
Neural Architecture Growth for Frugal Learning

1 Intership context
Research lab: INRIA TAU team (joint team between INRIA, CNRS and LISN of Université Paris-
Saclay)
Location: LISN (building 660 “Digiteo”, at Université Paris-Saclay)
Supervision team: Guillaume Charpiat, (guillaume.charpiat@inria.fr), Sylvain Chevallier, Stella
Douka, François Landes, Stephane Rivaud and Théo Rudkiewicz
Funding: European project MANOLO

2 Problem statement
Thematic context Deep learning has shown impressive, highly-mediatized results on various ap-
plications (Go game, StarCraft, translation, object detection in images, high-resolution image gener-
ation, text generation...), obtained at the cost of training huge neural network architectures, which
therefore also takes time and money (for instance, GPT-3 has 1011 parameters and might cost millions
of dollars to be trained), both at training and exploitation times. Frugal learning, on the opposite,
consists in training with as few samples or as little computational power (Green AI) as possible. We
will focus on the latter here.

Large vs. small One advantage of having many neurons per layer is that it is known (experi-
mentally and theoretically [GJS+20]) to facilitate optimization during training, thus yielding better
results. However, trained neural networks show high internal redundancy, and various techniques
have been developed to squeeze them into smaller networks with comparable accuracy. For in-
stance [LUW17] manages to divide by 100 the number of neurons in order to run online object
recognition in videos on a smartphone. On the other extreme, training and applying “tiny” models
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(with “only” 105 parameters) will be much faster (as each test of the network is of much smaller
complexity) but they might suffer from a lack of expressivity, preventing them from fitting data
accurately.

Change of paradigm In our work (soon to be) published in TMLR [VRCC24], we propose to start
with the simplest possible neural network (i.e., one neuron, a.k.a., linear regression) and make the
network grow according to the information brought by the backpropagation pass. Such information
can indeed be used to go beyond usual limitations in small network training, to explicitly tackle
potential optimization and expressivity issues. To do this, we locate precisely, while training, the
learning bottlenecks of a neural network, i.e., the layers which lack expressive power, in order to
boost them by adding neurons or new layers appropriately where and when it is needed. With
such an iterative architecture refinement scheme, important gains in architecture search (auto-DL)
are expected. Indeed current Neural Architecture Search methods consist in trying many different
architectures, while with our approach a single training progressively grows the architecture.

3 State of the art
Work done on this topic in our team so far A PhD student (Manon Verbockhaven) has already
formalized mathematically the concepts required to spot and fix expressivity bottlenecks. She has
also implemented layer growth of fixed convolutional and fully-connected architectures. More details
concerning this methodology can be found in [VRCC24]. A master 2 intern (Barbara Hajdarevic) has
extended this work to layer graph growth, i.e. adding new layers to the computational graph. This is
a necessary step to unleash the power of the approach and to check how it performs. Currently, 2 PhD
students (Stella Douka and Théo Rudkiewicz) and a Post-Doctoral researcher (Stéphane Rivaud) are
also working on the topic. Our networks are growing and so is our team.

State of the art and other methods The main approaches to full neural network architecture
optimization are based on automatic hyper-parameter tuning (auto-DL), but they are computation-
ally extremely demanding, as they run many tries on many architecture variations. Some approaches
incorporate architecture flexibility in their design [LSY19]; they can however only suppress connec-
tions between existing blocks, or suppress blocks, but not add new ones. Only a few approaches
try to grow architectures (such as [MRLW22]); unfortunately, they are most often based on ad hoc
criteria which are not mathematically justified.

4 Scientific proposal
We have many open axes of research that we want to tackle. Therefore, we offer multiple internship
positions. Our current work offers a good overall method for growing neural networks, but some
crucial part of the protocol could be studied to potentially largely improve our method. Our method
allows finding good initialization of network extension and valuable information about the impact of
those extension. Among possible topics, keeping in mind that more are available depending on the
candidate’s profile:

• When to add neurons? Training/updating compromise Using natural gradient and
solving exactly the linear regression problem at each neuron addition, one may expect that no
additional training (by gradient descent) is needed. In practice, we use a first-order method: we
solve exactly to obtain the ideal direction, and move by a small step, controlled by an amplitude
factor. We then complete training with a usual gradient descent. We want to study the
trade-off between training by gradient descent and updating the architecture (neuron
addition), which is implicitly controlled by the amplitude factor (and other choices).

2



• Robustness of statistical estimators. The expressivity bottleneck is estimated using a
mini batch of data of a given size. We want to study the statistical robustness of this
estimation and provide a theoretical bound. We also want to study (theoretically and/or
empirically) how to best choose the ratio between the batch size used for gradient descent
and the statistical batch size used for estimating the expressivity bottleneck.

• Where to add neurons? If we know where we want to add neurons, we can find a good
initialization and the first-order impact of the loss. We could choose to add new neurons where
there will be the most efficient at first order but is this greedy strategy good? Also, how to go
beyond first-order approximations, as needed when creating new layers?

– Algorithmics for expressivity bottlenecks localization. Backpropagation proper-
ties might be better exploited to design new algorithms to identify expressivity bottlenecks
faster. Ideally, predict the location where the expressivity bottleneck is maximized with-
out having to calculate it.

– Reinforcement Learning. Define a neural network state descriptor to efficiently de-
scribe the state of the model (size, expressivity bottlenecks, architecture, complexity,
performance, etc.). This can be used by Reinforcement Learning algorithms to define a
growth strategy.

Note that we already have a well-defined theoretical framework [VRCC24], a good codebase
(https://gitlab.inria.fr/mverbock/tinypub, currently being refactored by the team) and have
defined several experimental test cases.

5 Expected results
Depending on the subject, the results can be theoretical, empirical or both.
A theoretical could provide new guarantees to a used algorithm. It can also give useful insight on
the growing process which could later be used to improve the method.
For empirical results, the method development can be tested on various standard image classifications
benchmarks (MNIST, CIFAR, ImageNet) and should be compared with existing method from the
team and the literature. In addition the experiments should be reproducible and the new code should
be documented to be reusable.

6 Expected skills
The required skills are the central ones for any ML researcher both on the theoretical and technical
sides : Python, Pytorch, Git (could be learned on the fly), linear algebra (SVD...), differential
calculus...
And many others more skills can be used and learned during the internship (see footnotes for some
of the MVA related courses):

• Optimisation techniques 1

• Properties of small or big networks 2

• Expressivity of neural networks and general notions of expressivity (VC-dimension, Rademacher
complexity) 3

1Convex optimisation, Computational Statistics
2Deep learning in practice
3Fondements Théoriques du deep learning, Introduction to statistical learning
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• Estimation of carbon footprint of a compuatation 4

• Deep understanding of computationnal cost of neural network training and linear algebra op-
eration on GPU 5

• Many softwear developement skills (continuous integration, documention, use of cluster
(slurm), ...) to improve our open-source implementation 6
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