source 1 0.756 0.755 0.754 0.743 0.737 0.734 0.732 0.729 0.729

Source 1 0.932 0.931 0.921 0.865 0.864 0.862 0.82 0.792 0.791

Source 1 0.779 0.755 0.749 0.748 0.746 0.745 0.742 0.741 0.738

Figure 18: Round 3: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.

32

(a) Round 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1316.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 972.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1276.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1295.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1383.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1712.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 801.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1420.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 991.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1626.7

(b) Round 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2476.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2581.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2486.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 2474.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2628.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2573.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 1903.8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2452.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2484.2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 2732.4

(c) Round 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 898.2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 770.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 394.6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1101.4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 812.9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1376.1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq
ue
nc
y

Neighbors soft: 596.5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1104.7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 464.3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc
y

Neighbors soft: 1568.3

Figure 19: Histograms of similarities shown for the same 10 patches as in Fig.16, 17, 18. Same patch
selection across rounds. 33

	1 Motivation: Dataset self-denoising
	2 Similarity
	2.1 Notions of similarities
	2.2 Similarity from the point of view of the parameterized family of functions
	2.3 Properties for vanilla neural networks
	2.4 Properties for parameter-sharing networks

	3 Higher output dimension
	4 Estimating density
	4.1 Estimating the number of neighbors
	4.2 Low complexity of the soft estimate NS(x)
	4.3 Test of the various estimators
	4.4 Further potential uses for fitness estimation

	5 Enforcing similarity
	6 Dataset self-denoising
	6.1 Similarity experimentally observed between patches
	6.2 Comparison to the perceptual loss
	6.3 From similarity statistics to self-denoising effect estimation

	7 Conclusion
	A Code
	B Proofs of the properties of the 1D similarity kernel
	B.1 Proof of Theorem 1
	B.2 Proof of Corollary 1
	B.3 Proof of Theorem 2

	C Higher output dimension
	C.1 Derivation
	C.2 Normalized cross-correlation matrix
	C.3 Similarity in a single value
	C.4 Metrics on output: rotation-invariance

	D Estimating density
	D.1 Toy problem
	D.2 Other possible uses

	E Enforcing similarity
	E.1 Complexity
	E.2 Group invariance
	E.3 Dynamics of learning: Experimentation details

	F Noisy Map Alignment Analysis
	F.1 Soft estimate on a sampling of the training dataset
	F.2 Similarities on pairs of input patches

	G Proof details of the self-denoising effect quantification
	G.1 Magnitude of kernel-smoothed i.i.d. noise
	G.2 The function: gradient output is Lipschitz
	G.3 Additional proof detail
	G.4 Data augmentation as a label denoising technique

