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Abstract

We propose a new representation of videos, as spatio-
temporal fibers. These fibers are clusters of trajectories that
are meshed spatially in the image domain. They form a hier-
archical partition of the video into regions that are coherent
in time and space. They can be seen as dense, spatially-
organized, long-term optical flow. Their robustness to noise
and ambiguities is ensured by taking into account the relia-
bility of each source of information.

As fibers allow users to handle easily moving objects in
videos, they prove useful for video editing, as demonstrated
in a video inpainting example.

1. Introduction
Owing to the huge amount of video data being recorded

daily nowadays, there is an increasing demand for tools
which can cater to video processing tasks such as video edit-
ing, compression, or understanding. These tasks are funda-
mentally challenging and require a good video representa-
tion algorithm providing reliable dense and long term cor-
respondences. To be of practical usage, video processing
tools should also require as little user interaction as possi-
ble, and be computationally fast. In this paper our goal is
to develop a video representation algorithm which will fa-
cilitate the extraction of long term spatio-temporal statistics
from video, and at the same time being efficient in compu-
tational requirements.

Optical flow estimation and video segmentation are of-
ten regarded as two different tasks in computer vision.
While optical flow focuses on point-wise correspondences
between frames, video segmentation is the extraction of
temporally coherent regions from a video, without point-
to-point temporal correspondences. The emerging need for
long-term trajectories as well as for more detailed video
segmentation is asking for the unification of the two fields,
and requesting suitable structures to bridge the gap. The
combination of these two kinds of information is needed to
analyze finely videos and is a prerequisite to precise video
understanding. For instance, relevant information for ges-

ture recognition can be extracted from the identification of
body parts, from their motion as well as their shape varia-
tions [1].

Current work on video segmentation and optical flow can
be broadly classified into two categories : frame-by-frame
based approaches and volume-based approaches. Frame-
by-frame approaches take as input one or two successive
frames of a video, while volume-based approaches con-
sider many successive frames of a video at once. Frame-
by-frame approaches have the advantages of low mem-
ory requirement while volume-based approaches in recent
years have demonstrated good coherency in object labeling
over time. Recently with the increase in computers’ mem-
ory, volume-based approaches have gained importance, as
jointly processing all frames of a video brings more infor-
mation and helps maintaining segmentation or trajectory co-
herency over time. However the accuracy of current video
segmentation algorithms still needs to be improved. Our ap-
proach combines cues from multiple frames over time and
is based on the representation of videos as 2D+T volumes.

Each moving part of an object carves a different sub-
volume in the 2D+T cube formed by the video. Approaches
[2, 16] aim at extracting meaningful patterns formed onto
2D slices by modeling 3D curves in a video-cube. How-
ever they face a high computational cost, and are restricted
by assumptions such as linear camera motion [2] or scene
consisting of few objects [16], which prohibits these ap-
proaches to be applied to current day video data.

In [10], a 3D graph of the full video is built, to perform
hierarchical segmentation. Whether nodes of this graph are
merged or not depends on a scale parameter. This algo-
rithm performs the best in the evaluation methodology pre-
sented by Xu et al. [19]. The metric used to merge nodes
is based on local color and motion variations and hence
there is no incorporation of fine long term pixel correspon-
dences. In [4], video segmentation is based on tracking re-
gions : boundaries are matched within successive frames of
a video, using a modified dynamic time warping, to obtain
a region segmentation over time. However this relies heav-
ily on low level image processing algorithms to obtain good
contours, which prevents it from a practical usage for long
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term video analysis in usual situations of temporal lighting
variations. Moreover, boundaries of moving objects (e.g.
humans) in activity or action recognition videos vary signif-
icantly with time, making it difficult for a boundary match-
ing algorithm to work consistently throughout the video.

The approaches above, as well as other ones [12], out-
put a set of 3D (2D+T) sub-volumes for a spatio-temporally
coherent object (or its sub-parts), and lack detailed cor-
respondences inside sub-volumes, required for high-level
applications like activity or gesture recognition [1].

Another way of approaching the problem of video seg-
mentation is to build long-term coherent tracks and use
them to propagate information to other regions of the video.
This is somehow similar to the colorization problem in the
graphics community [20], where color information is prop-
agated from user-placed seeds. In order to avoid manual in-
tervention, one can first find informative regions in a video
(seeds), and then use these seeds to propagate information
to the rest of the video. Point tracks across a video-cube are
built this way in [17, 6]. Clustering of these tracks can also
be performed [6, 15], leading to a segmentation consisting
of sparse point tracks which covers only 3% of the video.
On the contrary, we intend to cover full videos with long
term correspondences for every pixel. Different approaches
[13, 14] incorporate long-term motion into dense discovery
of objects in videos.

Similarly, we first seek reliable sources of information
in videos, and then propagate to other regions. A key
difference of our approach from such work however
is the incorporation of statistics over neighborhoods in
form of fibers. Furthermore, we present a generic video
representation useful for many applications. Another recent
work is by [8], wherein the authors first extract superpixels
in each frame and use dense trajectories from [6] to
obtain affinities for superpixels, thereafter using spectral
clustering to segment a video. Our work differs from [8] in
following manner. Firstly since optical flow is unreliable at
homogeneous locations, we search for initial fibers (defined
in section 2) near corners. Secondly we build fibers jointly
in space and time rather than using point trajectories.

With respect to this literature, our contributions are:

• a new point of view on video representation, with a
structure handling together point trajectories and hier-
archical segmentation with object meshing : fibers,

• an iterative process to build these fibers, which can be
seen as an optical flow robustifier, making it reliably
dense and long-term,

• a new approach to video segmentation, with small
complexity (quasi-linear) and thus near real-time.

We formalize the problem in section 2, build fibers in sec-
tions 3, 4, 5, and finally show experiments (section 6).

2. Fibers : Definition and Approach
A video cube is the stack of successive video frames.

Fig. 1 shows slices of a video cube, displayed as 3D volu-
mic scans in medical imaging. A pair of red colored lines
mark the correspondences in the slices. The top-left image
displays a standard 2D image frame from the stack, while
two other spatio-temporal cuts, in planes (t, y) and (x, t),
are shown in the top-right and bottom left. In this 3D rep-
resentation, points on the static background form straight
lines of homogeneous intensity over time, while points on
moving objects form curved lines. Analogically to fibers in
MRI images of human brains, we term fibers these straight
or curved lines.We are interested in a dense estimation of
fibers, involving all pixels of a video.

X

Y Y

T

T

Figure 1. 2D+T video cube represented as 3D data, as in medical
imaging: frontal, sagittal and horizontal slices correspond to cuts
along planes (x, y), (y, t) and (x, t) respectively. The red lines
indicate the values of x and y chosen for the cut. This video shows
people exiting a train in a train station. Note in particular the lines
in the (x, t) slice, formed by people trajectories, by the train or the
background. We name these sets of lines fibers.

2.1. Formalization

A video cube V = (It)t ε [1,n] is a stack of n successive
image frames It, each of which is defined over a same do-
main Ω ⊂ R2. It can be seen as 3D data, parameterized by
(x, y, t) ∈ Ω× [1, n].

A fiber F =
(
{Ti}i∈[1,m] , M

)
is a set of m trajecto-

ries Ti, spatially connected with a triangular meshM. Each
trajectory Ti is a sequence of locations xti ∈ Ω during a time
span [tis, t

i
e] ⊂ N, and thus writes Ti = (xti)t∈[tis,t

i
e]. The

mesh M is a planar graph whose vertices are trajectories,
and whose edges connect spatially-close trajectories, in a
triangulated way.
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Figure 2. A mesh of trajectories induces a mesh of points in each
frame.

A regular fiber satisfies moreover that its trajectories
(Ti) do not cross each other. More precisely, the trajec-
tory meshM induces at any time t, on the set of locations
{xti}i∈[1,m], a triangular meshMt over the region occupied
by the fiber in image It. These meshes Mt are required
to be spatially coherent in time, i.e. no triangle should be
flipped from a frame to the next one.

Note that fibers may have subpixelic spatial precision.
Motions from a frame to the next one are usually not con-
gruent with the pixel grid indeed, and discretizing them spa-
tially would make trajectories suffer from aliasing. Thus the
frame domain Ω is considered as continuous.

Our aim is to search for a partition of the video cube
into a set of regular fibers, optimizing the criteria below.

2.2. Criteria for a good representation

The following three traits were given in [11] to charac-
terize a reliable segmentation:

(C1) Region homogeneity. The segmentation should pro-
vide regions that are homogeneous w.r.t. one or more
properties, i.e. the variation of measurements within
the regions should be considerably less than variation
at the borders.

(C2) Pixelic precision on edges. The position of the bor-
ders should coincide with local maxima, ridges and
saddle points of the local gradient measurements.

(C3) No oversegmentation. Areas that perceptually form
one region should not be split into several parts.

to which we add:

(C4) Time coherency. The video representation should
provide high coherency in time i.e. the identities of
object should not change while moving across time.

(C5) Robustness and reliability. The representation
should not be very sensitive to noise, and its reliabil-
ity should be estimated, in order to know which parts
can be safely trusted and which are debatable.

Criterion (C1) expresses the homogeneity of each fiber,
e.g. internal color or motion coherency. Criterion (C2)
stresses that differential information, such as intensity gra-
dients, is useful locally to reach pixelic precision. We will

make use of structure tensors and of corner detectors to
estimate reliable and precise correspondences. Criterion
(C3) will be dealt with by merging neighboring fibers of
similar color or trajectory. Criterion (C4) asks for regu-
lar fibers with long time-spans. Last but not least, crite-
rion (C5) encourages statistics over neighborhoods instead
of considering single local value only, and promotes reli-
ability estimation, which may actually be expressed from
such statistics. Fibers are well-designed for this, as their
meshed-trajectories structure can be seen as spatial & tem-
poral neighborhoods, upon which statistics can be easily
computed. The instantiation of these 5 criteria will be de-
tailed in the next sections.

2.3. Approach Outline

We propose to search for the best partition of the video
cube iteratively, by:

1. suggesting candidate fibers at locations where mo-
tion estimation is reliable (e.g. corners), selecting the
best ones (most coherent in time, longest), while im-
proving them by making them regular (no triangle
flip) (section 3),

2. extending them jointly (to cover the full video do-
main) in such a way that each video point is assigned
a valid trajectory (section 4),

3. merging similar fibers hierarchically (section 5).

The next sections of the article follow this order.

3. Sparse Reliable Fibers

Fibers can be detected by finding correspondences across
the video volume. Many existing techniques, such as optical
flow or descriptor matching, can serve this purpose. How-
ever all methods are unreliable in homogeneous areas and
suffer from the notorious aperture problem on boundaries.
Hence we first identify video regions where the correspon-
dences are likely to be reliable (corners), then we check the
quality of the trajectories in these areas while simultane-
ously improving their regularity. Each fiber thus built is
then associated with a reliability factor.

3.1. Initiating fibers at corners

Since algorithms computing correspondences are more
reliable in high structure variation regions (corners and
edges) than in homogeneous areas (e.g. Brox & Malik and
Werlberger et al. flows [5, 18]), we detect corners and build
fibers there, using cornerness as a reliability factor, defined
as :

λ = exp
(

−γ
||λ1 − λ2||2

)
(1)
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where λ1 and λ2 are the eigenvalues of the structure ten-
sor ∇I × ∇I averaged over the area, and γ is a constant.
However, corners are often located on the external bound-
ary of objects, in an area thus involving several different
overlapping objects with different trajectories. We conse-
quently segment this area into as many fibers as needed.
For this, we mesh the area and segment this mesh into sub-
meshes based on color. We apply k-means in color space
and segment mesh vertices. To achieve spatial consistency
in segmentation we use graph cuts [3] with an MRF prior.

Each of the meshes obtained is now a separate candi-
date fiber. Candidate trajectories for each mesh vertex are
built time step after time step by simultaneously following
the optical flow, estimating motion coherency in space and
color coherency in time, and correcting the flow if neces-
sary, as described below. Fibers which are too heteroge-
neous will be split, stopped or removed. We ensure a min-
imal density of candidate fibers by selecting the best cor-
ners in each sufficiently-large hole in the video coverage
by fibers. Thus fibers that are stopped let place in the next
frame for new candidates.

Figure 3. Left : Corner and its neighborhood. Center : k-means
in color space. Right : Spatial coherency using graph cuts.

3.2. Color coherency in time

Discontinuity in color at occlusion vicinity are important
cues to avoid fibers switching objects. Successive slices of
a reliable fiber should have similar color; this can be mea-
sured with :

1
|Mt|

∫
Mt

‖∂tIt(x(t))‖2 dx '
∑
i∈M

wi
∥∥It(xti)−It+1(xt+1

i )
∥∥2

where the integral over the meshMt makes the color vari-
ation estimation robust to image noise. Here wi is a vertex
weight standing for the element area (relative area of the
neighborhood). The possibility of considering such statisti-
cal criteria is an important advantage of fibers, while point
tracks alone would suffer from pixelic noise.

3.3. Motion coherency in space

Similarly, motion should be coherent within a mesh at all
times. Rather than asking the motion variance within Mt

to be small, which would penalize wider non-rigid fibers,
we ask the motion to be continuous, and penalize its spatial

variation :

1
|Mt|

∫
Mt

∥∥∇x mt(x)
∥∥2
dx '

∑
i∼j
wij

∥∥mt
i −mt

j

∥∥2

where mt
i = xt+1

i − xti is the estimated motion at vertex i.
Once again, the mesh provided by our fiber representation
proves useful to express such kinds of criteria.

3.4. Regularizing the flow

While self-occlusions are frequent at the object level
(e.g. person walking), trajectories in a same small candi-
date fiber (e.g. the knee) should not intersect each other.
This is equivalent to the requirement that no triangle of
the mesh Mt can be flipped in Mt+1. If triangles are
found to be flipped between frames consecutive frames
and that they are not located at the boundary, then we
smooth the vertices locations in Mt+1 while keeping the
mesh boundary constant, until triangles are unflipped. This
spatially regularizes the trajectories. If flipped areas in-
clude part of the boundary, we compute instead the best
affine movement A that sends Mt as close as possi-
ble to Mt+1 for the L2 norm (closed-form solution for
infA

∫
M ‖Ax(t)− x(t+ 1)‖2 dx), and then replace the

original motion with it.

3.5. Fiber termination or split

A lack of color or motion coherency of the mesh Mt

at time step t indicates heterogeneity of a fiber. This can
be due to an occlusion, or to a drift of the flow across the
boundary of an object. Such drift and discontinuity prob-
lems have been reported by [17] while concatenating optical
flow vectors for long sequences. The advantage of our ap-
proach is that, as we estimate fiber color and flow statistics
at each time step, we detect these potential issues.

When a lack of coherency is detected, we split the fiber
into two homogeneous parts (typically, the two sides of a
boundary) if possible, and pursue the work for each of the
two fibers independently, provided their spatial size is sig-
nificant enough (if not, they are just ignored). Note that
in this case the fibers are fully split, on their full time span,
which is possible as we know their trajectories back in time.
This is useful when different objects of similar color or mo-
tion behave coherently during a while before becoming dis-
tinguishable, as then by propagating the information back
in time, we are able to distinguish them at all times.

To cover also drifts that happen too slowly to be notice-
able between two successive frames, we add another crite-
rion: the elasticity of the mesh. A too big variation of edge
length between any two mesh vertices at any two times (not
necessarily consecutive) will call the fiber splitter.

A fiber is stopped if it cannot be split into temporally
coherent sub-fibers (e.g. full occlusion). It is furthermore
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deleted if its time-span thus obtained is too short, as the
duration of trajectories is a good indicator of their quality.

With the employment of the above steps for all corners
in a video, we obtain a set of reliable fibers at high struc-
ture variation regions of a video. The full representation of
video in terms of fibers will now need the extension of these
quality fibers to the rest of the video.

4. Full video coverage

This section explains how we extend the fibers previ-
ously found to the rest of the video. For this, we first find
zones for possible fiber extensions, and then rely on trajec-
tory coherency to choose among extension possibilities.

4.1. Geodesics between fibers and rest of the video

The reliable fibers found so far do not cover all pixels of
the video. We would like to extend them to the full video by
associating to each pixel one of the closest fibers in term of
color and motion similarity. This is done by using Dijkstra’s
algorithm on the graph of all pixels of the video, with mul-
tiple sources (the fibers). The local cost considered between
adjacent pixels p and q is :

exp
(

−α
‖I(p)− I(q)‖2

)
+ λp,q exp

(
−β

‖m(p)−m(q)‖2

)
where I and m denote the local color and optical flow, and
where α, β ∈ R+ are constants set to the desirable stan-
dard deviation of color and motion allowed for mesh seg-
mentation (c.f. 3.1). The cornerness λ (defined in Eq. (1))
expresses the local trust on the optical flow.

The initial distance of the sources is set to be the opposite
of their reliability, −λ, in order to facilitate the extension of
reliable fibers. During the shortest path computations, we
keep track of the original sources so that we know to which
fiber each pixel is the closest, and even to which pixel of that
fiber. We assign to each pixel p a trajectory TFp by copying
the one of the closest pixel of the closest fiber F . Thus we
obtain a coverage of the video with possible extension zones
for each fiber, with associated trajectories.

4.2. Enforcing trajectory coherency

We would like now to assess the quality of the proposed
extensions and trajectories, and ensure their coherency. For
each fiber F , we consider a representative reference frame,
chosen in the middle of its time span. We project the 2D+T
possible extension zone of this fiber on this 2D reference
frame by following the previously assigned trajectories, as
in Figure 4. The quality of a trajectory TFp is expressed as
its color coherency, more precisely as the amount of work
needed to re-arrange its color histogram Hp into a single
Dirac peak. The infinimum of the Earth Mover Distance

over all possible color Dirac peaks:

coh(p) := min
i

EMD(Hp , δi) (2)

as well as its argmin, denoted by col(p), can be computed
in linear time. In order to ensure not only trajectory quality

TIME

tref

Figure 4. The possible extension zone (in green) of a fiber (in filled
gray) is projected on a reference frame (in red), following trajec-
tories (in blue) associated coherently with the fiber.

but also spatial and color coherency within one fiber, we re-
compute geodesic distances in the reference frame starting
from the original fiber, with a different metric, where the
cost of moving from a pixel p to an adjacent one q is

exp
( −α1

coh(q)

)
+ exp

( −α2

||col(p)− col(q)||2

)
(3)

where α1 and α2 ∈ R+ are constants. We thus obtain a
geodesic distance map Gf in each reference frame f .

The cost, for any pixel p of the video, of choosing a fiber
f , is then defined as the corresponding geodesic distance
Gf (projf (p)), i.e. as the value of this map Gf at the pro-
jection projf (p) of the pixel on the reference frame of that
fiber (according to its associated trajectory TFp ). Among
possible fiber extensions, each pixel then chooses the one
with the lowest cost.

The total time complexity of the fiber extension stage
is quasilinear: O(V log Ω), where Ω stands for an image
frame size. In particular, for a given frame size, the com-
putation time increases only linearly with the duration
of the video.

5. Hierarchical Representation
At this step we have a very fine representation of the

video in term of fibers. This fine representation can be
used by algorithms requiring reliable dense long term opti-
cal flow e.g. action recognition or video compression. Often
in many computer vision applications a coarser representa-
tion of video is required, e.g. for background subtraction
or activity recognition. This calls for the need of criteria
to merge fibers. Recent works on object segmentation in
videos from sparse set of input trajectories [6, 7] use graph
spectral clustering to obtain a fixed number of labels relat-
ing to number of objects in the scene. Note here that as
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opposed to these algorithms we have a trajectory associated
to all pixels of the video, and we describe below a simple
procedure to obtain a hierarchical representation of a full
video in terms of fibers.

In order to obtain hierarchical representation, we merge
fibers based on their speed similarity. Alternatively a differ-
ent cost function could be used, e.g. as in [6] incorporating
both spatial and speed distances between the trajectories.
With the cost function (4), one can expect to hierarchically
merge two fibers without considering their spatial positions.

We compute barycentric trajectories for fibers and com-
pare them using (4), where O[Fi, Fj ] defines the overlap
time span for two fibers Fi and Fj , and mt

G,i represents the
barycentric motion of fiber i at time t:

d(Fi, Fj) ∝
1

O[Fi, Fj ]

∑
t ∈ O[Fi,Fj ]

∥∥mt
G,i −mt

G,j

∥∥2
. (4)

We consider the graph of all fibers, initially fully discon-
nected, where fibers are represented by their barycenter tra-
jectories, and set an initial threshold τ . At each hierarchy
level, we connect the fiber nodes of the graph for which the
cost (4) is less than an associated threshold τ . The hierarchy
level is changed by multiplying τ with a constant scale fac-
tor s (not depending on experiments). This approach builds
a hierarchy tree, ensuring that finer motion details are pre-
served at the lowest hierarchy while much coarser motion
segmentation is at the higher hierarchy. Our results demon-
strate the robustness of the incorporation of motion detail
by fibers, as the background merging is almost perfect in
these challenging moving camera scenarios.

6. Experiments and Complexity
Dense groundtruth annotation of video datasets is rarely

available as it is an enormous task. Since we analyze
long term motion and color coherency, we considered the
datasets containing long sequences of around 100 frames
provided by the authors of [6, 10, 17]. The dataset pro-
posed by [10] consists of videos from Hollywood, and has
a few long sequences. Its downside is that it is highly pro-
cessed with artificial effects in some frames, and the scene
changes are quite rapid compared to natural motion, with
frames skipped unregularly, making it impractical for long
term coherency check. Moreover this dataset and the one
proposed by [17] do not have any groundtruth annotations.
One of the datasets used by [19] (xiph.org) consists of
groundtruth annotations. However this dataset doesn’t re-
flect the current day video usage, as the frame resolution is
mere 240x160 pixels, and as most video pixels remain static
from the first frame to last one.

Thus, finally, we consider the videos from [6, 17]. We
present our video segmentation, with spatio-temporal slices,
to display the label coherency in time, in Fig. 5, and more

classically with frames in Fig 6 and 8. Darker regions show
higher costs of association of the corresponding pixels to
the fibers, i.e. lower reliability. In Fig. 7 we show the result,
on the same video as in Fig. 5, obtained by the state-of-the-
art in video segmentation [10], using also optical flow, but
not trajectories. This shows that motion is indeed vital for
segmentation and that local optical flow does not help suf-
ficiently, hence the interest of our approach. On the other
side, motion segmentation algorithms do usually not pro-
vide a full dense segmentation, but we do, with trajectories
for all pixels.

All results are obtained with the same parameter values.
The total computational times including flow computation
for typical videos from [6] ranges from 70∼140 seconds for
20 frames, which is very fast compared to usual approaches
and can still be easily improved 1. We use the GPU-based
optical flow [18] on a basic Nvidia graphics card.

We now show the usefulness of fibers in practical usage
such as video editing. The hierarchical representation of
fibers allows the selection of moving objects in videos very
efficiently. In Figure 9 we perform a video inpainting task,
for which video zones to remove or to keep are selected
in only very few clicks. This is to be compared with the
state of the art [9] which requires manual segmentation of
all frames.

Figure 9. Inpainting task. Left : original video (top) and xt slice
(bottom) showing trajectories. Right : our result (no artifact!).
Clusters of fibers were computed and selected with only 7 mouse
clicks to distinguish the disturbing girl from the reporter and back-
ground. The girl was removed and the hole was filled by extending
the background fibers in time.

7. Discussion and Conclusion
We presented a novel representation of videos in terms

of fibers, practical to handle jointly temporal aspects (such
as motions and trajectories) and spatial aspects (such as
meshes and segmentation into regions). We build these
fibers in quasi-linear complexity O(V log(Ω)), which
makes them affordable in practice for real applications.

To the contrary of other approaches, we do not rely on
a perfect optical flow, but robustify it instead, by checking

1Refer to http://www-sop.inria.fr/stars/Documents/
fibers/ for more details and examples on fibers.
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Figure 5. Top Row: Left image displays four images of a sequence from [6]. Center image displays the same video as a 3D volume as in
Fig. 1, with an additional bottom right corner showing the 3D position of the xt and yt slices. Rightmost image displays all fibers found,
in different colors. Bottom Row : Left image displays a high level of their hierarchical clustering. Right Image displays the highest level
of the hierarchical clustering, with fiber extension. This result compares favorably to the state-of-the-art of video segmentation in Fig 7.

Figure 6. First Row : Sample Input image frames (12,24,46,53,66) from marple13 sequence by
[6]. Bottom Row : After 5 steps of hierarchical merging. Parts of the foreground and background
are indistinguishable during the first frames of the video (same color). Yet, the two objects follow
later significantly different trajectories, which enables us, when propagating this information back
in time, to separate them as different fibers in all frames (c.f . section 3.1).

Figure 7. Result on the same sequence
as Fig. 5 obtained by the state-of-the-art
segmentation of videos [10], using also
optical flow, for comparison. The main
foreground object and the background
are already merged at a relatively low hi-
erarchical level.

the coherency of trajectories, and modifying them at differ-
ent levels (mesh unflipping and fiber extension). The ad-
vantage of our approach over classical segmentations is that
we associate not only a label to each pixel, but also a co-
herent trajectory. Thus the segmentation is more robust to
noise. Moreover, we provide, in plus of the segmentation, a
reliability map of our result.

Meshes of trajectories prove useful in many places. First,
they allow to define vertex-dependent quantities, such as
motion or depth, while ensuring the continuity of their vari-
ation. Furthermore, they provide a dense, organized video
coverage, to the contrary of most approaches offering only
sparse tracks, short tracks, or frame-by-frame estimations.
The range of possible criteria to optimize with our represen-
tation is much greater, as it allows us to express statistics,
both in time and in space, making estimated quantities more

robust to video noise.

Another strength of this framework is the incorpora-
tion of hierarchical clustering, with meshes. For action
recognition applications it is often desired to keep the finest
representation in term of fibers (long term dense optical
flow) while for domains like background segmentation or
foreground estimation (in freely moving cameras), a much
coarser representation can be selected. This proved very
useful in the video editing task. Fibers are a middle-level
entity bringing the gap between low-level pixels and high-
level activity recognition: usual practical problems in com-
puter vision, like lighting variations, shadows or occlusions,
are difficult to face at the pixel level, and require more se-
mantic information from the scene. Shadows or occlusions
will result in several bits of homogeneous fibers, that can
easily be merged later at a higher level, based on global tra-
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Figure 8. Example from the marple3 sequence by [6], showing frames at a spacing of 10 frames till the 50th frame. First Row : Fiber
merging at a lower hierarchy. Notice that the background belongs to one cluster now. Second Row : Merged Fibers at a lower hierarchy.
Third Row : Penultimate hierarchy in merging fibers. Fourth Row : Final hierarchy in merging fibers.

jectory similarity or rules (e.g. a darker fiber at the bottom
of a foreground object and following it is a shadow). We
plan to implement this as well as to use fibers for activity
recognition in long videos.
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