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Optimizing deep video representation to match brain activity
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Abstract

The comparison of observed brain activity with the statis-
tics generated by artificial intelligence systems is useful to
probe brain functional organization under ecological condi-
tions. Here we study fMRI activity in ten subjects watching
color natural movies and compute deep representations of
these movies with an architecture that relies on optical flow
and image content. The association of activity in visual ar-
eas with the different layers of the deep architecture displays
complexity-related contrasts across visual areas and reveals
a striking foveal/peripheral dichotomy.
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Introduction

The understanding of brain functional architecture has long
been driven by subtractive reasoning approaches, in which
the activation patterns associated with different experimen-
tal conditions presented in event-related or block designs are
contrasted in order to yield condition-specific maps (Poline
& Brett, 2012). A more ecological way of stimulating sub-
jects consists in presenting complex continuous stimuli that
are much more similar to every-day cognitive experiences.

The analysis of the ensuing complex stimulation streams
proceeds by extracting relevant features from the stimuli and
correlating the occurrence of these features with brain ac-
tivity recorded simultaneously with the presentation of the
stimuli. The analysis of video streams has been carried in
(Eickenberg, Gramfort, Varoquaux, & Thirion, 2017) or (Guglu
& van Gerven, 2015) using a deep convolutional network
trained for image classification. More recently, (Gi¢li & van
Gerven, 2017) has used a deep neural network trained for ac-
tion recognition to analyze video streams.

Like (GUgli & van Gerven, 2017), we use a deep neural
network trained for action recognition to extract video features
and train a linear model to predict brain activity from these fea-
tures. In contrast, our study is not restricted to dorsal stream
visual areas but involves the whole brain, and the deep neural
network we use is pretrained on the largest action recognition
dataset available (Kay et al., 2017).

From the different layers of the deep neural networks, we
build video representations that allow us to segregate (1) oc-
cipital and lateral areas of the visual cortex (reproducing the

results of (GUgli & van Gerven, 2015)) and (2) foveal and pe-
ripheric areas of the visual cortex. We also introduce an effi-
cient spatial compression scheme for deep video features that
allows us to speed up the training of our predictive algorithm.
We show that our compression scheme outperforms PCA by
a large margin.

Methods
Deep video representation

We use a deep neural network trained for action recognition
to build deep representations of the Berkeley Video stimuli
(Nishimoto et al., 2011). This material consists of more than
four hours of color natural movies built by mixing video blocks
of 5-15 seconds in a random fashion.

The deep network we use is called Temporal Segment Net-
work (TSN) (Wang et al., 2016). Following an idea introduced
in 2014 (Simonyan & Zisserman, 2014) it was intended to
mimic the dorsal and ventral stream by separately process-
ing raw frames and optical flow fields. We chose TSN for our
experiments because it uses a much larger number of layers
than the original network (which results in higher accuracy in
action recognition) and that a version of TSN pretrained on
Kinetics — a massive video dataset (300 000 unique video
clips) with 400 different classes all describing a human and at
least 400 videos per class — is publicly available. The network
is trained to recognize human actions such as slack-lining,
skateboarding, massaging feet, dancing zumba and dining.

The version of TSN we use in our experiments is based
on Inception v3 (Szegedy, Vanhoucke, loffe, Shlens, & Wo-
jna, 2016) for both streams where small networks are used as
building blocks of the main large network (Lin, Chen, & Yan,
2013). Each stream in the TSN Network is composed of more
than 40 convolution layers and a fully connected layer. The
activities after the last layer represent the probability of be-
longing to each action class.

Feature extraction

The raw frames encode information about pixels, and flow
fields encode information about pixels displacements. Al-
though flow fields and raw frames streams do not precisely
disentangle spatial content and motion information in videos,



we may expect that the raw frames stream better represent
local spatial features while the flow fields stream more effi-
ciently convey dynamic information. Following (Eickenberg et
al., 2017) we consider that the activation statistics in the first
layers (the ones closer to those of the input) have a low level of
abstraction, whereas the last layers (closer to the labels) rep-
resent high-level information. Therefore each activity in both
streams can be considered as specific features or represen-
tations of the video.

If we were to extract all network activities of the Berkeley
Video Dataset we would need to store more than 6 millions
floats per frame in the dataset. Such a representation would
be highly redundant. In order to keep the volume of data
reasonable, in each stream we only focus on four convolu-
tional layers Li,L»,L3,Ls ranked by complexity. We further
compress the data using spatial smoothing, and use temporal
smoothing so that we get one representation every two sec-
onds of video, which allows us to match the acquisition rate of
fMRI scanners.

Regression

10 subjects were scanned while watching the color natural
movies of the Berkeley Video Dataset. The fMRI images were
acquired at high spatial resolution (1.5mm), from a Prisma
Scanner, using Multi-band and IPAT accelerations (mb fac-
tor=3, ipat=2). These data are part of a large-scale map-
ping project on a limited number of participants, called Human
Brain Charting. Data acquisition procedures and initial exper-
iments run in this project are described in (Pinho et al., 2018).
In order to link extracted deep video features to the internal
representation of videos in each subject we use a simple lin-
ear model to fit their brain activity in each voxel.

The use of a very simple model allows us to posit that the
performance of the predictive model from a particular video
representation is mostly linked to the suitability of the video
representation. Hence the performance of the algorithm can
be seen as a measure of the biological suitability of the video
representation.

We use a kernel ridge regression with an hyper-parameter
setting the magnitude of the |12-penalization on the weights.
The resulting prediction is obtained using a cross validation
procedure (11 sessions are used for train, 1 for test and at
least 5 different splits are considered). To set the value of the
hyper-parameter, we use a 5-fold cross validation on the train
set and consider 20 different values. During hyper parame-
ter selection, we only focus on the visual cortex to make this
computation efficient.

The chosen measure of performance of our prediction al-
gorithm is the coefficient of determination m,,. Let y,..q and
Yreal b€ the respectively the prediction of a voxel activity and
the real voxel activity. Then

Z;li] (ypred m — Yreal [t])z
Z?i] (Yreal [t] - W)z

The metric used to select the best parameter is the number of
voxels having a coefficient of determination m,, greater than

mcv(Ypredereal) =1-

TSN Network

Figure 1: Feature extraction and regression scheme: at each
time frame we compute and extract the activities of four layers
Ly,---,Ls of the temporal segment network on a single frame
and on a stack of 5 consecutive optical flow fields. The ex-
tracted activities are spatially and temporally down-sampled
and then used to predict brain activity of subjects exposed to
the video stimuli.

0.1. This procedure leads to different parameter values de-
pending on the chosen layer activities.

Figure 1 gives an overview of the pipeline used to extract
and process deep video features to estimate the brain activity
of subjects.

Results

The extracted deep network features lead to different pre-
diction performance depending on the down-sampling proce-
dure, the stream used and the localization of target voxels.

An efficient spatial compression scheme

We show that preserving the channel structure of the network
during spatial compression procedure is key for developing an
efficient compression scheme.

We compare three spatial compression schemes for net-
work activities: (1) Standard principal component analysis
(PCA) with 2000 components; the transformation is learned
on training sessions before it is applied to all sessions. (2) Av-
erage pooling inside channels (APIC) which computes local
means of activities located in the same channel. (3) Average
pooling inside and between convolution layers (APBIC) which
is used to get the same number of output features for all layers
while minimizing the number of convolutions between chan-
nels. It allows us to check that the performance of the predic-
tive algorithm is not merely driven by the number of features.

The procedure for activities extraction, temporal down-
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Figure 2: Comparison of the different neural network com-
pression streams. The APIC approach slightly outperforms
APIBC, and both strongly outperform PCA. When using APIC
or APIBC we predict correctly up to 850 times more voxels
than when using PCA.

sampling and brain activity prediction is not changed while the
spatial compression scheme varies. The benchmark is per-
formed using a leave-one-out cross-validation procedure with
two splits in three subjects.

Figure 2 shows that both approaches preserving channel
organization structure outperform PCA by a large margin.

These results suggest that data stored in the same channel
are similar and that mixing data between channels tends to
destroy valuable information. In our pipeline, we average only
inside same channels (APIC) because it yields the best per-
formance. Choosing APBIC would be trading performance for
computation speed since its high compression rate enables a
much faster training of the prediction algorithm.

Data based parcellation of the brain using deep
video representation

Depending on the considered region of the brain, the best
fitting representation varies. We show that the compressed
activities of different layers show contrasts between low-level
(retinotopic) versus high-level (object-responsive) areas, but
also between foveal and peripheral areas.

The difference between the prediction score from high
level layer activity and low level layer activity of both streams
(L' — 15" and L#” — L¥") yields a clear contrast between
occipital (low-level) and lateral (high-level) areas (see Fig 3).
This highlights a gradient of complexity in neural representa-
tion along the ventral stream which was also found in (GUgli
& van Gerven, 2015).

The difference between predictions score from low-level
layers activity of flow fields stream and high level layers activity
of raw frames stream (L{ low _ Lffb) yields a contrast that does
not match boundaries between visual areas; instead, it does
coincide with the retinotopic map displaying preferred eccen-
tricity (see Figure 4). Intuitively this means that regions where
brain activity is better predicted from the highest layer of opti-
cal flow fields than from the lowest layer of raw frames stream
are involved in peripheric vision whereas regions where ac-
tivity is better predicted from the lowest layer of raw frames

Figure 3: High level and low level areas contrasts: Difference
between predictions score from high level layer activity and
low level activity of the raw frames stream ngb nggh (top) and

flow fields stream L4ﬂow — L{low (bottom). The results show
a clear contrast between occipital areas better predicted by
lower level layers (blue) and lateral areas better predicted from
highest level layers (red), illustrating a gradient of complexity
across areas.

L1, flow - L4, rgb
L R

Figure 4: The difference between predictions score from low-
level layers activity of flow fields and high-level layers activity
of raw frames stream L{ low —ngb (top) resembles the pre-
ferred eccentricity map of the same subject (bottom). Areas
that are better predicted from low level flow fields streams are
mostly involved in peripheric vision whereas areas better pre-
dicted from high level raw frames stream are mainly foveal.

stream than from the highest layer of optical flow fields are
mainly foveal.

We use the contrasts between high level layers and low
level layers, and the eccentricity related contrast to construct
a parcellation of the brain based on these contrasts (see Fig-
ure 5). From the 8 possible resulting profiles, three major clus-
ters stand out allowing us to successfully depict a clustering
of the voxels using contrasts from deep representation of the
stimuli.

Discussion

Reproducing the results of (Gigli & van Gerven, 2015) we
have shown that lateral areas are best predicted by the last
layers of both streams whereas occipital areas are best pre-
dicted by first layers of both streams. We have also shown
that foveal areas are best predicted by last layers of the raw
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Figure 5: Parcellation summarizing artificial-biological corre-
spondences: The set of active voxels were split into sub-
groups according to their differential response to three con-
trasts: L2flow — paflow ppreb _ pAreb gnd L1flew — 4780,
From the 8 possible resulting profiles, 3 major clusters stand
out: deep blue, L2/10W > [Aflow [2rsb ~ 14780 and L1/10" <
LA"8": it corresponds to a voxel set in primary visual areas that
has low eccentricity (foveal regions); green, L2/1% > [4flow,
L2780 > 14780 and L1/1°" > 148" it corresponds to the same
visual areas, but for voxels with higher eccentricity (periph-
eric voxels); yellow , L2f1o" < paflow [2r8b < 1478 and
L1/'ow < 14780 it corresponds to lateral and lateral visual ar-
eas that encode more abstract representations of the objects.

frames stream and that peripheric areas are best predicted by
the first layers of the flow fields stream. We have introduced a
compression procedure for video representation that does not
alter too much the channel structure of the network, yielding
tremendous gains in performance compared to PCA.

The linear prediction from deep video features yields pre-
dictions scores that are far better than chance. However the
TVL1 algorithm (Zach, Pock, & Bischof, 2007) used in the TSN
network does not produce high quality flow fields. Using more
recent algorithms to compute optical flow such as Flownet 2
(Ilg et al., 2017), our performance could be further improved.
The TSN Network would have to be retrained though.

In contrast to (GUgli & van Gerven, 2017), the data used
to train the network are not the same as the data presented
to the subjects. We rely in fact on transfer between computer
vision datasets and the visual content used for visual stimu-
lation. This transfer is imperfect: the Berkeley video dataset
contains videos of landscapes and animated pictures that are
not present in the Kinetic dataset, which introduces some
noise.

In conclusion, our study provides key insights that areas
have a role linked to their retinotopic representation when per-
forming action recognition. Future studies should focus on
finessing this result by using a network tuned for other tasks.
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