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ABSTRACT

New challenges in remote sensing impose the necessity of de-
signing pixel classification methods that, once trained on a
certain dataset, generalize to other areas of the earth. This
may include regions where the appearance of the same type
of objects is significantly different. In the literature it is com-
mon to use a single image and split it into training and test sets
to train a classifier and assess its performance, respectively.
However, this does not prove the generalization capabilities
to other inputs.

In this paper, we propose an aerial image labeling dataset
that covers a wide range of urban settlement appearances,
from different geographic locations. Moreover, the cities in-
cluded in the test set are different from those of the training
set. We also experiment with convolutional neural networks
on our dataset.

Index Terms— High-resolution images, classification
benchmark, deep learning, convolutional neural networks.

1. INTRODUCTION

The problem of semantic labeling is of paramount importance
in remote sensing. It consists in the assignment of a class label
to every pixel in an image. Throughout the years of research,
a wide family of methods have been proposed, ranging from
the classification of individual pixels with machine learning
techniques, to the incorporation of higher-level information
such as shape features [1]. More recently, deep learning tech-
niques have gained attention, especially convolutional neural
networks (CNNs) [2, 3, 4].

Over the last few years, there has been a growing interest
in processing remote sensing imagery at a large scale, often
the entire earth at once [5]. New perspectives in remote sens-
ing have particularly highlighted this interest, such as the use
of aerial imagery for autonomous driving or delivery [5]. The
improvements in the algorithms, and the use of clusters and
GPUs have made the processing time less of a constraint. The
current challenge is to design methods that generalize to dif-
ferent areas of the earth, considering the important intra-class
variability encountered over large geographic extents.

The authors would like to thank CNES for initializing and funding the study.

A very common way of evaluating and comparing clas-
sification methods is to split the labeled data into two sets:
one used for training and the other one for testing. For exam-
ple, in the hyperspectral literature it is particularly common to
randomly extract certain pixels from the labeled data and use
them for training (ranging from as little as 50 pixels [6] to as
much as 20% of all the labeled data [7]), while the rest is used
for testing. The Pavia and Indian pines datasets [6] have be-
come the standard benchmarks in the hyperspectral literature.
They are mostly geared at distinguishing materials (e.g., bi-
tumen building and bricks), thus leveraging the properties of
hyperspectral imagery. However, those images cover limited
geographic areas and the evaluation procedure does not as-
sess how the methods generalize to different contexts or more
abstract semantic classes.

With the goal of comparing classification methods over
large areas, Mnih [2] created building and road classification
datasets over Massachusetts, covering 340 km2 and 2600 km2

respectively. For testing, several randomly selected tiles were
removed from the reference data. The training set thus covers
a geographic surface with “holes”, which are used for testing.
This situation is analogous to the procedure used for the afore-
mentioned hyperspectral datasets, though taken to a larger
scale. While the Massachusetts datasets indeed cover a large
surface with significant intra-class variability, the image tiles
tend to be self-similar and with uniform color histograms. As
shown in [2], a CNN trained on the Massachusetts dataset
generalizes poorly to images over Buffalo, and a fine-tuning
of the CNN to the new dataset is required.

In the context of high-resolution image classification, the
Vaihingen and Potsdam datasets [3] have gained increasing
attention over the last year. While they provide exhaustive
reference data with multiple object classes, the area covered
is limited (roughly 1.5 km2 and 3.5 km2 respectively). The
Bavaria and Aerial KITTI datasets [5], used for road labeling,
also cover small surfaces (5 km2 and 6 km2, respectively).

In our experience, and in accordance to [2], training a
classifier with images over a particular region and illumina-
tion conditions tends to generalize poorly to other images.
For example, Fig. 1 depicts a classification map over Zurich
into the building/not building classes, created by using a CNN
classifier trained over a semirural area in France [4]. We



Fig. 1: A state-of-the-art CNN trained on a different dataset
misclassifies most of Lake Zurich as a building.

can observe Lake Zurich being mostly classified as build-
ing. Even though there were buildings and body waters in
the French imagery, the CNN seems to have learned what a
building looks like in that particular imagery and not simply
what a building looks like.

The purpose of this work is to provide a common frame-
work to evaluate classification techniques and, in particular,
their generalization capabilities. We created a benchmark
database of labeled imagery that covers varied urban land-
scapes, ranging from highly dense metropolitan financial
districts to alpine resorts. The data, referred to as the Inria
Aerial Image Labeling Dataset1, includes urban settlements
over the United States and Austria, and is labeled into build-
ing and not building classes. Contrary to all previous datasets,
the training and test sets are split by city instead of excluding
random pixels or tiles. This way, a system trained, for ex-
ample, on Chicago, is expected to classify imagery over San
Francisco (with a significantly different appearance). The test
set reference data is not publicly released, and a contest has
been launched for researchers to submit their results.

2. THE DATASET

One of the first key points to decide when creating the dataset
was which geographic areas to include and which semantic
classes to consider. The criteria were as follows:

• Recent orthorectified imagery available;
• Recent official cadastral records available;
• Precise registration between the cadastral records and

the orthorectified imagery;
• Open-access data, both for the images and the cadaster

(free to access and distribute);
• Cover varied urban landscapes and illumination.

Let us first highlight the fact that we can only focus on regions
where both the images and the reference data are available.
In addition, we require the data to be open access in order
to freely share our derived dataset with the community. Af-
ter extensive research, we found that certain US and Austrian
areas satisfy those requirements. In the case of the US, pub-
lic domain orthoimages have been released by USGS through
the National Map service (nationalmap.gov) in most urban

1project.inria.fr/aerialimagelabeling

Train Tiles* Total area
Austin, TX 36 81 km2

Chicago, IL 36 81 km2

Kitsap County, WA 36 81 km2

Vienna, Austria 36 81 km2

West Tyrol, Austria 36 81 km2

Total 180 405 km2

Test Tiles* Total area
Bellingham, WA 36 81 km2

San Francisco, CA 36 81 km2

Bloomington, IN 36 81 km2

Innsbruck, Austria 36 81 km2

East Tyrol, Austria 36 81 km2

Total 180 405 km2

Table 1: Dataset statistics. *Tile size: 15002 px. (0.3 m resolution).

areas of the country. Vectorial cadastral records have been re-
leased through local or statewide geographic information sys-
tem (GIS) websites. We must focus on the zones where such
reference data are available in addition to the images.

In the case of Austria, the different provinces have shared
images through their respective GIS agencies. We focus, in
particular, on Tyrol and Vienna provinces, since open vecto-
rial cadastral data are also on hand. We obtained the images
through the WMS services provided by the GIS departments2

as well as the associated reference shapefiles.
The original US imagery is provided at either 15 or 30

cm resolution with three or four spectral bands (RGB/RGB-
Infrared), depending on the area, and Vienna imagery con-
tains three bands (RGB) at a resolution of 10 or 20 cm. We
took out the common factor and built our dataset with 30 cm
images (average resampling if needed) and the RGB bands.

We consider two semantic classes: building and not build-
ing. For this we must extract the so-called building footprints
from the cadaster. While there are other classes present in
some areas (e.g., trees and roads), the building class is the
only one that is consistent across different areas. Roads, for
example, are often represented with a line, but it is very often
not located at the center of the road and its width is usually
not specified. This makes it difficult to derive a pixelwise se-
mantic labeling for roads, and is an active research problem
itself [5].

Once we selected a number of candidate areas for the
dataset, we visually inspected them to assess whether the
cadaster is properly aligned with the images. In some re-
gions, there are irregular shifts that led us to exclude them
(e.g., Seattle and Spokane cities). This may be the result of
errors or imprecision in the terrain model used to orthorectify
the images, or in the digitization of the cadaster. Note that
we have only considered official image and cadaster data
sources, ignoring, e.g., OpenStreetMap (OSM) data.

The regions included in the dataset and their distribution
into training and test subsets is depicted in Table 1. Note first
that the amount of data in each of the subsets is the same. This
stresses our goal of properly assessing classification methods
that generalize to different areas and images. The regions
were split in such a way that each of the subsets contains
both European and American landscapes, as well as high-
density (e.g., Chicago/San Francisco and Vienna/Innsbruck)

2https://gis.tirol.gv.at/arcgis/services/Service Public/orthofoto/MapServer/
WMSServer; http://maps.wien.gv.at/wmts/1.0.0/WMTSCapabilities.xml
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Fig. 2: Close-ups of the dataset images and their corresponding reference data.

and low-density (e.g., Kistap/Bloomington, West/East Tyrol)
urban settlements. While aerial images over Tyrol are present
in both subsets, they have been obtained at different flights
over the country, thus showing different illumination char-
acteristics. We have also selected dissimilar images inside
some of the groups (e.g., Kitsap County contains tiles from
two different flights with very dissimilar characteristics). The
reference data was created by rasterizing the shapefiles with
GDAL. Fig. 2 shows closeups of the images in the dataset.

We consider two evaluation measures to assess the perfor-
mance of different methods on the dataset. First, the accuracy,
defined as the percentage of correctly classified pixels. Sec-
ondly, the intersection over union (IoU) of the positive (build-
ing) class. This is defined as the number of pixels labeled as
building in both the prediction and the reference, divided by
the number of pixels labeled as building in the prediction or
the reference. The IoU has become the standard in seman-
tic segmentation [8], since accuracy favors methods that do
not take the risk of assigning pixels to minority classes. It
is therefore particularly useful in imbalanced datasets such as
ours. We compute accuracy and IoU on the overall dataset
and for every region independently (e.g., San Francisco).

3. EXPERIMENTS

We experimented with convolutional neural networks on the
dataset3. We created a validation set by excluding the first
five tiles of each area from the training set (e.g., Austin{1-
5}). Such validation set may be useful to assess the conver-
gence of the networks or to perform preliminary comparisons
of different methods without the need to submit the results to
the contest. We first trained a base fully convolutional net-
work (FCN) [8], from which we then derived other architec-
tures. An FCN is composed of a series of convolutional lay-
ers with learnable parameters, interleaved with subsampling
layers. Subsampling increases the receptive field (i.e., the
amount of context considered to make a prediction) but at the
same time reduces the spatial resolution of the output. Since
3Code and trained models: github.com/emaggiori/CaffeRemoteSensing
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Fig. 3: MLP network for semantic labeling.

we must naively upsample the classification maps, the result
is expected to be overly fuzzy or “blobby”. We train the FCN
proposed for Postdam imagery in [9] for 120,000 iterations on
randomly sampled patches of our dataset (momentum is set to
0.9, the L2 penalty to 0.0005 and the learning rate to 0.001).

To provide a finer classification, we derived a so-called
MLP network on top of the base FCN, as explained in [9].
This network, illustrated in Fig. 3, extracts intermediate fea-
tures from the base FCN (which convey information at dif-
ferent resolutions and with different receptive fields). The
feature maps are upsampled to match the resolution of the
highest-resolution maps, and concatenated to create a pool of
equally important features. This way, both broad but impre-
cise features and local but fine features are considered. To
produce the final classification map, a multi-layer perceptron
(MLP) takes the pool of features and learns how to combine
them. The MLP is simply a neural network with one hid-
den layer, applied to every pixel individually. The pretrained
FCN mentioned earlier is used to initialize the correspond-
ing parameters in the network of Fig. 3, and then the overall
system is trained for an extra 250,000 iterations, which takes
50 hours on a single GPU. We start with a learning rate of



Austin Chicago Kitsap Co. West Tyrol Vienna Overall
FCN IoU 47.66 53.62 33.70 46.86 60.60 53.82

Acc. 92.22 88.59 98.58 95.83 88.72 92.79
Skip IoU 57.87 61.13 46.43 54.91 70.51 62.97

Acc. 93.85 90.54 98.84 96.47 91.48 94.24
MLP IoU 61.20 61.30 51.50 57.95 72.13 64.67

Acc. 94.20 90.43 98.92 96.66 91.87 94.42

Table 2: Numerical eval. on small validation set.

Belling. Bloom. Inns. S. Francisco East Tyrol Overall
FCN IoU 44.83 35.38 36.50 44.92 43.69 42.19

Acc. 94.48 94.07 92.97 82.60 95.14 91.85
Skip IoU 52.91 46.08 58.12 57.84 59.03 55.82

Acc. 95.14 94.95 95.16 86.05 96.40 93.54
MLP IoU 56.11 50.40 61.03 61.38 62.51 59.31

Acc. 95.37 95.27 95.37 87.00 96.61 93.93

Table 3: Numerical evaluation on test set.

0.0001, and we multiply it by 0.1 every 50k iterations.
The numerical results are summarized in Tables 2 and 3,

for the validation and test sets, respectively. We also include
the performance of a skip network, which is an alternative
way of combining features to refine the predictions of a coarse
base FCN (see [9]). Fig. 4 includes close-ups of the classifi-
cation on the test set, i.e., on regions never “seen” by the neu-
ral network at training time. While the FCN produces fuzzy
results, it successfully identifies buildings in varied images.
The MLP network provides finer outputs, as confirmed both
numerically and visually.

The MLP network reaches about 60% IoU on the entire
test set. This means that the output objects overlap the real
ones by 60%, as assessed over a significant amount of test
data. While there is certainly room for improvement, these
values suggest that the current network does generalize well
to different cities.

4. CONCLUDING REMARKS

We created a dataset for the semantic labeling of aerial im-
ages. This dataset highlights the need for methods that gener-
alize to the dissimilar appearance of urban settlements around
the earth. Contrary to previous work, the testing is not per-
formed over excluded areas of the training surface, but over
entirely different cities instead. We cover a wide range of ur-
ban densities, on both European and American cities.

Our preliminary experiments with deep neural networks
show their satisfactory generalization capability. We hope
these results will constitute a baseline for future work and our
dataset to be used as a benchmark for comparisons.
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