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Abstract

Machine learning tasks are generally formulated as optimization problems, where one
searches for an optimal function within a certain functional space. In practice, parame-
terized functional spaces are considered, in order to be able to perform gradient descent.
Typically, a neural network architecture is chosen and fixed, and its parameters (connection
weights) are optimized, yielding an architecture-dependent result. This way of proceeding
however forces the evolution of the function during training to lie within the realm of what
is expressible with the chosen architecture, and prevents any optimization across architec-
tures. Costly architectural hyper-parameter optimization is often performed to compensate
for this. Instead, we propose to adapt the architecture on the fly during training. We show
that the information about desirable architectural changes, due to expressivity bottlenecks
when attempting to follow the functional gradient, can be extracted from backpropagation.
To do this, we propose a mathematical definition of expressivity bottlenecks, which enables
us to detect, quantify and solve them while training, by adding suitable neurons. Thus,
while the standard approach requires large networks, in terms of number of neurons per
layer, for expressivity and optimization reasons, we are able to start with very small neural
networks and let them grow appropriately. As a proof of concept, we show results on the
CIFAR dataset, matching large neural network accuracy, with competitive training time,
while removing the need for standard architectural hyper-parameter search.

1 Introduction

Issues with the fixed-architecture paradigm. Universal approximation theorems such as (Hornik
et al., [1989; |Cybenko, [1989) are historically among the first theoretical results obtained on neural networks,
stating the family of neural networks with arbitrary width as a good candidate for a parameterized space of
functions to be used in machine learning. However the current common practice in neural network training
consists in choosing a fixed architecture, and training it, without any possible architecture modification
meanwhile. This inconveniently prevents the direct application of these universal approximation theorems,
as expressivity bottlenecks that might arise in a given layer during training will not be able to be fixed. There
are two approaches to circumvent this in daily practice. Either one chooses a (very) large width, to be sure to
avoid expressivity and optimization issues (Hanin & Rolnick, 2019b; [Raghu et al., [2017)), to the cost of extra
computational power consumption for training and applying such big models; to mitigate this cost, model
reduction techniques are often used afterwards, using pruning, tensor factorization, quantization (Louizos
et al., [2017) or distillation (Hinton et all |2015). Or one tries different architectures and keeps the most
suitable one (in terms of performance-size compromise for instance), which multiplies the computational
burden by the number of trials. This latter approach relates to the Auto-DeepLearning field (Liu et al.
2020), where different exploration strategies over the space of architecture hyper-parameters (among other
ones) have been tested, including reinforcement learning (Baker et all [2017; |Zoph & Le, |2016|), Bayesian
optimization techniques (Mendoza et all 2016]), and evolutionary approaches (Miller et al., [1989; [Stanley!
et al. 2009; [Miikkulainen et al. |2017; |Bennet et all, [2021), that all rely on random tries and consequently
take time for exploration. Within that line, Net2Net (Chen et al., [2015), AdaptNet (Yang et al. [2018)



and MorphNet (Gordon et all 2018]) propose different strategies to explore possible variations of a given
architecture, possibly guided by model size constraints. Instead, we aim at providing a way to locate precisely
expressivity bottlenecks in a trained network, which might speed up neural architecture search significantly.
Moreover, based on such observations, we aim at modifying the architecture on the fly during training, in
a single run (no re-training), using first-order derivatives only, while avoiding neuron redundancy. Related
work on architecture adaptation while training includes probabilistic edges (Liu et al. [2019)) or sparsifying
priors (Wolinski et al.l [2020). Yet the training is done on the largest architecture allowed, which is resource-
consuming. On the opposite we aim at starting from the simplest architecture possible.

Optimization properties. An important reason for common practice to choose wide architectures is the
associated optimization properties: sufficiently larger networks are proved theoretically and shown empiri-
cally to be better optimized than small ones (Jacot et al.| [2018). Typically, small networks exhibit issues
with spurious local minima, while wide ones find good nearly-global minima. One of our goals is to train
small networks without suffering from such optimization difficulties.

Neural architecture growth. A related line of work consists in growing networks neuron by neuron,
by iteratively estimating the best possible neurons to add, according to a certain criterion. For instance,
approaches such as (Wu et al.l |2019) or Firefly (Wu et al., |2020)) aim at escaping local minima by adding
neurons that minimize the loss under neighborhood constraints. These neurons are found by gradient descent
or by solving quadratic problems involving second-order derivatives. Other approaches (Causse et al., [2019;
Bashtova et al.|2022), including GradMax (Evci et al.,|2022)), seek to minimize the loss as fast as possible and
involve another quadratic problem. However the neurons added by these approaches are possibly redundant
with existing neurons, especially if one does not wait for training convergence to a local minimum (which is
time consuming) before adding neurons, therefore producing larger-than-needed architectures.

Redundancy. To our knowledge, the only approach tackling redundancy in neural architecture growth
adds random neurons that are orthogonal in some sense to the ones already present (Maile et al., |2022)).
More precisely, the new neurons are picked within the kernel (preimage of {0}) of an application describing
already existing neurons. Two such applications are proposed, respectively the matrix of fan-in weights
and the pre-activation matrix, yielding two different notions of orthogonality. The latter formulation is
close to the one of GradMax, in that both study first-order loss variations and use the same pre-activation
matrix, with an important difference though: GradMax optimally decreases the loss without caring about
redundancy, while the other one avoids redundancy but picks random directions instead of optimal ones. In
this paper we bridge the gap between these two approaches, picking optimal directions that avoid redundancy
in the pre-activation space.

Notions of expressivity. Several concepts of expressivity or complexity exist in the Machine Learning
literature, ranging from Vapnik-Chervonenkis dimension (Vapnik & Chervonenkis| [1971) and Rademacher
complexity (Koltchinskii, [2001) to the number of pieces in a piecewise affine function (as networks with ReLU
activations are) (Serra et al., 2018} Hanin & Rolnick} 2019al). Bottlenecks have been also studied from the
point of view of Information Theory, through mutual information between the activities of different layers
(Tishby & Zaslavskyl [2015; |Dai et al., |2018); this quantity is difficult to estimate though. Also relevant
and from Information Theory, the Minimum Description Length paradigm and Kolmogorov complexity
(Kolmogorov, [1965; [Li et al., |2008]) enable to define trade-offs between performance and model complexity.

In this article, we aim at measuring lacks of expressivity as the difference between what the backpropagation
asks for and what can be done by a small parameter update (such as a gradient step), that is, between the
desired variation for each activation in each layer (for each sample) and the best one that can be realized by
a parameter update. Intuitively, differences arise when a layer does not have sufficient expressive power to
realize the desired variation. Our main contributions are that we:

o adopt a functional analysis perspective on gradient descent in neural networks, advocating to follow
the functional gradient. We not only optimize the weights of the current architecture but also
dynamically adjust the architecture itself to progress towards a suitable parameterized functional



spaces. This approach mitigates optimization challenges like local minima that are due to thin
architectures;

e properly define and quantify the concept of expressivity bottlenecks, both globally at the neural
network output and locally at individual layers, in a computationally accessible manner. This
methodology enables the localize expressivity bottlenecks within a neural network;

o formally define as a quadratic problem the best possible neurons to add to a given layer to decrease
lacks of expressivity ; solve it and compute the associated expressivity gain;

o automatically adapt the architecture to the specific task by expanding it where necessary within a
single run, maintaining competitive computational complexity compared to training a large model
once. To remove the need for hyper-optimization of layer width, one could specify a target accuracy
and stop neuron additions when reached.

2 Main concepts

2.1 Notations

Let F be a functional space, e.g. Lo(R? — R%), and a loss function £ : F — R* defined on it, of the form
L(f) = E@,y)~p [é(f(w)7y)}, where £ is the per-sample loss, assumed to be differentiable, and where D
is the sample distribution, from which the dataset {(x1,¥1),..., (xn,yn)} is sampled, with ; € R? and
Y; € RY.

For the sake of simplicity we consider a feedforward neural network fy : R? — R? with L hidden layers,
each of which consisting of an affine layer with weights W, followed by a differentiable activation function
o; which satisfies ;(0) = 0. The network parameters are then § := (W});=1. 1. The network iteratively

computes:
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To any vector-valued function noted t(x) and any batch of inputs X := [xi,...,x,], we associate the
concatenated matrix T(X) := (t(z1) .. t(zn)) € R!OX" The matrices of pre-activation and post-
activation activities at layer [ over a minibatch X are thus respectively: A;(X) = (ai(xz1) ... ai(z,))
and Bl(X) = (bl(asl) bl((l:n))

NB: convolutions can also be considered, with appropriate representations (cf matriz bf(x) in @)

2.2 Approach

Functional gradient descent. We take a functional perspective on the use of neural networks. Ideally
in a machine learning task, one would search for a function f : R? — RY that minimizes the loss £ by
gradient descent: %{ = —V;L(f) for some metric on the functional space F (typically, L(RP — R%)), where
V; denotes the functional gradient and ¢ denotes the evolution time of the gradient descent. The descent
direction vy 1= —VL(f) is a function of the same type as f and whose value at x is easily computable
as Vgoal(@) = — (VL(f)) (x) = —Vuﬁ(u,y(w))‘u:f(m) (see Appendix for more details). This direction

Vgoal i the best infinitesimal variation in F to add to f to decrease the loss L.



Parametric gradient descent reminder. However in practice, to represent functions and to compute
gradients, the infinite-dimensioned functional space F has to be replaced with a finite-dimensioned parametric
space of functions, which is usually done by choosing a particular neural network architecture A with weights
0 € ©4. The associated parametric search space F4 then consists of all possible functions fy that can be
represented with such a network for any parameter value 6. Under standard weak assumptions (see Appendix
A.2)), the gradient descent is of the form:

00
A =— E . 1
50 = VLo = E_[Vllfo(w).y)] (1)
Using the chain rule (on 88? then on Vpé(fo(x),y)), these parameter updates yield a functional evolution:
Ofo Ofg 00 dfe ofe"
= —_— = — — = — goa 2
VGD = 50 T B0 ot T 00 wajen | 08 (@) Veenl(®) @)

which significantly differs from the original functional gradient descent. We will aim to augment the neural
network architecture so that parametric gradient descents can get closer to the functional one.

Optimal move direction. We name 7}, or just T4,
the tangent space of Fy at fy, that is, the set of all possible
infinitesimal variations around fy under small parameter
variations:

Vgoal

T = {%J;“’ 59’ s.t. 596@A} .
roJﬂ(’vgual)

This linear space is a first-order approximation of the

neighborhood of fy within %. The direction vgp ob- /
tained above by gradient descent is actually not the best

one to consider within 74. Indeed, the best move v*

would be the orthogonal projection of the desired direc-

tion vgoa1 := —V s, L(fg) onto Ta. This projection is what Figure 2: Expressivity bottleneck
a (generalization of the notion of) natural gradient would

compute (Ollivier}, 2017)).

Indeed, the parameter variation §0* associated to the functional variation v* = %59* is the gradi-
ent fV;rAﬁ(fg) of Lo fy w.r.t. parameters # when considering the Lo metric on functional variations
||% 00| 1, (72), not to be confused with the usual gradient VpL(fs), based on the Lo metric on parame-
ter variations [|66]|,rie1). This can be seen in a proximal formulation as:

. . 1
v* = argmin ||v — vy, ||* = argmin {Df[,(f)(v) + ||'v||2} (3)
vETA veTa 2

where D is the directional derivative (see details in Appendix [A.3)), or equivalently as:
2
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Lack of expressivity. When v,.. does not belong to the reachable subspace T4, there is a lack of
expressivity, that is, the parametric space A is not rich enough to follow the ideal functional gradient
descent. This happens frequently with small neural networks (see Appendix for an example). The
expressivity bottleneck is then quantified as the distance ||v* — vg0a1]| between the functional gradient vgoa
and the optimal functional move v* given the architecture A (in the sense of Eq. .



2.3 Generalizing to all layers

Ideal updates. The same reasoning can be applied to the pre-activations a; at each layer [, seen as
functions a; : * € R? + a;(x) € R% defined over the input space of the neural network. The optimal
parameter update for a given layer [ then follows the projection of the desired update —V4,L(fs) of the
pre-activation functions a; onto the linear subspace 7:4al of pre-activation variations that are possible with
the architecture, as we will detail now.

Given a sample (x,y) € D, standard backpropagation already iteratively computes véoal(a:) =

= (Va,L(fo)) (&) = = Vul (o (Wror—1(Wr—1...01(w))), Y)|y—q, (&) Which is the derivative of the loss

¢(fo(x),y) with respect to the pre-activations u = a;(x) of each layer. This is usually performed in order
da,(x)

to compute the gradients w.r.t. model parameters Wi, as Vw,((fo(x).y) = TG5> Va l(fo(x),y).

véoa](m) = —(Va,L(fp)) (x) indicates the direction in which one would like to change the layer pre-
activations a;(x) in order to decrease the loss at point @. However, given a minibatch of points (x;),
most of the time no parameter move 46 is able to induce this progression for each x; simultaneously, because

the #-parameterized family of functions a; is not expressive enough.

Activity update resulting from a parameter change. Given a subset of parameters 0 (such as the
ones specific to a layer: § = W), and an incremental direction d6 to update these parameters (e.g. the
one resulting from a gradient descent: 60 = —1 3", cminivaten Val(fo(), y) for some learning rate ),

the impact of the parameter update 66 on the pre-activations a; at layer [ at order 1 in 80 is vl(a:, 65) =

dau(z) <5
By,

3 Expressivity bottlenecks

We now quantify expressivity bottlenecks at any layer [ as the distance between the desired activity update
vl (-) and the best realizable one v'(.) (cf Figure [2):

goal
Definition 3.1 (Lack of expressivity). For a neural network fy and a minibatch of points X =
{(xi,y:) Yy, we define the lack of expressivity at layer | as how far the desired activity update
V;]lml = (Uéoal(ajl),vém,(wg), ...) is from the closest possible activity update V' = (v'(x1),v'(x2),...) realiz-
able by a parameter change 00:

1< 2 1 2
L s Ui\ _ ol AMPZ = min = (V! 50) — V!
U= vlnel%l -~ ;:1 H’v (x4) vg()al(w’l)H = min — H (X, 00) g;oal(X)HTr (4)
where ||.|| stands for the Lo norm, ||.||ry for the Frobenius norm, and V'(X,§6) is the activity update

resulting from parameter change d0 as defined in previous section. In the two following parts we fix the
minibatch X and simplify notations accordingly by removing the dependency on X.

3.1 Best move without modifying the architecture of the network
Let 6W}* be the solution of 4| when the parameter variation 6 is restricted to involve only layer | parameters,

i.e. W;. This move is sub-optimal in that it does not result from an update of all architecture parameters
but only of the current layer ones:

. N T —vi P
Wy = argmin [V (6W) — V|, ®)

Proposition 3.1. The solution of Problem (@/ is: OW) = %‘Qiale_l(%Bl,le_l)+ where Pt denotes the
generalized inverse of matriz P.

INote: given a learning rate 7, in the sequel we will rather consider v!ﬂml(m) = —nVa,L(fo)(x)
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This update §W}" is not equivalent to the usual gradient descent update, whose form is WP o ‘/;)alBlT—l'

In fact the associated activity variation, dW;*B;_1, is the projection of V;,fnl on the post-activation matrix
of layer [ — 1, that is to say onto the span of all possible post-activation directions, through the projector
%Bﬁl(%Bl_1B£1)+Bl_1. To increase expressivity if needed, we will aim at increasing this span with the
most useful directions to close the gap between this best update and the desired one. Note that the update
SW;* consists of a standard gradient (V) B/" ) and of a (kind of) natural gradient only for the last part

(projector), as we consider metrics in the pre-activation space.

3.2 Reducing expressivity bottleneck by modifying the architecture

To get as close as possible to V;}.f)al and to increase the expressive power of the current neural network,

we modify each layer of its structure. At layer [ —1, we add K neurons ni,...,ng with input weights
ag, ..., and output weights wy, ..., wx (cf Figure. We have the following expansions by concatenation:
VVIT_1 — (VVE1 a1 ... aK) and W; « (VVl W1 ... wK). We note this architecture modification
0 + 0 & 0K where & is the concatenation sign and 6% := (ay,wy)E | are the K added neurons.

The added neurons could be chosen randomly, as in usual neural network initialization, but this would not
yield any guarantee regarding the impact on the system loss. Another possibility would be to set either input
weights (o), or output weights (wy)X | to 0, so that the function fy(.) would not be modified, while
its gradient w.r.t. # would be enriched from the new parameters. Another option is to solve a optimization
problem as in the previous section with the modified structure 6 +— 0 © 6% and jointly search for both the
optimal new parameters X and the optimal variation §W of the old ones:

argminHVl((SW@ag) - ‘ééalH?ﬁ ©
0K, W

As shown in figure EI, the displacement V! at layer [ is actually a sum of the moves induced by the neurons
already present (JW) and by the added neurons (6X), our problem rewrites as :

. 2
arg min HVI(Hg) + VW) = Vyou! ‘
0K, 6W Tr

(7)

with v!(z, 0K) = sz:l wi (b—2(x) ) (See . We choose 6W as the best move of already-existing
parameters as defined in Proposition and we note V! | = Vg — VI(§W™). We are looking for the

goalproj oal

solution (K - 95,*) of the optimization problem :

. 2
arg min HVI(F)IF‘)) -V (8)

g();xl,),,.(),-
K, 9K proj

Tr '



This quadratic optimization problem can be solved thanks to the low-rank matrix approximation theorem
(Eckart & Young, (1936|), using matrices N := %BI,Q(VI )T and S = %BZ,QBZT_T As S is semi-

g‘)“lproj
—1
positive definite, let its truncated SVD be § = USXU7”, and define S :=UVE UT, with the convention
1
that the inverse of 0 eigenvalues is 0. Finally, consider the truncated SVD of matrix STz N = ZkR:1 Apuvl

where R is the rank of the matrix S~2 IN. Then:

Proposition 3.2. The solution of Problem (@ 18:

e optimal number of neurons: K* = R

* K*
o their optimal weights: 05~ = (af,w})E = (x/)\kS’%uk, \/)\kvk)

k

Moreover for any number of neurons K < R, and associated weights X, the expressivity gain can be

quantified very simply as a function of the singular values Ay :
K
1 l
Wy < ThH— > A; (9)
k=1

Proposition 3.3. If S is positive definite, then solving[8 is equivalent to taking wy = Nay, and finding the
K first eigenvectors ay, associated to the K largest eigenvalues \ of the generalized eigenvalue problem :

NNTap = ASay

Corollary 1. For all integers m,m’ such that m +m’ < R, at order one in V, adding m + m’' neurons
simultaneously according to the previous method is equivalent to adding m neurons then m’ neurons by
applying successively the previous method twice.

Note: Problems and are generally not equivalent, though similar (cf [C.4]).
Note 2: Solving [8|is equivalent to minimizing the loss £ at order one in V!. Furthermore performing an

update of architecture with dW* 1} and a neuron addition with Hf,* 1} has an impact on the loss at
first order in ||[V!(6W*) + V1 (05*)]| as :

Elnsns) = L) = = (1085 + Asw-) (10)
With
K
Bt = (Wt VIOET)). = 3000 (1)
Asw = (Vpbour, V(W) 20 (12)

The family {V'* (o, wi)) HE | of pre-activity variations induced by adding the neurons §X:* is orthogonal
for the trace scalar product. We could say that the added neurons are orthogonal to each other (and to
the already-present ones) in that sense. Interestingly, the GradMax method (Evci et all 2022) also aims at
minimizing the loss but without avoiding redundancy (see Appendix for more details).

Addition of new neurons. In practice before adding new neurons (o, w), we multiply them by an am-
plitude factor « found by a simple line search (see Appendix, ie. we add (y/ya, /yw). The addition
of each neuron % has an impact on the loss of the order of yA; provided v is small. This performance gain
could be used in a selection criterion realizing a trade-off with computational complexity. A selection based
on statistical significance of singular values can also be performed. The full algorithm and its complexity
are detailed in Appendices [E.4] and [E-5



4 About greedy growth sufficiency and TINY convergence

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal state. By
greedy we mean that every neuron added has to decrease the loss. Since in this work we add neurons layer
per layer independently, we study here the case of a single hidden layer network, to spot potential layer
growth issues. For the sake of simplicity, we consider the task of least square regression towards an explicit
continuous target f*, defined on a compact set. That is, we aim at minimizing the loss:

inf D If@) - @) (13)

xeD

where f(x) is the output of the neural network and D is the training set. Proofs and supplementary
propositions are deferred to Appendix [D] in particular [D.4] and [D.7}

First, if one allows only adding neurons but no modification of already existing ones:

Proposition 4.1 (Exponential convergence to 0 training error by ReLU neuron additions). It is possible to
decrease the loss exponentially fast with the number t of added neurons, i.e. as Y L(f), towards 0 training
loss, and this in a greedy way, that is, such that each added neuron decreases the loss. The factor ~ is

2
vy=1- ng,ld, (g;&) , where d,,, and dy; are quantities solely dependent on the dataset geometry, d’' is the

output dimension of the network, and n is the dataset size.

In particular, there exists no situation where one would need to add many neurons simultaneously to decrease
the loss: it is always feasible with a single neuron.

TINY might get stuck when no correlation between inputs @; and desired output variations f*(x;) — f(x;)
can be found anymore. To prevent this, one can choose an auxiliary method to add neurons in such cases,
for instance random neurons (with a line search over their amplitude, cf. Appendix , or locally-optimal
neurons found by gradient descent, or solutions of higher-order expressivity bottleneck formulations using
further developments of the activation function. We will name completed-TINY the completion of TINY by
any such auxiliary method.

Now, if we also update already existing weights when adding new neurons, we get a stronger result:

Proposition 4.2 (Completed-TINY reaches 0 training error in at most n neuron additions). Under certain
assumptions (full batch optimization, updating already existing parameters, and, more technically: polynomial
activation function of order > n?), completed-TINY reaches 0 training error in at most n neuron additions
almost surely.

Hence we see the importance of updating existing parameters on the convergence speed. This optimization
protocol is actually the one we follow in practice when training neural networks with TINY (except when
comparing with other methods using their protocol).

Note that our approach shares similarity with gradient boosting [Friedman| (2001) somehow, as we grow the
architecture based on the gradient of the loss. Note also that finding the optimal neuron to add is actually
NP-hard (Bach), [2017)), but that we do not need new neuron optimality to converge to 0 training error.

5 Results

5.1 Comparison with GradMax on CIFAR-100

The closest growing method to TINY is GradMax (Evci et al.| (2022)), as it solves a quadratic problem similar
to . By construction, the objective of GradMax is to decrease the loss as fast as possible considering an
infinitesimal increment of new neurons. The main difference is that GradMax does not take into account
the expressivity of the current architecture as TINY does in by projecting vgoa1. In-depth details about
the difference between the GradMax and TINY are provided in Appendix

In this section, we show on the CIFAR-100 dataset that solving instead of deﬁned by GradMax)
to grow a network allows better final performance and almost full expressivity power. To do so, we have
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Figure 5: Test accuracy as a function of the number of parameters during architecture growth from ResNet;
to ResNet18. The left (resp. right) column is for the starting architecture ResNet; /4 (resp. ResNet; /64). The
upper (resp. lower) row is for At equal to 0.25 (resp. 1) epoch.

re-implemented the GradMax method and mimicked its growing process which consists in increasing the
architecture of a thin ResNet18 until it reaches the architecture of the usual ResNet18. This process is
described in the pseudo code [I] where two parameters can be chosen : the relative thinness s of the starting
architecture, w.r.t. the usual ResNet18 architecture 3| (s = 1/4 or s = 1/64), and the amount of training
time between consecutive neuron additions (At = 1 or At = 0.25 epochs). Then the number of parameters
and the performance of the growing network are evaluated at regular intervals to plot Figure [5}

Once the models have reached the final architecture ResNet18, they are trained for 250 epochs (or 500 epochs
if they have not converged on the training set). We have summarized the final performance in Table 1] We
also added the column Reference, which gives the performance of a ResNet18 trained from scratch by usual
gradient descent with all its neurons. We do not expect TINY or GradMax to achieve the performance of
the reference as its architecture and optimisation process have been optimised for years.

The details of the protocol can be found in the annexes [F.1] as well as other technical details such as the
dynamic of the learning batch size the number of examples used to solve the expressivity bottleneck
and the complexity of the algorithms For both methods, all the latter apply so that the main differences
between GradMax and TINY in this experiment is the mathematical definition of the new neurons.

For s = 1/64, we observe a significant difference in performance between TINY and GradMax methods.
While TINY models almost achieve the reference’s performance, GradMax remain stuck 10 points below.
This suggests that the framework proposed by GradMax is not sufficient to be able to start with an archi-
tecture far from full expressivity, i.e. ResNet; /¢4, while TINY is able to handle it. As for the setting s = 1/4,
both methods seem equivalent in terms of final performance and achieve full expressivity.

The curves on which are extracted from in the appendix, show that TINY models have
converged at the end of the growing process, while GradMax ones have not. This latter effect contrasts

with GradMax formulation which is to accelerate the gradient descent as fast as possible by adding neurons.
Furthermore GradMax needs extra training to achieve full expressivity: for the particular setting s =
1/64, At = 1, the extra training time required by GradMax is twice as high as TINY’s, as shown in Figure
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Figure 6: Evolution of accuracy and number of parameters as a function of gradient step for the setting
At =1, s = 1/64 for TINY and GradMax, mean and standard deviation over two runs. Other settings in
the annexes |E|
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TINY GradMax
A7 Refe-
5 0.25 1 0.25 1 rence
1/—L 67.0 4+ 0.1 71.0£0.1 65.0 0.1 69.0 £ 0.1 799
1/4 70.0+0.25 [ 71.0+0.2° | 67.0+0.25* 69.0 £ 0.1 °* i
1/(54 66.0 £ 0.1 68.0+0.4 45.0+0.2 57.0+0.2 0.1 5*
1/64 69.0+0.15* | 69.0+0.6°* | 57.0 £ 0.310% | 59.0 4+ 0.1 10+ '

Table 1: Final accuracy on test of ResNetl8 after the architecture growth (grey) and after convergence
(black). The number of stars indicates the multiple of 50 epochs needed to achieve convergence. With the
starting architecture ResNet; /64 and At = 0.25, the method TINY achieves 66.040.1 on test after its growth
and it reaches 69.0 4 0.1 5*after 5% := 5 x 50 epochs (examples of training curves for the extra training in
Figure . Mean and standard deviation are performed on 2 runs for each setting.

m This need for extra training also appears for all settings in Table[l] In particular for s = 1/64, At = 0.25,
the difference in performance after and before extra training goes up to 20 % above the initial performance
while it is only of 6% for TINY.

5.2 Comparison with Random on CIFAR-100 : initialisation impact

In this section, we focus on the impact of the new neurons’ initialization. To do so, we consider as a baseline
the Random method, which initializes the new neurons according to a Gaussian distribution: (aj,wj)K | ~
N(0,1d). Also, when adding new neurons, instead of normalizing them as previously, we search for the best

scaling using a line-search on the loss. Thus, we perform the operation X <« ~+*0X  with the amplitude
factor v* € R defined as :
~* := arg min Zﬁ(feg;wg (x4), i) with 705" = (yaj, ywi)K (14)

v€[-L,L]
with L a positive constant. More details can be found in Appendix [E:3:2] and in Algorithm [I] With such
an amplitude factor, one can measure the quality of the directions generated by TINY and Random by

quantifying the maximal decrease of loss in these directions.

To better measure the impact of the initialisation method, and to distinguish it from the optimization process,
we do not perform any gradient descent. This contrasts with the previous section where long training time
after architecture growth was modifying the direction of the added neurons, dampening initialization impact
with training time, especially as they were added with a small amplitude factor (cf Section [E.3.1)).

With these two modifications to the protocol of previous section, we obtain Figure We see the crucial
impact of TINY initialization compared to the Random one. Indeed, TINY reaches more than 17% accuracy
just by adding neurons (without any further update), which accounts for about one quarter of the total
accuracy with the full method (69% in Tableusing in plus gradient descent). On the opposite, the Random
initialization does not contribute to the accuracy through the growing process (just about 1%); this can be
explained and quantified as follows. In the random setting, we model v(X) and vgoa1(X) as independent
Gaussian variables following N (Od,ldé) where d is the dimension of vy, and v. From Equation the

scalar product (V(X), Vgoal(X)) := =3, vgoa (i) v(x;) is a proxy of the expected decrease of loss after
each architecture growth. This quantity can be approximated by its standard deviation, ie \/%, which

makes the expected relative gain of loss (for a gradient step) of the order of magnitude of \/% for the first

layer and \/% for the last layer when compared to the true gradient, and consequently when compared to
TINY. Furthermore, one can take into account the effect of a line search over the random direction: in that
case the expected relative loss gain is quadratic in the angle between the directions and therefore of the order

of magnitude of 6—14 or % respectively (see Appendix .

Note that the search interval of equation [14] for can be shrunk to [0, L] with TINY initializations, as the
first order development of the loss in Equation [I0]is positive. This property is the direct consequence of the

11



*#* starting architecture : 1/64, At =0 **

+ TINY +
H
+ Random
0.20 ) % * R ot
+ t Hhw o+ # 4
+ ++ +JT¢--‘-_‘_+ -oi .:t- + ++:+ :+ o+ 1# 1
7, wF £ o e " TR
# o+ ¥ £ ¥ o TE, **++#:3+++; %’f EH*I % +
o 0151 ++ t 4+ + + + T Al e+ +
17} T + ¥+ 4 +
it R T ¥ % ++ +
> * g+ + FHy
@) R
© + Ft + *
£ 0.10 i L
2 ++ t +
2 T +
+iy
0.05 1 *
. o+
bl
g F v 1 -+
. JUI- VG UL g + + "
g bl 3Oyt p i giv b
0.00 1 + +++
T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12

le7

Figure 8: Test accuracy as a function of the number of parameters during architecture growth from
ResNety /64 to ResNetss.

definition of V* as the minimizer of the expressivity bottleneck equation [§] One can also note that we do
not include GradMax in Figure [8] because its protocol initializes the on-going weights to zero (o «— 0) and
imposes a small norm on its out-going weights (||wg|| = €). Those two aspects make the amplitude factor v*
meaningless and the impact of the new neurons initialization invisible without gradient descent.

The code will be available on git; for now the code is available as supplementary materials (zip file
TINY_code.zip).

6 Conclusion

We provided the theoretical principles of TINY, a method to grow the architecture of a neural net while
training it; starting from a very thin architecture, TINY adds the neurons where needed and yields a fully
trained architecture at the end. Our method relies on the functional gradient to find new directions that
tackle the expressivity bottleneck, even for small networks, by expanding their space of parameters. This way,
we combine in the same framework gradient descent and neural architecture search, that is optimizing the
network parameters and its architectures at the same time, and this, in a way that guarantees convergence
to 0 training error, thus escaping expressivity bottlenecks indeed.

The method is generic for all architectures and is instantiated for linear and convolutional layers. Extension
to self-attention mechanism (transformers) is part of future works. Although the common architectures
consist of a succession of layers, a research direction is to develop tools handling general computational
graphs (such as U-net, Inception, Dense-Net), which offers the possibility to let the architecture graph grow
and bypass manual design.

Another possible development would be to study the statistical reliability of the TINY method, for instance
using tools borrowed from random matrix theory. Indeed statistical tests can be applied on intermediate
computations to obtain the new neurons. An interesting byproduct of this approach would be to define a
threshold to select neurons found by [3:2] based on statistical significance.
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Appendix outline
o Appendix [A] details the theoretical approach of TINY.
« Appendix [B] compares the theoretical approach of TINY with other approaches.
« Appendix [C] proves the propositions of the paper.
o Appendix [E] provides the hyper parameters for learning.

 Appendix [F] gives additional graphics associated to the result part.

For part B and C we use the trace scalar product and its associated norm. We note (., .):= (., . )y and
|-l :=1|.|lte- One should remark that || . || =] . || = || - ||2-
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A Theoretical details for part 2

A.1 Functional gradient

The functional loss £ is a functional that takes as input a function f € F and outputs a real score:

L:feF = L(f)= E [e(f(m),y)} ER.

(z,y)~D

The function space F can typically be chosen to be Lo(R? — R%), which is a Hilbert space. The directional
derivative (or Gateaux derivative, or Fréchet derivative) of functional £ at function f in direction v is defined

as:
DL(f)(v) = lim 2 T2 — £()

e—0 I3

if it exists. Here v denotes any function in the Hilbert space F and stands for the direction in which we
would like to update f, following an infinitesimal step (of size ), resulting in a function f + ev.

If this directional derivative exists in all possible directions v € F and moreover is continuous in v, then the
Riesz representation theorem implies that there exists a unique direction v* € F such that:

Yo e F, DL(f)(v) = (v",v).

This direction v* is named the gradient of the functional £ at function f and is denoted by V L(f).

Note that while the inner product (-, -) considered is usually the Lo one, it is possible to consider other ones,
such as Sobolev ones (e.g., H'). The gradient V;L(F) depends on the chosen inner product and should
consequently rather be denoted by Vf 2L(f) for instance.

Note that continuous functions from RP to R?, as well as C*° functions, are dense in Lo(RP — R%).

Let us now study properties specific to our loss design: L(f) = E(gy)~p [Z(f(:v),y)} Assuming sufficient

{-loss differentiability and integrability, we get, for any function update direction v € F and infinitesimal
step size € € R:

Lif+e0)—L(f) = E _|U(f(@)+ev(@)y) - Uf(@).y)]

B (z,y)~D

= D [V“E(“’ Yl V(@) + 0(52””(93)”2)}

using the usual gradient of function ¢ at point (u = f(x),y) w.r.t. its first argument w, with the standard
Euclidean dot product - in RP. Then the directional derivative is:

DLW = E [Vullw,9)],_ 0 - v@)] = E_ [yw%m [Vl )], yo| - 0@)]

and thus the functional gradient for the inner product (v, v )g := Eqp [v(m) v (:c)} is the function:

ViL()we B Valw ), ]

which simplifies into:
V}Eﬁ(f) T Vuﬁ(u,y(w))‘u:f(m)
if there is no ambiguity in the dataset, i.e. if for each @ there is a unique y(x).
Note that by considering the Lo(RP — R%) inner product J v instead, one would respectively get:
VL) e (@) E(Valwy)], )|

y~Dl|z
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and
VfLQE(f) s — pp(x) Vuﬁ(u,y(w))‘u:f(m)

instead, where pp(x) is the density of the dataset distribution at point @. In practice one estimates such
gradients using a minibatch of samples (z,y), obtained by picking uniformly at random within a finite
dataset, and thus the formulas for the two inner products coincide (up to a constant factor).

A.2 Differentiation under the integral sign

Let X be an open subset of R, and {2 be a measure space. Suppose f : X x Q — R satisfies the following
conditions:
o f(z,w) is a Lebesgue-integrable function of w for each z € X.

o For almost all w € Q) , the partial derivative a% f of f according to z exists for all z € X.

o There is an integrable function 6 : Q@ — R such that \%(x,wﬂ < f(w) for all z € X and almost
every w € ().
Then, for all z € X,

0

0
92 Qf(a;,w)dw:/ %f(x,w)dw (15)

Q

See proof and details {Flanders| (1973]).

A.3 Gradients and proximal point of view

Gradients with respect to standard variables such as vectors are defined the same way as functional gradients
above: given a sufficiently smooth loss £ : 6 € O4 — L(0) = L(fy) € R, and an inner product - in the space
©4 of parameters 0, the gradient Vgﬁ(@) is the unique vector 7 € © 4 such that:

V60 € ©4, T -00 = DgL(6)(56)

where DgL(0)(60) is the directional derivative of £ at point 6 in the direction 60, defined as in the previous
section. This gradient depends on the inner product chosen, which can be highlighted by the following
property. The opposite —VyL(0) of the gradient is the unique solution of the problem:

~ 1
arg min {Dgﬁ(@)((S@) + = ||(59||?3}
5004 2

where || ||p is the norm associated to the chosen inner product. Changing the inner product obviously
changes the way candidate directions 06 are penalized, leading to different gradients. This proximal formu-
lation can be obtained as follows. For any 466, its distance to the gradient descent direction is:

Haof( VoL(0 )H = [160)1> + 250 - VoL (6 +Hv9,c H2

—9 @ 156])% + DJ(@)(@@)) LK

where K does not depend on §6. For the above to hold, the inner product used has to be the one from which
the norm is derived. By minimizing this expression with respect to §6, one obtains the desired property.

In our case of study, for the norm over the space ©4 of parameter variations, we consider a norm in the
space of associated functional variations, i.e.:

0
60l = H o 5 H
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which makes more sense from a physical point of view, as it is more intrinsic to the task to solve and depends
as little as possible on the parameterization (i.e. on the architecture chosen). This results in a functional
move that is the projection of the functional one to the set of possible moves given the architecture. On
the opposite, the standard gradient (using Euclidean parameter norm ||§6|| in parameter space) yields a
functional move obtained not only by projecting the functional gradient but also by multiplying it by a

matrix ’%"% which can be seen as a strong architecture bias over optimization directions.

We consider here that the loss £ to be minimized is the real loss that the user wants to optimize, possibly
including regularizers to avoid overfitting, and since the architecture is evolving during training, possibly
to architectures far from usual manual design and never tested before, one cannot assume architecture bias
to be desirable. We aim at getting rid of it in order to follow the functional gradient descent as closely as
possible.

Searching for

1
v* = argmin ||v — vy, ||* = argmin {Dﬁ(f)('u) + ||v||2} (16)
vETA veETA 2

or equivalently for:

2

9fe
90

00" = argmin
g
500,

00 — Vgoal

= argmin{D9£ fo)(60) +
56€0.4

o3

} = —VPL(f) (A7)
then appears as a natural goal.

A.4 Example of expressivity bottleneck

Example. Suppose one tries to estimate the function y = fiue(z) =

2sin(x) + x with a linear model fpreqict(z) = ax + b. Consider 1= precieion
(a,b) = (1,0) and the square loss £ . For the dataset of inputs 51
(w0, x1,22,23) = (0, 5, T, ), there exists no parameter update (da, 6b) a1
that would improve predlction at xg, x1, x2 and x3 simultaneously, as the >3]
space of linear functions {f : * — ax +b | a,b € R} is not expressive , |
enough. To improve the prediction at xg, x1, 2 and z3, one should look
for another, more expressive functional space such that for : =0,1,2,3
the functional update Af(z;) := fi*1(x;) — fi(x;) goes into the same = : T p
direction as the functional gradient vyoai (i) 1= =V o) L(f(2:),y:) =
_2(f(xz) - yz) where Yi = ftrue(mi)'

Figure 9: Linear interpolation

A.5 Problem formulation and choice of pre-activities
There are several ways to design the problem of adding neurons, which we discuss now, in order to explain
our choice of the pre-activities to express expressivity bottlenecks.

Suppose one wishes to add K neurons 0X = (ay, wk)ff:l to layer [ — 1, which impacts the activities a; at
the next layer, in order to improve its expressivity. These neurons could be chosen to have only nul weights,
or nul input weights a;;, and non-nul output weights wy, or the opposite, or both non-nul weights. Searching
for the best neurons to add for each of these cases will produce different optimization problems.

Let us remind first that adding such K neurons with weights 0% := (a, wk)szl changes the activities a; of
the (next) layer by

K
> wi o(afb () (18)
k=1
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Small weights approximation Under the hypothesis of small input weights ay, the activity variation
can be approximated by:

K
) Zwkazbl,g(w) (19)
k=1

at first order in ||ag||. We will drop the constant ¢/(0) in the sequel.

This quantity is linear both in o and wy, therefore the first-order parameter-induced activity variations are
easy to compute:

day(x) K
) @ o T e
day () .
! K \ _ a K _ T
v (x, (Wi)p=1) = Wl(wk)lezo(Wk)k:1 = Zwkbl—2($) g

so with a slight abuse of notation we have:

SC GK Zwkakbl 2 )

Note also that technically the quantity above is first-order in aj and in wy but second-order in the joint
variable 0K = (o, wy).

Adding neurons with 0 weights (both input and output weights). In that case, one increases the
number of neurons in the layer, but without changing the function (since only nul quantities are added) and

also without changing tradient with respect to the parameters, thus not improving expressivity. Indeed,

the added quantity (Eq. j involves 0 x 0 multiplications, and consequently the derivative agég)

w.r.t.
0K =0

T

these new parameters, that is, b;_o(x)T ay, w.r.t. wy and wy, by_o(x)T w.r.t. a is 0, as both a; and wy, are

0.

Adding neurons with non-0 input weights and 0 output weights or the opposite. In these cases,
the addition of neurons will not change the function (because of multiplications by 0), but just the gradient.
One of the 2 gradients (w.r.t. a; or w.r.t w) will be non-0, as the variable that is 0 has non-0 derivatives.

The question is then how to pick the best non-0 variable, (aj or wy) such that the added gradient will be
the most useful. The problem can then be formulated similarly as what is done in the paper.

Adding neurons with small yet non-0 weights. In this case, both the function and its gradient will
change when adding the neurons. Fortunately, Proposition [3.2] states that the best neurons to add in terms
of expressivity (to get the gradient closer to the variation desired by the backpropagation) are also the best
neurons to add to decrease the loss, i.e. the function change they will imply goes into the right direction.

For each family (w;)E ,, the tangent space in aé{ restricted to the family (ap)f,, ie T4 :=
{3 adkal o) 0(.)(ak)£{=1|(ak)ff=1 € (R'bl”(w”) } varies with the family (wg)i,, ie Ty
V=1 =

Ty ((wr)E ). Optimizing w.r.t. the wy is equivalent to search for the best tangent space for the ay,
While symmetrically optimizing w.r.t. the ay is equivalent to find the best projection on the tangent space
defined by the wy.

Pre-activities vs. post-activities. The space of pre-activities a; is a natural space for this framework,
as they are formed with linear operations and we compute first-order variation quantities. Considering
the space of post-activities b; = o(a;) is also possible, though computing variations will be more complex.
Indeed, without first-order approximation, the obtained problem is not manageable, because of the non-
linear activation function ¢ added in front of all quantities (while in the case of pre-activations, quantity
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Vgoal

Vgoal

ij‘]j; (Ugoal)

Figure 10: Changing the tangent space with different values of (wy,)i_,.

is linear in wy, and thus does not require approximation in wy, which allow considering large wy,), and, with
first-order approximation, it would add the derivative of the activation function, taken at various locations
o'(a;) (while in the previous case the derivatives of the activation function were always taken at 0).

A.6 Adding convolutional neurons

To add a convolutional neuron at layer [ — 1, one should add a kernel at layer [ — 1 and expand one dimension
to all the kernels in layer [ to match the new dimension of the post-activity.

T N b () _ bfw)

<

I\

-
w

‘ internal representation @:T] added neuron
@ kernels \I added channel

Figure 11: Adding one convolutional neuron at layer one for a input with tree channels.

B Theoretical comparison with other approaches

B.1 GradMax method

To facilitate reading we remove the layer index of each quantity, ie b := by_3, B := Bj_2, Vgoal := Vgoall and
\Z = Vou,

oalyroj oalyroj

20



The theoretical approach of GradMax is to add neurons with zero fan-in and choose the fan-out which would
decrease the loss as much as possible after one gradient step. We note €2 the fan-out of such neurons and
perform the addition at time t at layer [. After one gradient step, ie ¢ — t 4+ 1, the decrease of loss is :

L~ L —[|[VoL]]? = [|[VaLl]?

The solution of GradMax as formulated in the paper Evci et al.| (2022)) is :

(W, ..., wi) = QF = argmax ||VaL||? st ||Q? <c (20)

Q

we remark that :
2

IVaLll? = ‘ > b(@i)vgoa" ()02 (21)

o2
vl =
= |vaf’ N = BVyou” (23)

It follows that the fan-out of the neurons computed by GradMax are the solution of the problem that we

shall prove later: -
QF = argmaXHNQH s.t. ||Q||2 <c (24)
Q

To compare this optimization problem with TINY, we use the following proposition:

Proposition B.1.

Va € R, M € R, 3¢ € R s.t argmin||a — Mb||> = argmax (a, Mb)
b b, |[Mb||*<c

Taking Vgoal as a and V' as Mb, we can reformulate TINY optimization problem [§] as :

A*, Q" = argmax(V (A, Q), Veeal,, ;) st [[V(A,Q) <c (25)
AQ

We remark that

V(A Viouiyy) = (RATB, Vi) (26)
= Tr(BTAQTVgoalpmj) (27)
= Tr(AQ" Vioar,, o, B (28)
= <QAT’ ‘/E;Oalproj’ T> (29)

We perform the change of variable A := S 3 A and re-write the constrain as :

IV(A,9Q)| = ||QATB||’ (30)
= Tr(AQTQATS) S =BB" (31)
- [siar| o
= [|[@AT]| (33)

Then we define N := BVgoalgmj. The initial scalar product is then :

(V(A,Q), Viou,,,;) = (RATS™2 NT) = (QAT NTS™7) = (AQ" S5 N) (34)
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To maximise the scalar product, we choose AQT = S~2N. A solution for (A,€) is the (left, right)
eigenvectors of the matrix S™2 N. It implies that :

2
Q= argmaXHS*%NQH st ||Ql < ¢ (35)
Q
One can note three differences between those optimization problems:

o First, the matrix N is not defined using the projection of the desired update Vgoallpﬁj. As a
consequence, GradMax does not take into account redundancy, and on the opposite will actually
try to add new neurons that are as redundant as possible with the part of the goal update that is

already feasible with already-existing neurons.

e Second, the constraint lies in the weight space for GradMax method while it lies in the pre-activation
space in our case. The difference is that GradMax relies on the Euclidean metric in the space of
parameters, which arguably offers less meaning that the Euclidean metric in the space of activities.
Essentially this is the same difference as between the standard L2 gradient w.r.t. parameters and
the natural gradient, which takes care of parameter redundancy and measures all quantities in the
output space in order to be independent from the parameterization. In practice we do observe that
the "natural” gradient direction improves the loss better than the usual L2 gradient.

o Third, our fan-in weights are not set to 0 but directly to their optimal values (at first order).
We now prove the proposition

Proof. Indeed,

argmin ||a — Mb||*> = arg min | Mb||> — (a, Mb) (36)
b b
Mb

= arg min || Mb| <|Mb||— <a,>> (37)

b || Mb]]
= arg min arg min c—{(a,u) (38)

¢ || Mb||=c, u:H%gH

With the convention that ﬁ =0. O

B.2 NORTH Preactivation

In paper Maile et al.| (2022), fan-out weights are initialized to 0 while fan-in weights are initialized as
a; = S7'B,_1Vy,_ r; where r; is a random vector and Vz,_, € M(|Ker(BL )|, |bi—2(x)|) is a matrix
consisting of the orthogonal vectors of the kernel of pre-activations B;_1, i.e {z | B ;2 = 0}. In our paper

. . YR o -1 T o -1 T T
fan-in weights are initialized as a; = S BZ,QVgoalpmjvi = 87" B;_3Vg0al VZl—IVZl,lv'“ where the v; are

right eigenvectors of the matrix S—:N.

The main difference is thus that we use the backpropagation to find the best v; or r; directly, while the
NORTH approach tries random directions r; to explore the space of possible neuron additions.

C Proofs of Part 3

C.1 Proposition 3.1]
Denoting by M the generalized (pseudo-)inverse of M, we have:

L1 1 . 1 1 N
SW) = gvéoallBlT—l(gBllelel) and Vg = ﬁ‘éoallBlT—l(gBllelel) B
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Proof
Consider the function
9(6W) = ||Vgou' — SW B, _4|?

then:
9(OW + H) = ||Vgou' = W Bi_1 — HBy|?
= g(0W) — 2(Vgou' =W Bi_1, HB,_1) + o(|| H]|)
= g(6W) = 2Tr (Vo' — SWB,_1) HB,_1) + o(||H||)
T
=g(0W) —2Tr (Bl 1 (Vgout' —WB_1) H) + o(||H|)
= g(6W) — 2((Vioal' — W Bi_1) B[, H) + o( | H)
By identification Vsw g(6W') = —Z(ngl —WB,_ 1) 1, and thus:
V(swg((SW) =0 = ‘/:goallBgl]_ = (SWBl_lBlj;l
Using that ¢ is convex and the definition of the generalized inverse, we get:

1

L1 +
‘WVl :E goallBlT—l(ﬁBl—lBqu)

as one solution. For convolutional layer, we definied as b$ the input associated to the activation a;(X;) €

RkPP such that for a convolution layer with one output channel, noted with parameter W, we have :

Conv(a)(X;)) = B§ vect(W)

Ezample : considering the kernel of Conv to be (2,2), then :

1 2
bi* S o
p+-1,k p+2,k 2p,k

g | b AR

K3

p(p—1)+1,k P’k
b .

1,1 32,1 ,p+l,1  ,p+2,1 51,2 32,2 optl,2  opt2,2 ;1.3
b221 b%’)l bl 2,1 bl 3,1 bl22 bé2 bl 2,2 bl 3,2 b23
Bf — bi’ b b‘er ) b;er ) bz” bi’ bf+ ) bf+ ) b2

Then the function to minimize is
g(OW) = ||Vioul' — BSW||?

where B¢ := (B{ .. B¢) and 0W is the concatenation over the output channels.

(45)

C.2 Proposition [3.2]

We define the matrices N := fBl 2( Uml;mj)T and S := %Bl_QBlT;z. Let us denote its SVD by S =
UXUT, and note S % :=UVS UT and consider the SVD of the matrix S~ N = Zle )\kukva with

A1 > ... > Ag > 0, where R is the rank of the matrix IN. Then:
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Proposition C.1 (3.2). The solution of (7) can be written as:

e optimal number of neurons: K* = R
e their optimal weights: (o, w}) = (VARS™ 2ug, VArvy) for k=1,..,R.
Moreover for any number of neurons K < R, and associated scaled weights X%, the expressivity gain and

the first order in m of the loss improvement due to the addition of these K meurons are equal and can be
quantified very simply as a function of the eigenvalues A :

K

1 _ 2

LS TR D PR
k=1

Proof
To facilitate reading we remove the layer index of each quantity, ie B := B;_5, V/(A, Q) := V(A,) and
‘/goall L= ‘/goal P

proj proj

To solve this problem, we consider the input of the incomming connexions B and the desired change in the
output of the outgoing connexions Vyoal,,,, ;- Hence if we note L(A) and L(€2) the additional connexions of
the expanded representation and o the non linearity, we optimize the following proxy problem:

arg min H(L(Q) 000 L(A))(B) ~ Vioal,;
AQ

o un)

We solve this problem at first order by linearizing the non linearity 0. We denote Lin, ) (W) the fully
connected layer with input size a, output size b and weight matrix W. We also note C[+1] and C[—1] the
layer width at layer [ + 1 and [ 4+ 1 with the convention that C[0] is the dimension of the input X. With
those notations, for fully connected layers, we have for the additions of K neurons:

arg min ’ ’Lin(C[-i-l],K)(Q)(Lin(K,C[—l])(A)(B)> — Vioalyro;

\2 w

With the same notations, for convolutional layers, we have for the additions of K intermediate channels:

arg min HCOnV(C[J’,l]’K) (Q)(COIIV(Kyc[,l]) (A) (B)) 2

o - o

If we note V(A, Q) the result of B affter applying the layers parametrized by A and €, in both cases we
aim to optimize:

arg min ‘ ‘V(A, Q) — Vioal,, o ‘ (50)
AQ Projiimy
First we will transform the resolution of the problem in solving the following optimization problem:
argminHS%AﬂfS*%NH (51)
AQ 2

where S depends of B and IN of B and Vgoalproj'

If we note S = UAUT the SVD of S, we define the square root of S as St = UVAUT and S~% :=
UVA-1UT with the convention 0~! = 0.
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Lemma C.1. For S € R(s,s), N € R(s,t),A € R(s, k), B € R(k, ).
If N = S%S_%N, we have:

Proof.

(AB,SAB) —2(N,AB) = HS%AB - S*%NH2 - HS*%NH2
e For the first term we have:
(AB,SAB) = <AB,S%S%AB>
- <S%AB,S%AB>

1 2
=ls*45]

e For the second term we have:

Hence we have that:

1 2 1 2 . 2
(AB,SAB)—2(N,AB) = ||s*AB|| —2(N, aB) +|[s7*N]|| - [|s~# ]|

= [[staB—s-in[ - s

C.2.1 Fully connected layers

For a fully connected layer, we have

V (A, Q) = Lin11),x)(Q)(Lin g ¢[-1)) (A)(B)) = BAQ

We will use the following lemma to get the desired result:
Lemma C.2. Let Y € R(n,t), X € R(n,s) and S :== X T X € R(s, s).

s:s i xTy = XTy

Proof. Let decompose Y on Im(X) @, ker(X"): Y = XI + K.

X'y = XT"X1+X"K=X"X1=S8I

Hence X7Y € Im(S), hence as S| im(s) is invertible, we have: S—28: X7y = XTYy.
Lemma C.3. Let Y € R(n,t), X € R(n,s), k <min(s,t), A € R(s, k), B € R(k, ).

We define:

S:=X"X €R(ss)
N :=X"Y €R(s,t)

2 2
||Y7XAB||2:HS%ABfS*%XTYH fHS*%XTYH Y|
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Proof. By developing the scalar product we get:
IY — XAB|* = |[Y|* ~2(Y, X AB) + | X AB|| (65)
=||Y]?-2(Y,XAB)+ (XAB, X AB) (66)
=||Y|?-2(Y,XAB)+(AB, X" XAB) (67)
(68)

Using theorem we can apply theorem and immediately get the result. O

Hence using theorem we have:

‘ 2

Lin o1, () (Lin gk, c(-1)) (A)(B)) = Vgoal,o;

= (69)

1 1 2 2
st a0 —s N[ [l N[+ [|Vian

proj
With:
S := B'B e R(C[-1],C[-1])
N := B Vioa,,,; € R(C[-1],C[+1])
C.2.2 Convolutional connected layers

We have A € R(K,C[-1],d,d) and Q € R(C[+1], K, d[+1],d[+1]) where d,d[+1] is the kernel size at [
and [ + 1. We note Ap € R(K,C[-1]dd) the flatten version of A and Ay := Ap[k,:]. We also note

Qi € R(d[+1]d[+1]) the flatten version of Q[m, k,:,:]. Using this we define Qi := (Qp1 -+ Q1))
931

and Qp := :
Qx

We define the tensor T such that for a pixel j of the output of the convolutional layer, T} is a linear
application that select the pixels of the input of the convolutional layer that are used to compute the
pixel j of the output in a flatten version image (flatten only on the space not on the channels). T €
R(H[+1W[+1],d[+1]d[+1], HW) where H and W are the height and width of the intermediate image and
H[+1] and W[+1] are the height and width of the output image.

As previously, we have B¢ the unfolded version of B such that B¢ € R(n, C[—1]dd, HW) satifying Conv(B;)
is equal with the correct reshape to ABY.

In addition, we use j as an index on the space of pixel instead of having a couple h,w for height and width.
With those notations we have:

V(A,Q)[i,m,j] = Conv(c[_HLK)(Q)(Conv(ch[_l])(A)(Bi))[m,j] (70)
K

= Z Q) . T;B{ Ay, (71)
k

In the following for simplicity wenote Bfﬁ ; = T;Bg. To find the best neurons to add we solve the expressivity
bottleneck as :

K
argmin D537 3 | Vaoatpeoy ™ = D Bl o’ (72)
’ i Fi m k=1

(73)
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Using the properties of the trace, it follows that :

K
Z ||‘/vgoalproj£]7m) - ng;l,kBlt,jakH2 = Z ||‘/vgoalproj£]7m) - ZTI‘(B,f,]asz;’k)HQ (74)
i,5,m k=1 i,5,m k
F
= Vaoatprog "™ = Tr(BY; > a1 (75)
i,7,m k
=3 [ Vioatyroy ™™ — flat(BL )T flat(F)|[F - (76)
i,7,m
= Z ||‘/g0a1proj7(;j) - fla’t(Bf,j)TF||2 (77)
,J
(78)
With F := (flat(Fy) ... flat(Fopgq)).

We remark that V(A, ) is a linear function of the matrix F which implies that the solution of [72|is the
same as for linear layer. Replacing QA by F' in [60] and following the same reasoning as for linear layer, it
follows that [72]is equivalent to :

argminHS%F—S_%NH (79)
F 2

with §:= ", . flat(B! ) flat(Bf ;)" and N =3,  Vial, .’ flat(BY ;)T

proj

However, we remark that the dimension of N € R(C[—1]d[+1]?d?, d[+1]) is quite large and that computing
the SVD of such matrix is costly. To avoid expensive computation, we approximate [72] by defining the matrix
S and N as and We now prove that and equation still hold with such new definitions
of S and N.

Lemma C.4. Let H = max(Bj ;.shape), we define:

n H[+1]W[+1]

S:=HY > (Bl (B!;) € (C[-1]dd,C[-1]dd) (80)

i=1 j=1

n,H[+1]W[+1]
Ny:= Y Vgoazproji7j7,,L(Bf,j)T € (C[-1]dd, d[+1]d[+1]) (81)
i
N := (N1 N¢py) € (Cl=1]dd, C[+1]d[+1]d[+1]) (82)
We have:
2 1 1 2 1 2 2

HV(AaQ)f‘/goalproj ‘ SHSZAFQF*S QNH *HS 2NH +HVgoalp,roj ‘ (83)
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Proof.
Cl+1]n,H[+1]|W[+1] K
’ Z Z Z QB0 — Vgoalwoji,j,m)Z (84)
k

Cl+1]n,H] +1]W[+1] K

Q=) =Y Z Ol B! o)’ (85)

m k

C[+1] n,H| +1]W[+1 K
(_ :: —9 Z Z Z Q Bf,jak‘/goall)’f'()ji,%m (86)

Cl+1] n,H[+1]W [+1]

+ Z Z ‘/goalprojij’m (87)
m 7

17 (88)

goalprog

HV(A,Q)

=Q — 2L+ |[Vgoal

proj

We will use the following lemma to simplify this expression.

Lemma C.5. For any square matriz A € R(*™ Tr(A)? < rank(A)||A]]*.

Proof. Using the truncated SVD we have A = UYXV with ¥ a diagonal and U e R(wrank(4)) v/ ¢
R(r2k(4).7) truncated orthonormal matrices.

We have:

Tr(A)? = Tr(UZV)? (89)
=Tr(VUY)? (90)
=(VU,%)’ (91)
(Cauchy-Swarz) < ||[VU|]?|[2])? (92)
As U,V are truncated orthonormal matrices, we have:
IVU|? = (UTVTVU) = Te(UTU) = Tr(Lank(a)) = rank(A)
Hence:
Tr(A)? < rank(A) ||3|* (93)
As U,V are truncated orthonormal matrices, we have:
12> = Tr(2T8) = TH(VEU)USV) = Tr(AT A) = ||A|]?
We conclude that:
Tr(A)? < rank(A) ||A|? (94)
O

Lemma C.6. For (M;)ic; € (m,n)f,(uk)ke[[K]] S (m)K,(vk)ke[[K]] c (n)K and with W —
ZkGHK]] vku{ € (n,m) we have:

2

ST ul Miwy §<W,ZMZ-TMZ»W> (95)

il ||ke[K] iel
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Proof. Let i € I:

2
1) vl Myv|* = ( > uZka)

ke[K] ke[K]
= TI"( Z u{Mivk)Q
ke[K]
= Tr(M; Z vpu; )?
ke[K]
= TI“(MZW)2
(theorem [CH) < rank(M;W)||M;W||?
< H||M;W||?> H := min(M;.shape)

Hence we have:
SN wfMuw|P <HY [|IM;W]]?
iel  ke[K] iel

=H> (M;W,M;W)
el

=HY (W,MM;W)
i€l

=H <W, > MiTMiW>

iel

Using theorem we have:

ClH+1] n,H[+1W[+1] K
Q=2 X QB )l
m %7 k

C[+1] n, H[+1]W[+1]

m i\

Cl+1]
== Z <AFQm75AFQm>

m

= (ArQr, SAFQF)
Lemma C.7. For M € (m,n),u € (m),v € (n) we have:
u Mo = <vuT,MT>

Proof.
u Mvy, = (" Muv)"
—v' Mu

= (v, M "u)

K K
<> <Z aQ H ) (Bf,j)T(Bf,j)Za’fﬂam>
& k

(102)
(103)

(104)

(105)

(106)

(107)

(108)

(109)



We have:

C+1] n,H[+1]W[+1] K

L= Z Z an mB ak‘/goalprojl]m (115)

Cl+1] K [+1]W[+1]
(Vgoalprou,j,m € (1)) Z ZQ Z (B! 3 Veoalproj; ) Ok (116)
]
Cl+1] n,H[+1]W[+1]
(theorem [C7) Z < Z akﬂk > Z ‘/goalproji’j,m(Bij)T> (117)
%]
Cl+1]
= Z <AFQma Nm> (118)
= (ApQp,N) (119)

In total, we get:

2
HV(A,Q)_Vg ‘g<AFQF,SAFQF>—2<AFQF,N)+\|Vg0a1 & (120)

Oalproj proj

If we suppose that S is invertible, we can apply theorem and get the result.

Lemma C.8. For S € R(s,s), N € R(s,t), A € R(s, K), B € R(K, ).

We note UAV the singular value decomposition of S™:N and Ug the first K columns of U, Vi the first
K lines of V', Ak the first K singular values of A and A 1. the other singular values of A.

We define:

S U /Ae (121)
= VA Vg (122)
. 2 5 o 2
gl}g HV(A7 Q) - ‘/goalproj < HV(A 79 ) - ‘/goalproj = - HAKH + vaoalproj (123)
with equality for the linear case.
K
Uhagrc- < Tp—Y A7 (124)
k=1
Proof. Using theorem [C.3 and theorem [C.4}
v
2 ) . 2 . 2 2
P N N P
Hence we have:
arg mmHV (A, ) = Vgoal,,,;|| = argmin ‘S%AQ - S*%NH (126)
AQ
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As we suppose that S is invertible, we can use the change of variable A = S% A thus we have:
minHS%AQ—S—%NH :minHAVQ—S_%NH (127)
A, AQ

The solution of such problems is given by the paper [Eckart & Young| (1936) and is:

A* = Ur/Ax (128)
QF = /Ax Vi (129)

To recover A* we simply have to multiply by S~z on the left side of A*. By definition of the SVD and the
construction of (A*, 2*) we have:

[starar —s AN~ [|s= N[ = sl P - A1 = — flAxlP (130)

Using this and equation (125) we immediately get the desired equation (123]). To conclude, we can also
rewrite this with the bottleneck expression:

K

2
IS TEDIPY: (131)

Vogor = r}ll}frzl ’ ’V(A, Q) -V, 2

Oalproj

Note 2: Considering one update of architectue JW* at layer | and adding neurons 0X-* at layer [ — 1 the
loss at first order in ||[V!(6W*) 4+ V1(057)|| is :

L(fyeprc~) = L(fo) — ‘717(70) (Z A7+ (Vgoal, Vl(5Wl)>> (132)
k=1

To prove note 2 we use the following lemma :

Lemma C.9. We note V(A,Q) the result of B after applying the layers parameterized by A and 2. We
note V(A*,Q*) where A* and B* as define in[3.9

(Vioatyrop V(A 27) ) = || Ak (133)
Proof. Starting from theorem [C.§]
2
V(A2 = Visuryreg|| = = 1181 + | [ Vioatyr (134)

Hence by developing the norm, we have:

* 1112 * * 2
V(A" )| = 2(V(A",9°), Vigat,y5) = — |4k (135)
Moreover by construction we have ||V (A*, Q*)|| = ||Ak|| and therefore we get:
* * 2
~2(V(A".2), Vioutyrey) = 21k (136)
which conclude the proof. O
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We now prove the note 2. Using the first order approximation of the loss function at a', we have the following:

L(a'+da') = L(a) + (VL da') +o(||0a']]) (137)

On one hand, performing an update of architecture, ie W* <~ W + §W* change the activation function a'

as da’ := V(§W*). Then, as explained in appendix adding neurons at layer [ — 1 change the activation

function a' as :

sab = d’(0)V(A*, Q%) + o(||[V(A*, Q%)) (138)

Which combined give us that:

L(A* ") =L+ (VaL,dal +dah) + o||sal + sab|) (139)

Using that Viga1 := =1V, £ we have that :

L(A*, Q") =L — % (Vioar, dai + dah) + o(||0al + dab|) (140)

=L- % (<‘/goal - 5al1a 6a’l2> + <5a’ll5 5al2> + <‘/goa17 5a’ll>) + O(H(;a'll + 5al2||) (141)

Remarking that (dal,dal) = o(||da} + dab||) and usingwe have :

K

1

L(A*, Q") = L — ; <g’(o) PRy <Vgoal,5all>> +o(|[6al + éab]]) (142)
k=1

Note on the approximation for convolutional layer. By developing the expression
|V — VgoalpijQ, we remark that minimising ||V — Vgoalpij2 over V is equivalent to maximis-
ing <V7‘/goalproj> with a constrain on the norm of V. This constrain lies in the functional
space of the activities and can be reformulated in the parameter space with the matrix S as
|AQT||s = ||V||. By changing the matrix S, we modify the metric on V and obtain a
pseudo solution S ! N which is still positively correlated with S™'N as (S™'N,S8 ! ~N) > 0.

pseudo pseudo

C.3 Proposition and remark [3.3] and 3.2

Proposition C.2. Suppose S is semi definite, we note S = CERER Solving (7) is equivalent to find the
K first eigenvectors o, associated to the K largest eigenvalues A of the generalized eigenvalue problem :

NNToy = \Say (143)

Corollary 2. For all integers m, m’ such that m +m' < R, at order one in 1, adding m +m' neurons
simultaneously according to the previous method is equivalent to adding m neurons then m’ neurons by
applying successively the previous method twice.

Proof
To prove we show that the solution of [[43 and the formula of [3.2] are collinear.
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Solving is equivalent to maximizing the following generalized Rayleigh quotient (which is solvable by the
LOBPCG technique):

TNNT

a* = arg max % (144)
TS :NNTS :

p* = argmax P - = -P (145)

p=S1/2x PP
p* = argmaxHNTS*%pH (146)
llpll=1
a* =S8 3p* (147)

Considering the SVD of NT§~2 = Y X e, f7, then STaNNTS~ 2 = Y% 22f 7 because
it = eiTej =0and fT ;7 = 0. Hence maximizing the first quantity is equivalent to p; = fi, then
a, =S -3 fx, which match the formula of proposition The same reasoning can be applied on wy.

We prove second corollary [3.2| by induction. Note that v(65*, &) = o(n), then for m =m’ =1 :
a(@) ™ = ai(x)’ + (05", ) + o(n) (148)
Remark that vgea() is a function of a;(x), ie vgoal(x) := g(a;(x)). Then suppose that L(f(x),y)) is twice

differentiable in a;(x). It follows that g(a;(x)) is differentiable and :
Vgout' T () = g(aj (@) + v(05", 2)) (149)
= g(aj(z)) +V ‘(w)g(al (@) (057, 2) + o(n?) (150)
_ t ( (CC vy) 1,% 2
= Vgoal (T) + UW v(05", ) +o(n°) (151)
— vgout! (@) + o(1) (152)
Adding the second neuron we obtain the minimization problem:
arg min || Vgoal” — V (@2, w2)|| + o(n) (153)
Q2,W?2
O

C.4 About equivalence of quadratic problems

Problems [§|and [7] are generally not equivalent, but might be very close, depending on layer sizes and number
of samples. The difference between the two problems is that in one case one minimizes the quadratic quantity:

- 2
[v'o5)+ viaa) - Vool

w.r.t. M and 6% jointly, while in the other case the problem is first minimized w.r.t. M and then w.r.t.
9K . The latter process, being greedy, might thus provide a solution that is not as optimal as the joint
optimization.

We chose this two-step process as it intuitively relates to the spirit of improving upon a standard gradient
descent: we aim at adding neurons that complement what the other ones have already done. This choice is
debatable and one could solve the joint problem instead, with the same techniques.

The topic of this section is to check how close the two problems are. To study this further, note that
V(M) = 6W, B;_, while V{(6K) = Zszl kalT_Qak. The rank of B;_; is min(ng,n;—1) where ng is the
number of samples and n;_; the number of neurons (post-activities) in layer [ — 1, while the rank of B;_s is
min(ng, n;—2) where n;_s is the number of neurons (post-activities) in layer [ — 2. Note also that the number
of degrees of freedom in the optimization variables §W; and 0% = (wy, ) is much larger than these ranks.
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Small sample case. If the number ng of samples is lower than the number of neurons n;_; and n;_o
(which is potentially problematic, see Section 7 then it is possible to find suitable variables §W; and 0%
to form any desired V!(M) and V!(6K). In particular, if ng < nj_1 < n;_2, one can choose V!(0X) to be
V;goall — V(M) and thus cancel any effect due to the greedy process in two steps. The two problems are
then equivalent.

Large sample case. On the opposite, if the number of samples is very large (compared to the number of
neurons n;_1 and n;_s), then the lines of matrices B;_; and B;_5 become asymptotically uncorrelated, under
the assumption of their independence (which is debatable, depending on the type of layers and activation
functions). Thus the optimization directions available to V!(M) and V!(#X) become orthogonal, and
proceeding greedily does not affect the result, the two problems are asymptotically equivalent.

In the general case, matrices B;_; and B;_o are not independent, though not fully correlated, and the
number of samples (in the minibatch) is typically larger than the number of neurons; the problems are then
different.

Note that technically the ranks could be lower, in the improbable case where some neurons are perfectly
redundant, or, e.g., if some samples yield exactly the same activities.

D Section About greedy growth sufficiency and TINY convergence with more
details and proofs

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal state.
By greedy we mean that every neuron added has to decrease the loss. We derive the following series of
propositions in this regard. Since in this work we add neurons layer per layer independently, we study here
the case of a single hidden layer network, to spot potential layer growth issues. For the sake of simplicity, we
consider the task of least square regression towards an explicit continuous target f*, defined on a compact
set. That is, we aim at minimizing the loss:

inf Y | f(z) - /(@) (154)

xeD

where f(«) is the output of the neural network and D is the training set.

We start with an optional introductive section [D:I] about greedy growth possibilities, then prepare lemmas
in Sections [D.2] and [D.3] that will be used in Section [D.4] to show that one can keep on adding neurons to
a network (without modifying already existing weights) to make it converge exponentially fast towards the
optimal function. Then in Section we present a growth method that explicitly overfits each dataset
sample one by one, thus requiring only n neurons, thanks to existing weights modification. Finally, more
importantly, in Section [D.7, we show that actually any reasonable growth method that follows a certain
optimization protocol (this includes TINY completed by random neuron additions if necessary) will reach 0
training error in at most n neuron additions.

D.1 Possibility of greedy growth

Proposition D.1 (Greedy completion of an existing network). If f is not f* yet, there exists a set of
neurons to add to the hidden layer such that the new function f' will have a lower loss than f.

One can even choose the added neurons such that the loss is arbitrarily well minimized.

Proof. The classic universal approximation theorem about neural networks with one hidden layer [Pinkus
(1999) states that for any continuous function ¢* defined on a compact set w, for any desired precision 7,
and for any activation function o provided it is not a polynomial, then there exists a neural network g with
one hidden layer (possibly quite large when + is small) and with this activation function o, such that

(.x7) (155)
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We apply this theorem to the case where ¢g* = f* — f, which is continuous as f* is continuous, and
f is a shallow neural network and as such is a composition of linear functions and of the function o,
that we will suppose to be continuous for the sake of simplicity. We will suppose that f is real-valued
for the sake of simplicity as well, but the result is trivially extendable to vector-valued functions (just
concatenate the networks obtained for each output independently). We choose v = %0” f* = fllL2, where

(al b); 5 = Iil\ Jpew a(®) b(x) de. This way we obtain a one-hidden-layer neural network g with activation
function o such that:
Ve ew, —y<g(@)—g'(z) <y (156)
V€ w, g(x)=f"(z) - f(@) + a(z) (157)
with Vo € w, |a(x)| < 7.
Then:
Ve ew, ff(z) - (f(z)+g(x)) = —a(z) (158)
Ve ew, (f*(x)—h(x)® =a?(x) (159)

with A being the function corresponding to a neural network consisting in concatenating the hidden layer
neurons of f and g, and consequently summing their outputs.

If* = hlIZy = llalZ (160)

1
1= BllLe <7° = g55llf" = Iz (161)

and consequently the loss is reduced indeed (by a factor of 100 in this construction).

The same holds in expectation or sum over a training set, by choosing v = %\/I%\ Y ozep If(®) — f*(2)]2,
as Equation (159) then yields:
* 1 *
S (@) = h(@)? = Y a*(@) < 1o 3 (1 (@) — f()” (162)

xcD xze€D xcD
which proves the proposition as stated.

For more general losses, one can consider order-1 (linear) developpment of the loss and ask for a network ¢
that is close to (the opposite of) the gradient of the loss.

O

Proof of the additional remark. The proof in [Pinkus| (1999) relies on the existence of real values ¢,, such that
the n-th order derivatives a(”)(cn) are not 0. Then, by considering appropriate values arbitrarily close to
cn, ONe can approximate the n-th derivative of ¢ at ¢, and consequently the polynomial ¢" of order n. This
standard proof then concludes by density of polynomials in continuous functions.

Provided the activation function o is not a polynomial, these values ¢, can actually be chosen arbitrarily,
in particular arbitrarily close to 0. This corresponds to choosing neuron input weights arbitrarily close to
0. O

Proposition D.2 (Greedy completion by one single neuron). If f is not f* yet, there exists a neuron to
add to the hidden layer such that the new function f’ will have a lower loss than f.

Proof. From the previous proposition, there exists a finite set of neurons to add such that the loss will be
decreased. In this particular setting of L2 regression, or for more general losses if considering small function
moves, this means that the function represented by this set of neurons has a strictly negative component
over the gradient g of the loss (g = —2(f* — f) in the case of the L2 regression). That is, denoting by
a;0(W; - ) these N neurons:

N
<Zaia(wi )| g),,=K<0 (163)
i=1
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ie.

N
Z (aio(w; - @)| g) o =K <0 (164)
i=1

We have:

N
1 1 N
0> K=+ > laio(w; - )| g)p, > min (a;0 (w; - )| 9) (165)

i=1
Then necessarily at least one of the N neurons satisfies
1
(a;0(w; - x)| g) ;o < NK <0 (166)

and thus decreases the loss when added to the hidden layer of the neural network representing f. Moreover
this decrease is at least % of the loss decrease resulting from the addition of all neurons.

O

As a consequence, there exists no situation where one would need to add many neurons simultaneously to
decrease the loss: it is always feasible with a single neuron. Note that finding the optimal neuron to add is
actually NP-hard (Bachl 2017)), so we will not necessarily search for the optimal one. A constructive lower
bound on how much the loss can be improved will be given later in this section.

Proposition D.3 (Greedy completion by one infinitesimal neuron). The neuron in the previous proposition
can be chosen to have arbitrarily small input weights.

Proof. This is straightforward, as, following a previous remark, the neurons found to collectively decrease
the loss can be supposed to all have arbitrarily small input weights. O

This detail is important in that our approach is based on the tangent space of the function f and thus
manipulates infinitesimal quantities. Our optimization problem indeed relies on the linearization of the
activation function by requiring the added neuron to have infinitely small input weights, to make the problem
easier to solve. This proposition confirms that such neuron exists indeed.

Correlations and higher orders. Note that, as a matter of fact, our approach exploits linear correlations
between inputs of a layer and desired output variations. It might happen that the loss is not minimized
yet but there is no such correlation to exploit anymore. In that case the optimization problem will
not find neurons to add. Yet following Prop. [D-3] there does exist a neuron with arbitrarily small input
weights that can reduce the loss. This paradox can be explained by pushing further the Taylor expansion
of that neuron output in terms of weight amplitude (single factor £ on all of its input weights), for instance
o(ca-x) ~ o(0)+0'(0)eac-+ 30" (0)e?(a-x)? + O(e). Though the linear term o - might be uncorrelated
over the dataset with desired output variation v(z), i.e. Egop[zv(x)] = 0, the quadratic term (a - x)?,
or higher-order ones otherwise, might be correlated with v(x). Finding neurons with such higher-order
correlations can be done by increasing accordingly the power of (a - @) in the optimization problem .
Note that one could consider other function bases than the polynomials from Taylor expansion, such as
Hermite or Legendre polynomials, for their orthogonality properties. In all cases, one does not need to solve
such problems exactly but just to find an approximate solution, i.e. a neuron improving the loss.

Adding random neurons. Another possibility to suggest additional neurons, when expressivity bottle-
necks are detected but no correlation (up to order p) can be exploited anymore, is to add random neurons.
The first p order Taylor expansions will show 0 correlation with desired output variation, hence no loss
improvement nor worsening, but the correlation of the p + 1-th order will be non-0, with probability 1, in
the spirit of random projections. Furthermore, in the spirit of common neural network training practice,
one could consider brute force combinatorics by adding many random neurons and hoping some will be
close enough to the desired direction (Frankle & Carbin} [2018). The difference with usual training is that
we would perform such computationally-costly searches only when and where relevant, exploiting all simple
information first (linear correlations in each layer).
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D.2 Loss decrease with a line search on a quadratic energy

Let £ be a quadratic loss over R? and g be a vector in R%. The loss £ can be written as:
Lig)=9g"Qg+v"g+ K (167)

where ) is a matrix that we will suppose to be symmetric positive definite. This is to ensure that all
eigenvalues of @) are positive, hence modelling a local minimum without saddle point. v is a vector in R?
and K is a real constant.

For instance, the mean square loss E cp {Hf(ac) — f*(w)H?g}, where D is a finite dataset of N samples, f*

a target function, and S is a symmetric positive definite matrix used as a metric, fits these hypotheses,
considering g = (f(z1), f(z2),...) as a vector. Indeed this loss rewrites as

N
Do f@)"Sfa) =2 T (@)Sf(x) + K = ¢"Qg+ g+ K (168)
=1 7

by flattening and concatenating the vectors f(x;) and considering @ = S ® S ® S ® ... the tensor product
of N times the same matrix S, i.e. a diagonal-block matrix with N identical blocks S. Note that for the
standard regression with the L? metric, this matrix Q is just the Identity.

Starting from point ¢, and given a direction h € R?, the question is to perform a line search in that direction,
i.e. to optimize the factor A € R in order to minimise £(g + Ah).

Developing that expression, we get:
L(g+ M) = (g+ \)TQ(g+ ) +v (g + M) + K = NrTQh + A\2hT Qg +vTh) + L(g)  (169)

which is a second-order polynomial in A with positive quadratic coefficient. Note that the linear coefficient is
hTV,L(g), where V,L(g) = 2Qg+v is the gradient of £ at point g. The unique minimum of the polynomial
in A is then:

. 1hTV,L(g)
2= ’ihTngh (170)
which leads to
min £(g + M) = N2RTQh + NhTV ,L(g) + L(g) (171)
B 1 (hTV,L(g))?
=L(g) - 1 Won (172)
L) - < h] voL(g) > | (173)
4\ [|hllg] ¢ Q

Thus the loss gain obtained by a line search in a direction h is quadratic in the angle between that direction
and the gradient of the loss, in the sense of the @ norm (and it is also quadratic in the norm of the
gradient). Note that inner products with the gradient do not depend on the metric, in the sense that
(hW|VgL(9));. = <h|V§£(g) >S Vh for any metric S, i.e. any symmetric definite positive matrix S,

associated to the norm ||h||3 = h”Sh and to the gradient V5 L(g) = S’lvgzﬁ(g).

In the case of a standard L? regression this boils down to:

h 2
wjnllg + Ml = lol? = { i [ 0) (74)
i.e. considering L(f) := Ezep {Hf(x) — f*(x)||2] :
inL(f+\h) = L hol i c Igp[(f*_f)h]g 175
min 00 +3) = £07) = (i | 1= 7) = 20 - 5 [P (173)
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D.3 Expected loss gain with a line search in a random direction

Using Appendixmrbove, the loss gain when performing a line search on a quadratic loss is quadratic in the
I

angle o = < Hgg) \n‘;iiiggn >L2 between the random search direction V' (X) and the gradient Vgoai(X).

This angle has average 0 and is of standard deviation -, as described in Section The loss gain is thus

nd’
of the order of magnitude of é in the best case (single-sample minibatch).

D.4 Exponential convergence to 0 training error

Considering a regression to a target f* with the quadratic loss, the function f represented by the current
neural network (fully-connected, one hidden layer, with ReLU activation function) can be improved to
reach 0 loss by an addition of n neurons (h;)1<i<n, With n is the dataset size, using [Zhang et al.,| (2017]).
Unfortunately there is no guarantee that if one adds each of these neurons one by one, the loss decreases
each time. We will prove that one of these neurons does decrease the loss, and we will quantify by how
much, relying on the explicit construction in |Zhang et al.|(2017). This decrease will actually be a constant
factor of the loss, thus leading to exponential convergence towards the target f* on the training set.

As in the proof of Proposition in Appendix [D] at least one of the added neurons satisfies that its inner
product with the gradient direction is at least 1/n. While one could consequently hope for a loss gain in
O(%), one has to see that this decrease would be the one of a gradient step, which is multiplied by a step
size n, and asks for multiple steps to be done. Instead in our approach we actually perform a line search
over the direction of the new neuron. In both cases (line search or multiple small gradient steps), one has
to take into account at least order-2 changes of the loss to compute the line search or estimate suitable 7
and/or its associated number of steps. Luckily in our case of least square regression, the loss is exactly equal
to its second order Taylor development, and all following computations are exact.

We consider the mean square regression loss L£(f) = Eyep [||f(m) - f*(x)||§}, where D is a finite training

dataset of N samples. Its functional gradient VL(f) at point f is 2(f — f*), which is proportional to the
optimal change to add to f, that is, f* — f. The n neurons (h;)1<i<n to be added to f following |[Zhang et al.
(2017) satisfy -, h; = f* — f = —3VL(f). Thus

(e

f*f> = |/~ fllia = £(f). (176)
L2

Then like in the proof of [D.2] we use that the maximum is greater or equal to the mean to get that there
exists a neuron h; that satisfies:

(hil f* = flpa = L(f)/n. (177)
By applying Appendix one obtains that the new loss after line search into the direction of h; yields:

(hi| f*—f)3s L)
B “(f“(l n2||hi||2>' (a78)

min £(f + M) = £(f) -
From the particular construction in Zhang et al.[ (2017)) it is possible to bound the square norm of the neuron

2
|hil|? by nd (%) L(f), where dyps is related to the maximum distance between 2 points in the dataset,

d,, is another geometric quantity related to the minimum distance, and d’ is the network output dimension.
To ease the reading of this proof, we defer the construction of this bound to next section, Appendix

2
Then the loss at each neuron addition decreases by a factor which is at least v =1 — ﬁ (j—ﬂ”;) < 1. This

factor is a constant, as it is a bound that depends only on the geometry of the dataset (not on f).
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Thus it is possible to decrease the loss exponentially fast with the number ¢ of added neurons, i.e. £(f;) <
YL(f), towards 0 training loss, and this in a greedy way, that is, by adding neuron one by one, with the
property that each neuron addition decreases the loss.

Note that, in the proof of [Zhang et al. (2017, the added neurons could be chosen to have arbitrarily small
input weights. This corresponds to choosing a with small norm instead of unit norm in Equation [I79]

The number of neuron additions expected to reach good performance according to this bound is in the
order of magnitude of n3, which is to be compared to n (number of neurons needed to overfit the dataset,
without the constraint that each addition decreases the loss). This bound might be improved using other
constructions than|Zhang et al. (2017)), though with this proof the bound cannot be better than n? (supposing
||| can be made not to depend on n).

Note also that with ReLU activation functions, all points that are on the convex hull of the dataset (which
is necessarily the case of all points if the input dimension is higher that the number of points) can easily in
turn be perfectly predicted (0 loss) by just one neuron addition each (without changing the outputs for the
other points), by choosing an hyperplane that separates the current convex hull point from the rest of the
dataset, and setting a ReLU neuron in that direction.

D.5 Bound on the norm of the neurons

Here we prove that the neurons obtained by |Zhang et al.| (2017)) can be chosen so as to bound the square

2
norm of any neuron |h;|? by nd’ (‘;ﬁ) L(f), where dys is related to the maximum distance between 2

points in the dataset, and d,, is another geometric quantity related to the minimum distance. For the sake
of simplicity, we first consider the case where the output dimension is d’ = 1.

In |Zhang et al| (2017), the n neurons are obtained by solving y = Aw, where y = (y1,ys...) is the target
function (here (f* — f) at each z;), A is the matrix given by Aj; = ReLU(a - x; — by), representing neuron
activations, and a is any vector that separates the dataset points, i.e. a-x; # a-x; Vj # j, that is, a could
be almost any vector in R? (in the sense of random projections, that is, the set of vectors that do not satisfy
this is of measure 0).

Here we will pick a particular unit direction a, one that maximizes the distance between any two samples
after projection:

a € argmax min |a - (z; — ;)| (179)
lall=1 37"
and let us denote d], the associated value: d/, = min; |a- (z; —x;)| for that a. Note that d], <

min; ;s [|x; — xj/|| and that it depends only on the training set. The quantity d], is likely to be also
lower-bounded (over all possible datasets) by min; ; ||z; — ;| times a factor depending on the embed-
ding dimension d and the number of points n.

Now, let us sort the samples according to increasing a - x;, that is, let us re-index the samples such that
(a- ;) now grows with j. By definition of a, the difference between any two consecutive a - x; is at least d,,.

We now choose biases b; = a - z; —d],, + ¢ for some very small . The neurons are then defined as hy(x) =
wrReLU(a - « — by). The induced activation matrix A;; = ReLU(a - x; — by) then satisfies Vj < k; A;5 =0
and Vj > k; Ajr > d],, —e. The matrix A is lower triangular with diagonal elements above d,, := d, — ¢,
hence invertible. Recall that y = Aw.

Consequently, w = A1y, and hence ||w||* < [||A7Y]]? ||ly||?, that is,

ol < 2 £(f) (150)

as the target y is the vector f* — f in our case. Consequently, for any neuron h;, one has:

W<~ L(f). (181)



As the norm of the neuron is ||h;[|? = w? > A2, one still has to bound the activities A;; = ReLU(a-z; —b;).
As a was chosen a unit direction, the values a-x; span a domain smaller than the diameter of the dataset D:
la- (z; —z;)| < ||lz;—z;| < diam(D) Vj, 5. Hence all values Vi, j, |A;j| = |la-z; —bj| = |a-z;—a-x;+dn| <

dys = diam(D) + d,,. Note that dj; depends only the dataset geometry, as for d,,.

We now have:

d2
il = w? D A% < nit £(F) (182)
j m

which ends the proof.

For higher output dimensions d’, one vector w of output weights is estimated per dimension, independently,
leading to the same bound for each dimension. The square norms of neurons are summed over all dimensions
and thus multiplied by at most d’.

D.6 Reaching 0 training error in n neuron additions by overfitting each dataset sample in turn

If one allows updating already existing output weights at the same time as one adds new neurons, then it
is possible to reach 0 training error in only n steps (where n is the size of the dataset) while decreasing the
loss at each addition.

This scenario is closer to the one we consider with TINY, as we compute the optimal update of existing
weights inside the layer, as a byproduct of new neuron estimation, and apply them.

However the existence proof here follows a very different way to create new neurons, taylored to obtain a
constructive proof, and inspired by the previous section. See Appendix for another, more generic proof,
applicable to a wide range of growth methods.

Here we consider the same approach as in Appendix above, but introducing neurons one by one instead
of n neurons at once. After computing a and the biases b;, thus forming the activity matrix A, we add only
the last neuron h,. The activity of this neuron is 0 for all input samples ; except for the last one, for which
it is A,n > 0. Thus, the neuron h,, separates the sample z,, from the rest of the dataset, and it is easy to
find w,, so that the loss gets to 0 on that training sample, without changing the outputs for other samples.

Similarly, one can then add neuron h,_;, which is active only for samples z,,_; and z,. However designing
wp—1 so that the loss becomes 0 at point x,,_; disturbs the output for point x,, (and for that point only).
Luckily if one allows to update w,, then there exists a (unique) solution (w,_1, wy) to achieve 0 loss at both
points. This is done exactly as previously, by solving y = Aw, but considering only the 2 last lines and rows
of A, leading to a smaller 2 x 2 system which is also lower-triangular with positive diagonal.

Proceeding iteratively this way adds neuron one by one in a way that sends each time one more sample to
0 loss. Thus adding n neurons is sufficient to achieve 0 loss on the full training set, and this in a way that
each time decreases the loss.

Note that updating existing output weights w; while adding a new neuron, to decrease optimally the loss,
is actually what TINY does. However, the construction in this Appendix completely overfits each sample in
turn, by design, without being to generalize to new test points. On the opposite, TINY exploits correlations
over the whole dataset to extract the main tendencies.

D.7 TINY reaches 0 training error in n neuron additions

We will now show that the TINY approach, as well as any other suitable greedy growth method, implemented
within the right optimization procedure, reaches 0 training error in at most n steps (where n is the size of
the dataset), almost surely.

Before stating it formally, we need to introduce the optimization protocol, growth completion and a proba-
bility measure over activation functions.
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Optimization protocol. For this we consider the following optimization protocol conditions, that has to
be applied at least during the last, n-th addition step:

e a full batch approach,

e when adding new neurons, also compute and add the optimal moves of already existing pa-
rameters (i.e. of output weights w).

The first point is to ensure that all dataset samples will be taken into account in the loss during the n-th
update. Otherwise, for instance if using minibatches instead, the optimization of output weights w will not
be able to overfit the training loss.

The second point is to make sure that, after update, the output weights w will be optimal for the training
loss. Note that in the mean square regression case, this is easy to do, as the loss is quadratic in w: the
optimal move (leading to the global optimum f*) can be obtained by line search over the natural gradient
(which is obtained for free as a by-product of TINY’s projection of Vgoai, and is proportional to f* — f).
This is precisely what we do in practice with TINY when training networks (except when comparing with
other methods and using their own protocol).

Growth completion. For this proof to make sense, we will need the growth method to actually be able
to perform n neuron additions, if it has not reached 0 training loss before. A counter-example would be a
growth method that gets stuck at a place where the training loss is not 0 while being unable to propose new
neuron to add. In the case of TINY, this can happen when no correlation between inputs x; and desired
output variations f*(z;) — f(x;) can be found anymore. To prevent this, one can choose any auxiliary
method to add neurons in such cases, for instance random directions, solutions of higher-order expressivity
bottleneck formulations using further developments of the activation function, or locally-optimal neurons
found by gradient descent. Some auxiliary methods are guaranteed to further decrease the loss by a neuron
addition (cf. Appendices , while any other one will be guaranteed not to increase the loss if
combined with a line search along that neuron direction.

We will name completed-TINY the completion of TINY by any such auxiliary method.

Activation function. For technical reasons, the result will stand almost surely only, depending on the
invertibility of a certain matrix, namely, the activation matrix A, defined as A;; = o(v; - &; + b;), indexed
by samples ¢ and neurons j.

Generally speaking, kernels induced by neurons k; : = + o(v; - © 4 b;) form free families, in the sense
that the are linearly independent (to the notable exception of the linear kernel). This linear independency
means that a linear combination of kernels cannot be equal, as a function, to another kernel with different
parameters. Equality is to be understood as for all possible points x ever. However here we will evaluate
the functions only at a finite number n of points (the dataset samples), therefore linear independence will be
considered between the rows of the activation matrix A. This notion of linear dependence is much weaker:
kernels might form a free family as functions but be linearly dependent once restricted to the dataset samples,
by mere chance. While this is not likely (over dataset samples), this is not impossible in general (though of
measure 0), and it is difficult to express an explicit, simple condition on the activation function to be sure
that the activation matrix A is always invertible (up to slight changes of parameters). Thus instead we will
express results almost surely over activation functions and neuron parameters.

For most activation functions in the space of smooth functions, the activation matrix A will be invertible
almost surely over all possible datasets. In the unlucky case where the matrix is not invertible, an infinitesimal
move of the neurons’ parameters will be sufficient to make it invertible. For some activation functions,
however, such as linear or piecewise-linear ones (e.g., ReLU), the matrix might remain non-invertible over
a wide range of parameter variations (unless further assumptions are made on the neurons added by the
growth process). Yet, in such cases, slight perturbations of the activation function (i.e., choosing another,
smooth, activation function, arbitrarily close to the original one) will yield invertibility.
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To properly define "almost surely" regarding activation functions, let us restrict the activation function o to
belong to the space B of polynomials of order at least n2, that is:

K
o(x) = Y wma’ (183)
k=0

with n? < K < +oo, and non-0 highest-order amplitude yx # 0. This set 9 is dense in the set of all
continuous functions over the set Q = [—rypy, rM]d which is an hypercube of sufficient radius rj; to cover
all samples from the given dataset. One can define probability distributions over 3, for instance consider

2 -1
the density p(o) = 2= Hf:o % with a factor a = (%2 =Y hen? k%) to normalize the distribution, and
where K is the order of the polynomial and thus depends on ¢. This density is continuous in the space of

parameters v (though not continuous in usual functional metric spaces). Note that the decomposition of
any o € P8 as a finite-order polynomial is unique, as monomials of different orders are linearly independent.

We can now state the following lemma (that we will prove later):

Lemma D.1 (Invertibility of the activation matrix). Let D = {z;, 1 < i < n} be a dataset of n distinct
points, and let o : R — R be a function in B, that is, a polynomial of order at least n?. Then with probability 1
over function and neuron parameters (), (v;) and (b;), the activity matriz A defined by A;j = o(v;-x;+b;)
is full rank.

and the following proposition:

Proposition D.4 (Reaching 0 training error in at most n neuron additions). Under the assumptions above
(polynomial activation function of order > n?, full batch optimization and computation of the optimal moves
of already existing parameters), completed-TINY reaches 0 training error in at most n neuron addictions
almost surely.

Proof. 1f the growth method reaches 0 training error before n neuron additions, the proof is done. Otherwise,
let us consider the n-th neuron addition. We will show in Lemma [D.1] that the activity matrix A, defined by
A;; =o(v; - x; + b;), indexed by samples ¢ and neurons j, is invertible. Then there exists a unique w € R”
such that Aw = f*, ie. > wjo(v;-x; +bj) = f*(z;) for each point x; of the dataset. This vector of
output parameters w realises the global minimum of the loss over already existing weights: inf., £(fyw) =
inf,, ||Aw — f*||?. They are also the ones found by a natural gradient step over the loss (up to a factor 2,
that can easily be found by line search as the loss is convex). Then after that update the training loss is
exactly 0. O

Note: piecewise-linear activation functions such as ReLU are not covered by this proposition. However the
result might still hold with further assumptions over the growth process. For instance with the method in
Zhang et al.| (2017, the ReLLU neurons are chosen in such a way that the matrix A is full rank by construction.

Proof of Lemma[D.1]. Let us first show that if, unluckily, for a given activation function o and given param-
eters (vj;,b;), the matrix A is not full rank, then upon infinitesimal variation of the parameters, the matrix
A becomes full rank.

Indeed, if all pre-activities a; ; := v; - ; + b; are not distinct for all ¢, j, then an infinitesimal variation of
the vectors v; can make them distinct. For this, one can see that the set of directions v; on which any two
dataset points ; and x;; have the same projection is finite (since it has to be the direction of &; — x;/, for a
given pair of dataset samples (4,4")) and thus of measure 0. As a consequence with probability 1 over neuron
parameters v; and b;, all pre-activities are distinct.

Now, if the matrix A is not invertible, as invertible matrices are dense in the space of matrices, one can
easily find an infinitesimal change dA to apply to A to make it invertible. This corresponds to changing
the activation function o accordingly at each of the n? distinct pre-activity values. Since ¢ has more than
n? parameters, this is doable. For instance one can select the n? first parameters and search for a suitable
variation g := (67k)ock<nz of them by solving the linear system Sg = A where the n? x n® matrix S is
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defined by Sijx = af,j = (vj-x; + b]-)k. This matrix S is invertible because any g such that S g = 0 would

induce:
n?-1

Vi,j, oy al; =0 (184)
k=0

and thus the polynomial P(z) = ZZiBl Sk o has at least n? roots while being of order at most n? — 1.
Thus Sg =0 = ¢ = 0 and S is invertible. Note that as JA is infinitesimal, g = S~!d4 will be
infinitesimal as well, and so is the change brought to the activation function o.

Consequently we have that the set of activation functions o and neuron parameters (v;,b;) for which the
matrix A is full rank is dense in the set of polynomials 98 of order at least n? and of neuron parameters N.

Now, the function det : Px N — R, ((7&)k, (v;,b;5);) — det A = det (o (v; - ; + b;)) is smooth as a function
of its input parameters (the determinant being a polynomial function of the matrix coefficients). As this
continuous function is non-0 on a dense set of its inputs, the pre-image detfl{O} is closed and contains no
open subset. This is not yet sufficient to prove that this pre-image is of measure 0 (e.g., fat Cantor set).

For a fixed order K, one can see this function as a polynomial of its inputs v, and v;, b;, and concludeﬂ that
the set of its roots is of measure 0. As a consequence, the probability, over coefficients 4 or equivalently over
polynomials o of order K, that det A is non-0, is 1. As this stands for all K, we have that the probability
that the matrix A is invertible is at least the mass of polynomials of all orders K, i.e. Zk>n2 =z = 1. Thus
A is invertible with probability 1. O

E Technical details

E.1 Batch size to estimate the new neuron and the best update

In this section we study the variance of the matrices M*and §~'/2N computed using a minibatch of n
samples, seeing the samples as random variables, and the matrices computed as estimators of the true
matrices one would obtain by considering the full distribution of samples. Those two matrices are the
solutions of the multiple linear regression problems defined in and in , as we are trying to regress
the desired update noted Y onto the span of the activities noted X. We suppose we have the following
setting :

Y ~AX +¢, e ~N(0,0%), E|X]=0

where the (X;,Y;) are i.i.d. and A is the oracle for M* or matrix S~'/2N. If Y is multidimensional, the the
total variance of our estimator can be seen as the sum of the variances of the estimator on each dimension
of Y.

We now suppose that ¥ € R . The estimator A := (XX7)"1XY7 has variance var(4) = o?(XXT)~1. If n

~ —1

is large, and if matrix 2XX” — @, with @ non singular, then, asymptotically, we have A ~ N'(A, o Qn ),
which is equivalent to (AfA)@Ql/2 ~ N(0,I). Then ||(1417A)@Ql/2||2 ~ x2(k) where k is the dimension
of X. Tt follows that E [H(A —A)QV?|?| = ’“%2 and as Q/2QY/2" is positive definite, we conclude that

~ 2
var(A) < x5y

In practice and to keep the variance of our estimators stable during architecture growth, for the estimation
of the best neuron to add we use batch size

_ (swy?

)

with the notations defined in Figure [I2] since the matrices we estimate have side size SW and that each
input sample contains P values, i.e. P quantities that each play the role of X here.

2See for instance a proof by recurrence that roots of a polynomial are always of measure 0: https://math.stackexchange.
com/questions/1920302/the-1lebesgue-measure-of-zero-set-of-a-polynomial-function-is-zero|.
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E.2 Batch size for learning

We adjust the batch size for gradient descent as follow : the batch size is set to b;—g = 32 at the beginning of
each experiment, and it is scheduled to increase as the square root of the complexity of the model (ie number
of parameters). If at time ¢ the network has complexity C; parameters, then at time ¢ 4 1 the training batch

. . - Ciq1
size is equal to byy1 = by X \/ 6

E.3 Normalization

E.3.1 Figures[5]and [I6]: Usual normalization

For the GradMax method of figure [5]and [I6] before adding the new neurons to the architecture, we normalize
the out-going weight of the new neurons according to [Evci et al.|(2022), ie :

af 0 (185)

le—3
for{l wj + wi x < (186)

(@) 21113/na
le—3

[1(w)24113/na

for M6 wj + wj x (187)

For TINY method of both figures, the previous normalization process is mimicked by normalizing the in and
out going weights by theirs norms and multiplying them by /1le — 3, ie :

le—3
ap o X [ (188)
¥ H(%‘)jil”%/”d
le—3
wiy Wi X ° (189)

[1(@))L1113/na

E.3.2 Figure[§: Amplitude Factor

For the Random and the TINY methods of figure [§] we first normalize the parameters as :

For the new neurons For the best update
1
Oéz < a;:: X W* — W* % ]'
I(a})724113/na VIIW=[2/nq
* * 1
wk <— Oék X

1(w))2113/na

Then, we multiply them by the amplitude factor ~y

* .

For the new neurons : For the best update :
af, wp iy, wiy” W' "W,
v = argmin Y L(foqqer (2:), i) v = argmin Y L(forywe (i), vi)
Yy€[-L,L] 7 vEl-LL

Where the operation 79£* = (yay, ’yw;;)f is the concatenation of the neural network with the new neurons
and 0 +~yW™ is the update of one layer with its best update. The batch on which v* is computed is different
from the one used to estimate the new parameters and its size is fixed to 1000 for all experiments.
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E.4 Full algorithm

In this section we describe in detail the pseudo code to plot |5 and The function NewNeurons(l), in
Algorithm 2] computes the new neurons defined at Proposition for layer [ sorted by decreasing eigenval-
ues. The function BestUpdate(l), in Algorithm |4 computes the best update at Proposition for layer I.

Algorithm 1: Algorithm to plot Figure [5] and
for each method [TINY, MethodToCompareWith] do

Start from neural network N with initial structure s € {1/4,1/64};
while N architecture doesn’t match ResNet18 do
for d in {depths to growth} do
0K" = NewNeurons(d, method = method) ;
Normalize 0%~ according to
Add the neurons at d ;
Train N for At epochs ;
Save model N and its performance ;
end
end
end
Algorithm 2: NewNeurons Algorithm 3: MatrixSN
Data: [,method = TINY Data: pi,ps (layer indexes), M = None
Result: Best neurons at [ Result: Construct matrices S and N
if method = TINY then 1 Take a minibatch X of size o %?
M = BestUpdate(l + 1); 2 Propagate and backpropagate X;
S,N = MatrixSN(I - 1,1 +1,M = M); 4 Compute V got at pa, ie _ggot;
Compute the SVD of § := UXUT; if M # None then P2
Compute the SVD of

‘ Vgoal* = MBp1
end
S,N = BpprlT’ BmvgoalTE

UVE 'UN = AAQ;

Use the columns of A, the lines of Q and
the diagonal of A to construct the new
neurons of Prop.

N o o oA

7 else if method = GradMax then

10
11

12
13
14
15

M = None ; Algorithm 4: BestUpdate
_,N =MatrixSN(I —1,l+1,M = M) ; Data: [, index of a layer
Compute the SVD of NTN ; Result: Best update at [
Use the eigenvectors to define the new 1 Take a minibatch X of size (SW)Q;
out-going weights ; 2 Compute (S, N) with MatrixSN(I, {);

Set the new in-going weight to 0; 3 M =NTg-1.

else if method = Random then

| (ks wi)pty ~ N(0, Id);
end

E.5 Computational complexity

We estimate here the computational complexity of the above algorithm for architecture growth.

Theoretical estimate. We use the following notations:

o number of layers: L

o layer width, or number of kernels if convolutions: W (assuming for simplicity that all layers have
same width or kernels)

45



o number of pixels in the image: P (P =1 for fully-connected)

o kernel filter size: S (S = 1 if fully-connected)

o minibatch size used for standard gradient descent: M

e minibatch size used for new neuron estimation: M’

o minibatch size used in the line-search to estimate amplitude factor: M"

o number of classical gradients steps performed between 2 addition tentatives: T’

°:
&

Figure 12: Notation and size for convolutional and linear layers

g

P
W

Complexity, estimated as the number of basic operations, cumulated over all calls of the functions:

o of the standard training part: TMLW?2SP

o of the computation of matrices of interest (function MatrixSN): LM'(SW)2P
e of SVD computations (function NewNeurons): L(SW)?

o of line-searches (function AmplitudeFactor): L2M"W?2SP

o of weight updates (function BestUpdate): LSW

The relative added complexity w.r.t. the standard training part is thus:

M'S/TM + S*W/TMP + M'L/TM + 1/WTMP.

SVD cost is negligible. The relative cost of the SVD w.r.t. the standard training part is S2W /T M P.
In the fully-connected network case, S = 1, P = 1, and the relative cost of the SVD is then W/TM. It is
then negligible, as layer width W is usually much smaller than 7'M, which is typically 10 x 100 for instance.
In the convolutional case, S = 9 for 3 x 3 kernels, and P =~ 1000 for CIFAR, P =~ 100000 for ImageNet, so
the SVD cost is negligible as long as layer width W << 10000 or 1 000 000 respectively. So one needs no
worrying about SVD cost.

Likewise, the update of existing weights using the “optimal move" (already computed as a by-product) is
computationally negligible, and the relative cost of the line searches is limited as long as the network is not
extremely deep (L < TM/M”).

On the opposite, the estimation of the matrices (to which SVD is applied) can be more ressource demanding.
The factor M'S/T M can be large if the minibatch size M’ needs to be large for statistical significance reasons.
One can show that an upper bound to the value required for M’ to ensure estimator precision (see Appendix
is (SW)?/P. In that case, if W > \/TMP/S?, these matrix estimations will get costly. In the fully-
connected network case, this means W > T M =~ 30 for T = 10 and M = 100. In the convolutional case,
this means W > /TMP/S3 ~ 30 for CIFAR and ~ 300 for ImageNet. We are working on finer variance
estimation and on other types of estimators to decrease M’ and consequently this cost. Actually (SW)?/P
is just an upper bound on the value required for M’, which might be much lower, depending on the rank of
computed matrices.
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In practice. In practice the cost of a full training with our architecture growth approach is similar (some-
times a bit faster, sometimes a bit slower) than a standard gradient descent training using the final ar-
chitecture from scratch. This is great as the right comparison should take into account the number of
different architectures to try in the classical neural architecture search approach. Therefore we get layer
width hyper-optimization for free.

F Additional experimental results and remarks

F.1 ResNetl18 on CIFAR-100

Figures. In all plots the black line represents the average performance over two independent runs, and the
colored regions indicate the confidence interval.

technical details of figure [5] and The experiment were performed on 1 GPU. The optimizer is
SGD(Ir = le — 2) with the starting batch size 32 At each depth [ we set the number n; of neurons to be
added at this depth[2] These numbers do not depend on the starting architecture and have been chosen such
that each depth will reach its final width with the same number of layer extensions. For the initial structure
s = 1/4, resp. 1/64, we set the number of layer extensions to 16, resp. 21, such that at depth 2 (named
Conv2 in Table , ny = (Size ™ — Size3'®™) /nb of layer extensions = (64— 16)/16 = (64 —1)/21 = 3. The
initial architecture is described in Table [3

depth [ | Conv2 | Conv3 | Convh | Conv6 | Conv8 | Conv9 | Convll | Convl2
ny 3 3 6 6 12 12 24 24

Table 2: Number of neurons to add per layer. The depth is identified by its name on tab
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architecture growth TINY
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Figure 13: Accuracy and number of parameters during architecture growth for methods TINY and GradMax
as a function of gradient step.
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Extra Training TINY
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Figure 14: Accuracy as a function of the number of epochs during extra training for TINY.

Extra Training GradMax
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Figure 15: Accuracy curves as a function of the number of epochs during extra training for GradMax.
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Table 3: Initial and final architecture for the models of Figure Numbers in color indicate where the
methods were allowed to add neurons (middle of ResNet blocks). In blue the initial structure for the model
1/64 and in the initial structure for the model 1/4, ie 1/16 indicates that the model 1/64 started with
1 neuron at this layer while the model 1/4 started with 16 neurons at the same layer.

ResNet18

Layer name | Output size Initial layers (kernel=(3,3), padd.=1) | Final layers (end of Fig|5
Conv 1 32 % 32 x 64 3><3,} 3><3,64]

3 x 3,64 3x3,1/ 3x3,64| |3 x 3,64
Conv 2 32 x 32 x 64

3x3,1/ 3% 3,64 3x3,64| |3x3,64

3 x 3,64 3x3,1/ 3x3,64| |3 x 3,064
Conv 3 32 x 32 x 64

3x3,1/ 3% 3,64 3x3,64| |3x3,64
Conv 4 16 x 16 x 64 3x 3,128 3 x 3,128

3x3,128 | |3x3,2/ 3x3,128| |3 x 3,128
Conv 5 16 x 16 x 128

3% 3,2/ 3% 3,128 3x3,128] [3x3,128

3%3,128 | [3x3,2/ 3x3,128| |3 x 3,128
Conv 6 16 x 16 x 128

3x3,2/ 3 x 3,128 3x3,128| |3 x 3,128
Conv 7 8 x 8 x 256 3 x 3,256 3 x 3,256

3x3,256 | |3x3,4/ 3x3,256| |3 x 3,256
Conv 8 8 x 8 x 256

3x 3,4/ 3 x 3,256 3% 3,256 |3 x 3,256

3x3,256 | |3x3,4/ 3x3,256| [3x 3,256
Conv 9 8 x 8 x 256

3x3,4/ 3 x 3,256 3x3,256| |3 x 3,256
Conv 10 4 x4 x 512 3x 3,512 3 x 3,512

3 x 3,512 3x3,8/ 3x3,512| [3x 3,512
Conv 11 4 x4 x 512

3x3,8/ 3 x 3,512 3x 3,512 |3 x 3,512

3 x 3,512 3x3,8/ 3x3,512| [3x 3,512
Conv 12 4 x4 x 512

3x 3,8/ 3% 3,512 3x3,512| |3 x 3,512
AvgPool2d | 1 x 1 x 512
FC1 100 512 x 100 256 x 100
SoftMax 100
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Figure 16: Accuracy on test of as a function of the number of parameters during architecture growth from
ResNet; /64 to ResNet18. The normalization for GradMax is Vv 103

TINY GradMax )
Al Baseline
1 1
S
1/64 68.0 + 0.4 57.2+0.3
72.94 0.1 %
1/64 | 69.0+0.6°* | 57.7+0.33

Table 4: Final accuracy on test of ResNet18 of |16 after the architecture growth (grey) and after convergence
(black). The number of start indicated the multiple of 50 epochs needed to achieve convergence. With the
starting architecture ResNet; /54 and At = 1 the method TINY achieves 63.0 = 0.4 on test after its growth
and it reaches 69.0 + 0.6 “*after * := 5 x 50 epochs.
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