
Optimizing Partition Trees for Multi-Object

Segmentation with Shape Prior

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat

To cite this version:

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat. Optimizing Partition Trees for
Multi-Object Segmentation with Shape Prior. 26th British Machine Vision Conference, Sep
2015, Swansea, United Kingdom. <hal-01182776>

HAL Id: hal-01182776

https://hal.inria.fr/hal-01182776

Submitted on 3 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

A partition tree is a hierarchical representation of an image. Once constructed, it can
be repeatedly processed to extract information. Multi-object multi-class image segmen-
tation with shape priors is one of the tasks that can be efficiently done upon an available
tree. The traditional construction approach is a greedy clustering based on color simi-
larities. However, not considering higher level cues during the construction phase leads
to trees that might not accurately represent the underlying objects in the scene, inducing
mistakes in the later segmentation. We propose a method to optimize a tree based both
on color distributions and shape priors. It consists in pruning and regrafting tree branches
in order to minimize the energy of the best segmentation that can be extracted from the
tree. Theoretical guarantees help reducing the search space and make the optimization
efficient. Our experiments show that we succeed in incorporating shape information to
restructure a tree, which in turn enables to extract from it good quality multi-object seg-
mentations with shape priors.

1 Introduction
The multi-object segmentation of images is one of the great challenges in computer vision.
It consists in the simultaneous partitioning of an image into regions and in the assignment
of labels to each of the segments. It contemplates the existence of many objects of possibly
different classes in the same image.

In the last years, hierarchical partitions have been intensively used in different domains.
The overall idea is to represent an image as a tree of hierarchical partitions, which is later
processed to extract meaningful information. The construction of a high quality hierarchical
representation is useful per se, given that it allows to repeatedly explore the data at different
scales and for different purposes, at a low computational cost. Visual browsing [21], object
localization [29] and depth ordering [19] are some of the activities that can be efficiently done
upon an already available hierarchical representation. Binary partition trees (BPTs) [21] are
a particularly efficient structure for this purpose. In our context, multi-object segmentations
can be extracted from such trees by selecting scales in different branches.

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Salembier and Garrido} 2000

Citation
Citation
{Vilaplana, Marques, and Salembier} 2008

Citation
Citation
{Palou and Salembier} 2011

Citation
Citation
{Salembier and Garrido} 2000



2 MAGGIORI ET AL.: OPTIMIZING PARTITION TREES FOR SEGMENTATION

The introduction of shape descriptors into segmentation significantly improves its quality
[5]. However, it is difficult to optimize energies that involve shape priors because of their
non-local nature [14]. BPTs can be easily augmented to include shape information, but
their traditional greedy construction approach does not yield a good utilization of the shape
constraints.

In this work we exploit the idea of iteratively optimizing the structure of BPTs to produce
better partitions with shape priors. Our contribution is two-fold:

• we propose a framework for multi-class multi-object segmentation with shape priors
based on optimized BPTs,

• our technique enhances BPTs so that they can better represent the underlying scenes.

2 Related work
A number of techniques to include shape features in segmentation have been presented. We
here deal with discriminative features (e.g. compactness, ellipticity) rather than strict tem-
plate matching. In this direction, a number of works have managed to express certain features
in submodular energy terms that can be minimized by s-t cuts (star-shape [28], compactness
[6, 8]), though this is not feasible for any feature. The trust regions framework [10] has
been adapted for certain high order priors (volume and shape moments [10], convexity [11]),
though it requires a linear approximation of the energy around the current solution, which
might not be straightforward for other priors (e.g. rectangularity index). Moreover, these
techniques do not contemplate the occurrence of multiple object instances. It is required
to isolate every object (with prior knowledge on its location) and segment it individually,
otherwise the existence of multiple instances is penalized by the shape prior itself.

Regarding BPTs, recent works have included shape descriptors into the structure [26, 29].
However, due to the traditional greedy construction approach, it is very likely that nodes in
the BPT will not represent complete significant objects [16, 29]. Enhanced construction
functions (e.g., [13, 24, 29]) can only alleviate the effect. Shape information cannot be used
at construction: the ultimate shape of an object in a branch cannot be predicted by a portion
of it. As a result, the criteria used at construction and at processing are different (as in
[26, 29]), which limits the feasibility of the tool as it is to perform segmentation with shape
prior.

Possibly the most related work has been done in the area of computational phylogenetics,
on the construction of phylogenetic trees [15]. Several traditional optimization algorithms
have been applied by performing local transformations on the tree structures to maximize
the so-called parsimony [9]. We have incorporated the idea of regrafting tree branches. Our
optimization objective is however different, and our context requires to define moves that
preserve the parent, child and spatial adjacency relations of BPTs.

3 Segmentation as an optimization problem
Let I = (I j)16 j6n be an input image containing n pixels. We suppose we are given a set of
possible object classes, as well as priors for each class. Multi-label segmentation consists in
the partitioning of the pixels into a non-overlapping set of regions R = (Ri), together with
associated class labels L= (Li). It can be stated as an optimization problem: minimize

Citation
Citation
{Cremers, Tischh{ä}user, Weickert, and Schn{ö}rr} 2002

Citation
Citation
{Lempitsky, Blake, and Rother} 2008

Citation
Citation
{Veksler} 2008

Citation
Citation
{Das, Veksler, Zavadsky, and Boykov} 2009

Citation
Citation
{Funka-Lea, Boykov, Florin, Jolly, Moreau-Gobard, Ramaraj, and Rinck} 2006

Citation
Citation
{Gorelick, Schmidt, and Boykov} 2013

Citation
Citation
{Gorelick, Schmidt, and Boykov} 2013

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014

Citation
Citation
{Valero, Salembier, and Chanussot} 2013

Citation
Citation
{Vilaplana, Marques, and Salembier} 2008

Citation
Citation
{Lu, Woods, and Ghanbari} 2007

Citation
Citation
{Vilaplana, Marques, and Salembier} 2008

Citation
Citation
{Kurtz, Passat, Gancarski, and Puissant} 2012

Citation
Citation
{Tilton and Pasolli} 2014

Citation
Citation
{Vilaplana, Marques, and Salembier} 2008

Citation
Citation
{Valero, Salembier, and Chanussot} 2013

Citation
Citation
{Vilaplana, Marques, and Salembier} 2008

Citation
Citation
{Li and Lippman} 2009

Citation
Citation
{Giribet} 2007



MAGGIORI ET AL.: OPTIMIZING PARTITION TREES FOR SEGMENTATION 3

E(R,L) = EC(I,R,L)+
|R|

∑
i=1

ES(Ri,Li), (1)

where EC expresses the color prior (quantifying how much the segmentation fits the image
colors), and ES, the shape prior. We have here assumed equal class occurrence probabilities.
The reader is referred to the supplementary material for a formulation in the general case.

For each object class, we suppose we are given training examples, from which the color
distribution can be estimated and used as a prior. Given a candidate segmentation (R,L), let
us denote by LR( j) the label of the region containing a pixel j. The color prior is:

EC(I,R,L) =
n

∑
j=1
− logP(LR( j)|I j). (2)

One way of obtaining the posterior P(LR( j)|I j) is to train classifiers based on the samples’
colors, using support vector machines (SVM), and to extend them to output probability esti-
mates as usual in classification problems [30].

Similarly, the shape prior term is defined as follows:

ES(Ri,Li) =−|Ri| logP(Li|Si), (3)

|Ri| being the area of region Ri, and P(Li|Si) being the probability of assigning the label Li
to the region Ri, given a vector Si of shape features of that region. Traditional regularization
(such as boundary length [18]) can be incorporated as part of this term. The weight on the
area makes the per-pixel contribution of the color prior and the per-region contribution of the
shape prior equally important.

We wish to enrich the nodes of BPTs by including shape information of the regions.
Given that the optimization of the trees will involve recomputing region descriptors, we must
design a pool of features that can be computed efficiently from children nodes. We propose
to store the convex hull of the region at every node. When two regions are merged, the
convex hull of the new region can be computed by merging the convex hulls of its children.
This can be done in linear time in the size of the input polygons by using rotating calipers
[25]. Many useful shape descriptors can be derived from the convex hull. Solidity is the
ratio between the area of a shape and the area of its convex hull, and is useful to measure the
convexity of the object [31]. The minimum area enclosing rectangle (sized w×h) of a region
R is efficiently computed from the convex hull [25], and other descriptors are derived after it,
such as rectangularity index (|R|/(h ·w)) and elongatedness (w/h) [31]. In a balanced tree,
which is enforced by our construction function, convex hulls incur in an O(n log(n)) increase
of the storage required and their computation does not increase the complexity of tree con-
struction (proofs in suppl. material). Another useful shape descriptor is compactness [17],
related to the resemblance to a circle. It is typically defined as δR2/(4π|R|), where δR is the
perimeter of R. However, this formulation imposes difficulties in a discrete environment [17]
due to the fact that the error in the estimation of δR does not converge. In [24] the authors
proved the robustness of computing compactness as |R|2/(2πIg), Ig being the moment of in-
ertia of the shape with respect to its centroid. Given that the centroid and moment of inertia
of a region can be computed in constant time from the children, we propose this method to
measure compactness in BPTs.

Let us suppose a probability density function p(s|L) is available for every feature and
class. These densities can be obtained by smoothing histograms of training samples [23].
Let us call S = s1, ...,sm a vector of shape features. Assuming features’ conditional indepen-
dence, we have (see suppl. materials for proof):
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(a) BPT and segmentation by pruning. (b) Faulty BPT, an object (bcde)
not represented in a single node.

Figure 1: Binary partition trees.

P(L|S) ∝

m

∏
k=1

P(L|sk) =
m

∏
k=1

p(sk|L)
∑

L j∈L
p(sk|L j)

. (4)

Combining Eq. (1), (2) and (3), the energy criterion to minimize is formulated as:

E(R,L) =−
|R|

∑
i=1

(
∑
j∈Ri

logP(Li|I j)+ |Ri| logP(Li|Si)

)
. (5)

4 Building and processing a partition tree
In this section we show how to build a first candidate solution to the problem (5), in a bottom-
up manner, before presenting our optimization approach (Section 5).

4.1 Building a partition tree
Our initialization involves the construction of a BPT, without any introduction of shape infor-
mation. BPTs are built by using a bottom-up region merging approach [2]. At each iteration,
the two most similar regions are merged into a bigger one and a node representing the new
region is added to the BPT, connected to its two corresponding children (see Fig. 1a). The
final tree contains exactly 2n−1 nodes, where the root node will represent the whole image,
the following level the subdivision of the image into two disjoint regions, and so on. The
complexity of BPT construction is O(n log(n)M) [12], n being the initial number of nodes
and M the maximum number of neighbors of a region during the construction. Given that
typically M� n, the algorithm is quasilinear in practice.

To measure the color similarity between regions we propose to use the mean of Earth
Mover’s Distances [20] among histograms of every color channel, denoted by EMD(Ri,R j).
The time to compare histograms is constant w.r.t. region areas. To cope with internal class
variability (e.g., objects composed by areas of different colors) we include a term that acts as
a clustering force for similarly classified regions. Our dissimilarity function between regions
Ri and R j is then as follows:

D(i, j) = min(|Ri|, |R j|)(− logP(Li = L j)+λ EMD(Ri,R j)). (6)

The front factor is a typical weight on the area that enforces the balancing of the trees [4].
The first term is the probability of assigning the same class to the two regions: P(Li = L j) =

∑
Lk∈L

P(Lk|Ri)P(Lk|R j), where P(Lk|Ri) can be estimated either by averaging pixel probabil-

ities or by computing the probability of simultaneously assigning label Lk to all pixels in the

Citation
Citation
{Beaulieu and Goldberg} 1989

Citation
Citation
{Kurita} 1994

Citation
Citation
{Rubner, Tomasi, and Guibas} 1998

Citation
Citation
{Calderero and Marques} 2010



MAGGIORI ET AL.: OPTIMIZING PARTITION TREES FOR SEGMENTATION 5

region, conditioned by the fact that every pixel must be labeled equally. Parameter λ controls
the influence of each component.

4.2 Best segmentation representable by a given tree
Given that a BPT represents a hierarchy of possible segmentations, we now need to find
for any BPT the best possible segmentation that it contains w.r.t. criterion (5). This can be
interpreted as a horizontal s-t cut on the tree (see Fig. 1a), i.e. with a source at every leaf
and a sink at the root [22]. Let us denote τ a tree and C(τ) the energy of the cut on τ with
minimal (5) among all possible cuts. Our task is to find such a minimal cut.

Considering that the branches in the tree are independent, the globally optimal cut can be
found by a dynamic programming algorithm [22]. Let us denote E(R) =min

L∈L
E({R},{L}) the

lowest possible energy of a region R. The tree is traversed in a bottom-up manner. Whenever
a region R is visited, the following property is evaluated:

E(R)6C(Rle f t)+C(Rright), (7)

where Rle f t and Rright are the children of R. If the property does not stand, we set C(R) =
C(Rle f t)+C(Rright) and keep the best cuts of both children. Otherwise, we set C(R) = E(R)
and replace the cuts by R with label L. This is performed in linear time in the image size,
since only one BPT traversal is required, and guarantees the optimal cut.

4.3 Issues with unoptimized trees
Even though the globally optimal cut on a BPT can be found efficiently, the organization
of the nodes in the tree structure restricts the possible cuts that can be done on them. In
Fig. 1(b) a toy example illustrates this issue. Let us suppose that an aerial shot of a city
captures a house with a non-uniform roof. During the construction of the tree, a and b are
merged together because they feature the lower dissimilarity among every pair of regions. It
is a typical situation that parts of a roof might be more contrasting among themselves than
with other objects [1]. We must point out that at the moment a and b were merged, it was
impossible to know that b would eventually form a more significant object under a different
sequence of merges. The resulting tree does not allow to perform any cut that would include
the whole building into the same object, even using strong shape priors, given that it is split
through different branches. This is why we now propose to optimize the tree itself.

5 Optimizing the tree for better segmentation
To optimize the BPTs we follow a local search approach, in which a solution is iteratively
modified by performing local transformations on the trees, named moves.

We propose a move that performs a prune-and-paste of a branch into another part of the
tree. The pruned node must be pasted in a spatially adjacent location. Fig. 2(a) illustrates
such a move: α is the paste place and β is the pruning place. We denote by LCA(α,β ) their
lowest common ancestor in the tree. The move creates a new node αβ in the paste side that
comprises α and β . In the pruned side, the tree is collapsed after β is removed. In a balanced
tree, which is enforced by (6), the number of possible moves is bounded by O(n log(n)) (cf .
suppl. mat.). The neighborhood system is much richer than, for instance, MRFs on the pixel
grid, considering that it comprises pairs of adjacent regions at several scales.
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(a) Prune-and-paste move. (b) Alternative paste places (see text).

Figure 2: Family of moves to optimize BPTs.

We store at each node R the branch cost C(R) of the best possible cut within its branch.
When applying a move as depicted in Fig. 2(a), it is necessary to recompute the branch cost
C till the ancestry of α and β only. The rest of the branches are unaffected, as observed in
(7). Among the ancestry, only the nodes below LCA(α,β ) require to recompute their models
(shape and color features), given that further up the regions represented by the nodes do not
change. Thus we recompute the features (and thus E(R) and C(R)) only in that part of the
tree, and for the nodes in the tree above LCA(α,β ) we recompute only their branch cost
C(R), which simply involves reassessing (7) without reevaluating E(R) nor their features.

In a balanced tree there are at most O(log(n)) ancestors of α and β , and, as stated before,
for some of these ancestors the model of the regions must be updated. If we denote by K
the complexity of updating a model (i.e. merging two children), the computation of the new
costs C is O(K log(n)). Usually K� log(n), therefore the time is O(log(n)) in practice.

5.1 Properties of the moves
We will now explore some properties of the prune-and-paste move. In particular, we will
show that to find all possible energy decreasing moves we do not need to exhaustively eval-
uate the energy gain of every possible move.

Let us consider the situation of Fig. 2(b). In the second tree, a node was pasted at the
position τi. We wish to compare the effect of pasting higher instead (as in the third tree). Let
us denote by τi < τ j the is-a-descendant-of relation.

Proposition 1. Given a tree τ , suppose a node Rm is pasted at τi < τ1 leading to a new tree
ϕ . Let us consider an alternative move that pastes Rm at τ j, with τi < τ j < τ1, producing
a tree ψ . In the cases where either C(ϕ1)−C(τ1) 6 0 or C(Rm) > C(ϕ1)−C(τ1), then
C(ψ1)>C(ϕ1).

The proposition states that, if a move reduces the energy in the branch, a higher paste
place will not do better. Under certain assumptions, if the move increases the energy, pasting
higher will also increase it (cf . suppl. material). Intuitively, pasting lower is more general.

Proposition 2. Let us consider a case where Prop. 1 hypotheses do not apply. There might
then exist a higher paste place τα so that C(ψ1) < C(ϕ1). Let us suppose that instead of
pasting at τα we paste at τβ , with τα < τβ < τ1, leading to a tree ρ . Then C(ρ1) would
monotonously decrease as the paste place τβ is located higher.

When the hypotheses of Prop. 1 do not apply, there might exist a favorable paste place
higher in the branch. However, we know that the higher it is, the most beneficial it can be
(proof in suppl. material). As a result, we can just consider the highest possible paste place
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(a) Input
(457×454).

(b) Method [11]. (c) [11], on user-
supplied windows.

(d) BPT. (e) Optimized BPT.

Input. Gorelick et al
ω = 0.01.

Gorelick et al
ω = 0.001.

BPT opt.

(f) Amplified fragment.

Figure 3: Multiple convex objects (cell nuclei). Gorelick et al. [11] and BPT optimization.

(right below the LCA). However, any paste place between the location of the original cut and
the LCA would lead to the same energy (cf . suppl. material). These cases happen when it is
preferable to cut the pruned node apart. The higher we paste Rm, the less we condition the
way the rest of the tree must be cut.

Following these properties, an exhaustive search of energy decreasing moves can be
done as follows: for every possible pruning place we check the gain of the moves for only
the lowest paste places. In some cases, we do an additional check with the paste place at
some point between the cut and the LCA.

5.2 Optimization approach

We propose the following optimization scheme, which must be iterated:

1) Construct a heap of all moves according to the branch cost variation ∆C.
2) a) Either apply the best move, or

b) apply the best k moves (when still appropriate).

The first step involves exploring the whole search space, featuring an O(n log2(n)) com-
plexity. Moves are tested to measure the energy gain but are not applied. Propositions (1-2)
can be used to reduce the execution time of this step, and the evaluations of energy gain can
be done in parallel.

In the second step, energy decreasing moves are applied. As soon as a move is applied,
the tree is restructured and the effect of some other moves might be altered. New energy
decreasing moves might also arise. 2a) just applies the best move and reiterates. As a short-
cut, we can just update the entries in the heap of the moves that might have been affected.
This option is still costly because ∆C must be recomputed for any move that could have been
possibly affected, even though in practice this might be the case for just a few of them. This
approach guarantees to apply the best move each time. Considering the fact that there might
be many unrelated energy decreasing moves in the tree, 2b) proposes to apply a number k of
best moves, but verifying for each move that ∆C did not increase as a result of the previous
transformations done on the tree. This approach will apply a number of independent moves
first, ignoring the fact that some new energy decreasing moves might arise, which will be
dealt with in the next iteration. The loop stops when there are no more moves whose ∆C is
negative.

6 Experiments
In a first series of experiments we constrain our method to binary segmentation with con-
vexity shape prior, in order to compare it with a recent state-of-the-art technique designed
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(a) Input (225×180). (b) Reference: tiles, roads,
internal roads , veget., shadow.

(c) SVM. A = 0.64, D = 0.8. (d) GC. A = 0.68, D = 0.81.

(e) TC. A = 0.71, D = 0.71. (f) TSC. A = 0.65, D = 0.50. (g) Opt.k=1 A = 0.79, D = 0.89. (h) Opt.k=30 A = 0.79, D = 0.90.
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k Time[s] Time[s]
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1 707 334
30 23.08 9.02
50 12.47 4.69

(l) Execution time.

Figure 4: Experimental results for the satellite image over New York City (see text).

for this purpose. In a second series of experiments we move to multi-object multi-class seg-
mentation in remote sensing imagery and compare the behavior of our algorithm against the
usual techniques used in the domain.

An algorithm for a soft convexity shape prior in image segmentation was presented by
Gorelick et al. [11]. Fig. 3(a) shows a slice of a laser scanning microscopy image of brain
tissue, where we wish to identify cell nuclei (green markers). If we apply [11] to the whole
image with all the markers, the result is inaccurate because their method is not designed
to segment more than one object at a time (Fig. 3b). In Fig. 3(c) we overlap the result of
applying [11] to different fragments of the image that include each individual object (ω =
0.01 [11]). The technique individually outlines each of the nuclei in the absence of the rest,
but prior knowledge on their location is required.

We constructed a BPT on this image (λ in Eq. 6 is set to 1 in all the experiments). As
expected, the best-cut segmentation without optimizing the tree (Fig. 3d) is not competitive,
because many tree nodes do not satisfactorily represent objects. We ran our BPT optimiza-
tion approach with a data term learned from markers’ histograms and with density functions
favoring solidity and compactness for the foreground class, which convey the notion of con-
vexity. We sample moves that involve regions of at least ten pixels. In this case we apply all
energy decreasing moves in the queue at every iteration, which are in practice less than 10.
We did not impose hard constraints on the marker locations. After optimizing the BPT with
the method proposed in Sec. 5, each object is segmented individually and adjacent objects
are delineated separately (Fig. 3e). Our approach also produces accurate boundaries despite
the low foreground/background contrast. The method in [11] tends to either oversmooth
the boundary to enforce convexity, or produce a very non-convex object, depending on the
parameter ω (see the amplified nucleus in Fig. 3f).

In the context of multi-object multi-class segmentation, we tested our method on satellite

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014

Citation
Citation
{Gorelick, Veksler, Boykov, and Nieuwenhuis} 2014



MAGGIORI ET AL.: OPTIMIZING PARTITION TREES FOR SEGMENTATION 9

(a) Input (850×450). (b) BPT opt.

A D
SVM 0.764 0.50
GC 0.799 0.49
TC 0.804 0.47
Opt. 0.813 0.69

(c) Performance.

GC. BPT Opt.

(d) Fragments.

Figure 5: Experimental results for the satellite image over Brest (see text for details).

images of urban scenes extracted from Google Maps. Figs. 4(a) and 5(a) show two color
images acquired over New York City and the area of Brest, respectively. For both images,
the manual segmentation was based on cadastral records available through OpenStreetMap.
The list of the considered object classes is given in Fig. 4(b) (no instance of the internal road
class is present in the Brest image). In the particular case of buildings, cadastral information
was used to delineate every object independently even when they are spatially adjacent.

To evaluate the performance of the proposed method, we use two criteria:
1) Overall accuracy A, defined as the proportion of correctly classified pixels.
2) Building’s overlapD. For every building in the manually segmented image, we search

for the most overlapping building region in the segmentation map in terms of Dice’s coeffi-
cient [7]. The criterion D is estimated by averaging the computed coefficients.

An SVM with a Gaussian radial basis function kernel was used for the data term, tuned
by tenfold cross-validation [27]. The criterion (5) involved area, rectangularity and elon-
gatedness shape descriptors. The distributions were trained on a set of sample objects from
an adjacent image. In the area covered by these objects, 100 random pixels per class were
selected to train the SVM.

We compared the performance of the proposed approach with the following methods:
1) SVM; 2) graph cut with α-expansion [3] (GC); 3) cut on the BPT, regularized by the
number of regions without using shape priors (TC) [22]; 4) cut on the same BPT with our
shape formulation (5), but without tree optimization (TSC). Figs. 4(c–f) illustrate the out-
put of these techniques for the image of New York. Figs. 4(g–h) depict the results obtained
by applying our optimization method with different values of k (see Sec. 5.2). The SVM
classification exhibits many issues, notably the assignment of some roof parts to the wrong
class. GC and TC smooth the results though do not correct the main mistakes in the classifi-
cation. In the initial cut with shape priors on the unoptimized tree (TSC), some regions are
enhanced but some others are significantly deteriorated with respect to the previous methods.
This is due to the faulty tree construction that does not represent the entire objects in unique
nodes. Figs. 4(g–h) show that the optimization of the tree copes with these issues, not only
enhancing the initial cut on the tree but also outperforming the other techniques.

The evolution of the energy (5), the accuracy A and the building’s overlap D with re-
spect to the number of iterations are depicted in Figs. 4(i–k). As expected, the energy curve
becomes less smooth as k goes larger. For values of k small enough, the segmentation maps
are almost identical. This validates the fact that many branch moves are independent and can
be applied prior to reconstructing the heap.

BPT for this image is constructed in 1.25 seconds on an 8-CPU 2.7 GHz processor. The
optimization time, summarized in Fig. 4(l), is considerably faster with Props. 1-2.

Fig. 5 illustrates experimental results for the image of Brest. Our method was executed
with k = 600. Fig. 5(b) shows the obtained segmentation map. Two fragments of the map
(boxed in Fig. 5(b)) are amplified for comparison in Fig. 5(d). These results validate the
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previous observations. The BPT is built in 13 seconds and the optimization takes 84 seconds
using Props. 1-2 (against 214 s).

7 Conclusion
We have presented an algorithm to optimize BPTs with the ultimate goal of extracting accu-
rate multi-class multi-object image segmentations with shape priors. We prune and regraft
tree branches at different scales in order to minimize the energy of the best segmentation that
can be extracted from a tree. Our theoretical study permits to reduce the space of branch
moves.

If we see our contribution from the perspective of hierarchical partitions, we can state
that our method produces better trees that represent entire objects in single nodes, a major
concern reported in the BPT literature. If we see it from the perspective of multi-class multi-
object image segmentation, we can state that we have succeeded in incorporating shape
information throughout the segmentation process.

In addition to being an advantageous data structure per se (because it can be reused
for different goals), BPTs are a good departure point for optimization, since they allow to
perform moves of variable region sizes. In an MRF approach defined on the pixel grid,
each time we perform a move we would have to search for a relevant region to perform a
label switch (e.g., by using minimum spanning forests). A BPT dynamically stores a set of
candidate adjacent regions at different scales.

In the future, we intend to study possible extensions of the family of branch moves and
their associated theoretical guarantees. We also plan to extend the number of shape features
and to add hierarchical features, in order to incorporate further priors in tree enhancement
and segmentation.
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