
Learning HJB Viscosity Solutions with PINNs for
Optimal Control and Continuous-Time

Reinforcement Learning
Abstract—This internship explores Continuous Time Rein�

forcement Learning (CTRL) for control tasks that require
high�frequency or asynchronous decision�making, such as au�
tonomous driving and high�frequency trading. Unlike Discrete
Time Reinforcement Learning (DTRL), which relies on discrete
decision intervals, CTRL models system dynamics using Partial
Differential Equations (PDEs) or Stochastic Differential Equa�
tions (SDEs) and solves the Hamilton�Jacobi�Bellman (HJB)
equation to estimate optimal policies. The objective is to address
the limitations of DTRL in continuous environments and im�
prove control performance. However, the research also highlights
key challenges, including increased computational complexity,
the requirement for accurate dynamic models, and difficulties in
exploration.

Index Terms—Deep Learning, Reinforcement Learning,
PINNs, HJB

I. Contacts and practicalities

• Supervisors: Alena Shilova, Nilo Schwencke
• Laboratory: TAU team, LISN−Université Paris Saclay

This internship will take place at LISN Laboratory at Paris
Saclay University. This internship will be paid for in accor-
dance with current legislation.
A. Application Process

Interested candidates are encouraged to apply with a CV
and a brief statement of motivation sent to supervisors with
the email object [HJB Internship application]. Applications
will be reviewed on a rolling basis with interviews until the
position is filled.

II. Context

A. Optimal Control and Continuous-time Reinforcement
Learning

Reinforcement Learning in the recent years has attracted a
lot of attention. Deep RL managed to beat human or even
expert performance in such tasks as atari games [1] and GO
[2]. Even more, RL has recently demonstrated its potential in
more complex tasks, such as robotics [3], controlling plasma
fusion in tokamaks [4], etc. The main objective of RL is to
train an agent and its behavioral policy that would suggest
optimal actions based on the state of the environment the
agent is in.

Before that, the similar problems of finding optimal behav-
ioural policies for dynamical systems has been a subject of
study in optimal control [5]. Optimal control has been used

in many domains and applications, for example robotics,
navigation, finances, etc. While RL and Optimal Control
share the same goal, the settings and approaches remain
mostly different. One of such things is the discrete-time vs
continuous-time settings. Usually, RL assumes that the time
is already discretized, which allows us to formulate the
problem as a Markov Decision Problem (MDP, cf. [6]). In this
regard, Optimal Control has an advantage of considering more
general setting of continuous time, thus introducing methods
agnostic of time discretization. And indeed, there are some
problems for which it is necessary to take decisions at the
arbitrary moments of time or at high frequency, e.g. high
frequency stock trading, autonomous driving and snowboard
riding. Therefore, more and more attention is drawn toward
Continuous Time Reinforcement Learning (CTRL, , cf. [7]),
which is at the intersection of RL and Optimal Control.

In the context of continuous time, the dynamics of the
system are expressed as a Partial Differential Equation (PDE)
for deterministic environments and Stochastic Differential
Equation (SDE) for stochastic environments, instead of relying
on MDPs. The value function (a useful measure to estimate
the quality of a policy of actions) can be found from Hamil-
tonian-Jacobi-Bellman (HJB) equation that replaces Bellman
equation in discrete time. The HJB equation is a PDE that
formulates the problem of finding the optimal control for a
dynamical system, which is studied and applicable in both
Optimal Control and CTRL. Despite being an essential PDE,
there does not exist many methods that can solve it in the
general case, especially when considering high-dimensional
problems. Even more challenging is that the HJB equation
may have numerous generalized solutions (weak solutions
that are not differentiable everywhere), one of which defines
an optimal control, but also many others that end up in
suboptimal behaviors of dynamical systems. While there
exists some numerical methods (Finite Difference, or Finite
Element Method, cf. [8]) able to distinguish and thus retrieve
an optimal control solution, they typically do not scale to a
dimension higher than 6. Thus, to scale further HJB-based
methods in Optimal Control and CTRL, we need to consider
other PDE solvers that would scale more easily to higher
dimensions.
B. Solving optimal control with physics informed neural
networks

The area of AI4Science or also known Scientific Machine
Learning develops with extremely fast speed in the last years
[9]. It promises to overpass the classical numerical methods in
solving many scientific problems from physics, chemistry, bi-
ology and other fields. This new area introduces new methods
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powered by neural networks that can be applied to high-
dimensional problems that might be intractable by classical
solvers like finite difference or finite element methods.

One example of such novel algorithm is to use physics
informed neural networks (PINNs, cf. [10]) to solve partial
differential equations (PDE). To solve a PDE, PINNs formu-
late the problem as an optimization problem, where the
objective is to minimize the loss function that comprises a
PDE equation together with boundary conditions that act in
the form of regularizers. This loss function is minimized using
the collocation points that are sampled inside the domain
on which the PDE is defined. While, a lot of research has
appeared in the recent years that prescribes how to train
PINNs, a lot of challenges still remain when considering
high dimensional problems. What neural architecture to use?
How to sample collocation points inside the domain? How
to combine different PDE and boundary equations inside a
loss function? What optimizer to use? All those choices can
affect a lot the training and eventually the final performance.
Moreover, there is no ultimate recipe that would suit any
problem.

A recent work [11] has explored a potential of using
PINNs to solve HJB equations. To address the non-unique-
ness of solutions, they have proposed a curriculum learning
like approach to find a well-regularized solution, a viscosity
solution, that can be proven to correspond to the optimal
control. To be more precise, instead of solving a single PDE,
they suggest solving a series of non-linear PDEs parametrized
with 𝜀, such PDEs have unique smooth solutions for 𝜀 > 0
and at the limit 𝜀 → 0 we recover the viscosity solution and
thus a solution that would return an optimal control. While
the work showed empirically that PINNs can be indeed used
to find an optimal control for classical control problems, such
as Pendulum, Cartpole and Acrobot, current learning choices
like uniform sampling of collocation points, using Adam as an
optimizer and Multi-Layer Perceptron as a neural architecture
may prevent it from scaling it to even more complex problems.

This internship proposes to improve the current 𝜀
-HJBPINNs algorithm by considering different learning
choices. In particular, how to use Anagram [12] to improve the
training error, while having a challenging setting of solving
a series of non-linear parametric PDEs. What other sampling
methods can improve the learning, for example a potential
candidate can be an adaptation of PINNACLE adaptive sam-
pling method [13] to Natural Neural Tangent Kernel [12]. Or
considering an attention-based neural architecture [14], [15]
that can better to generalize to all PDE equations considered
in 𝜀-HJBPINNs.

III. Proposal

A. Tasks and Responsibilities

• Understanding existing methods in solving HJB equa-
tions (Finite Difference, Finite Element Method [8], 𝜀
-HJBPINNs).

• Understanding and implementing different methods in
PINNs: Anagram [12], PINNACLE [13].

• Improving existing 𝜀-HJBPINNs in different directions:
learning of viscosity solution (consider different opti-
mizers, neural architectures), sampling techniques, sta-
bility of the methods.

• Testing them on high-dimensional tasks from MuJoCo
[16].

B. Skills Required

• Knowledge of machine learning, deep learning, Python,
and Pytorch or JAX.

• Excellent algorithmic skills.
• Autonomy and curiosity.
• Optional (but very welcomed): Being familiar with HJB,

PINNs, PDEs.
C. Benefits of the Internship

• Getting familiar with cutting edge research topics.
• Gain hands-on experience in advanced machine learning

techniques in a specialized team.
• Opportunity to publish and collaborate on research.
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