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Abstract. Brain tumor image segmentation and brain tumor growth as-
sessment are inter-dependent and benefit from a joint evaluation. Start-
ing from a generative model for multimodal brain tumor segmentation,
we make use of a nonparametric growth model that is implemented as
a conditional random field (CRF) including directed links with infinite
weight in order to incorporate growth and inclusion constraints, reflect-
ing our prior belief on tumor occurrence in the different image modalities.
In this study, we validate this model to obtain brain tumor segmenta-
tions and volumetry in longitudinal image data. Moreover, we extend the
framework with a probabilistic approach for estimating the likelihood of
disease progression, i.e. tumor regrowth, after therapy. We present ex-
periments for longitudinal image sequences with T1, T1c, T2 and FLAIR
images, acquired for ten patients with low and high grade gliomas.

1 Introduction

The assessment of disease progression after brain tumor treatment is very im-
portant in clinical practice for disease surveillance and treatment planning, but
also in drug trials and clinical studies for evaluating drug or treatment efficacy.

Automatic tumor segmentation is well-suited for tumor volumetry. In con-
trast to expensive manual segmentations, they obtain fast, reproducible and
objective results. Over the past years, several automatic tumor segmentation
methods have been developed [1]. Among these, longitudinal methods have been
implemented to explicitly use time information. For example in [2], 4-dimensional
(4D) spatio-temporal cliques are included in a conditional random field (CRF),
enforcing regularisation over time. However, this temporal regularisation tends
to smooth sudden growth events and the empirical temporal smoothness pa-
rameters are not easy to learn. [3] presents a model based on a 4D CRF using



infinite link functions that effectively constrain voxel classifications depending
on predefined conditions, which allow to constrain tumor segmentations to grow
or shrink for every time transition. This model can handle abrupt changes in
tumor growth and only includes one parameter for spatial regularisation.

In literature, tumor growth is often modelled by means of parametric models
based on cell kinetics and reaction-diffusion processes, as reported in [4]. These
models often aim to predict tumor growth (rather than study it in retrospect) and
do not calculate tumor segmentations in itself (prior tumor segmentations are
included for initialisation purposes). [5] was the first to use a parametric growth
model to assist in brain tumor segmentation. However, parametric models are
computationally expensive, make assumptions about tumor growth regularity
and cannot easily handle post-operative tumor structures with resection cavities.

We believe tumor growth modelling and segmentation are inter-dependent,
and aim to exploit this property by jointly optimising both in the same frame-
work. We adopt the longitudinal segmentation model developed in [3] and im-
plement it as a nonparametric tumor growth segmentation model. We further
develop the model to include a fast and robust estimation of the spatial regulari-
sation parameter and extend this model to detect tumor regrowth in longitudinal
sequences. We consider the clinical scenario where a tumor shrinks after therapy
and automatically detect the time point at which tumor regrowth begins.

2 Methods

We start from a set of 3-dimensional (3D) MR intensity images, consisting of
M modalities (T1, T1c, T2 and FLAIR), each available for T time points:
I = {Ist}s∈(1,...,M),t∈(1,...,T ), where s is a modality index and t a time index.
Furthermore, we use prior tumor probability maps as an input to our model:
X = {Xst}s∈(1,...,M),t∈(1,...,T ).

The growth model is specified through growth and inclusion constraints. The
growth constraints specify whether the tumor is expected to grow or shrink for
each time transition. They are represented by a binary array indexed over all time
transitions, g = [g1, g2, . . . , gT−1], g ∈ {0, 1}T−1, where each element gi imposes
growth (1) or shrinkage (0) in between time points i and i + 1. The inclusion
constraints are represented by a set of pairs of modality indices, (s′, s′′) ∈ Sincl,
such that all tumor voxels in the first modality, s′, are a subset of the tumor
voxels in the second modality, s′′. We enforce the tumor voxels in T1 and T1c to
be a subset of the tumor voxels in T2 and likewise T2 to be included in FLAIR.

2.1 A 4D CRF as a Nonparametric Growth Model (NPGM)

Graph construction. The CRF is implemented as a graph consisting of nodes,
which are represented by the voxel grid and the tumor/non-tumor labels, and
edges, which are quantified by edge weights and represent the affinity between
nodes: G = 〈V, E〉. The edge weights define an energy function E as a function
of the output segmentation. The smaller this energy is, the better the output
segmentation reflects the affinity between nodes, as specified by the edge weights.



Implementation of the energy function. The energy function is imple-
mented as described in [3]. In general, the energy function consists of unitary
potentials U and pairwise potentials P , weighted by a spatial regularisation pa-
rameter λ. The unitary potentials describe individual label preferences and the
pairwise potentials describe voxel interactions encouraging spatial coherency. In
this study, we extended the energy function by two functions, f∞ and h∞, to
account for edges of infinite weight, which we introduce in order to exclude pairs
of labels violating our growth or inclusion constraints:

E(I,X,Y |Θ) =

T∑
t=1

M∑
s=1

∑
p∈P

U(xstp, ystp) + λ
∑

(p,q)∈N

P (istp, istq, ystp, ystq)


+

T−1∑
t=1

M∑
s=1

∑
p∈P

f∞(gt, ystp, ys(t+1)p) +

T∑
t=1

M∑
s′=1

M∑
s′′=1

∑
p∈P

h∞(Sincl, ys′tp, ys′′tp) ,

(1)

where Y is the binary segmentation output, Θ = {g, Sincl} the growth and
inclusion constraints, istp ∈ Ist, xstp ∈ Xst, ystp ∈ Y st, P the voxel grid of the
3D volumes and N the set of voxel pairs within a spatial neighbourhood. We
will briefly describe the implementation of each term.

The unitary potentials are implemented based on the tumor probability
maps X:

U(xstp, ystp) = ystp (1− xstp) + (1− ystp) (xstp) . (2)

The spatial pairwise potentials are implemented within the 3D volumes. They
are quantified by a Gaussian, modelling the MR intensity difference between each
voxel pair within a 3D neighbourhood matrix N26:

P (istp, istq, ystp, ystq) =

d(p, q)−1 exp
(istp − istq)2

2σ2
if ystp 6= ystq ,

0 else ,
(3)

where d(p, q) is proportional to the voxel spacing and σ2 is set to the variance
of image intensities present in the 3D volume.

The growth constraints are imposed on voxel pairs belonging to the same
modality, having the same index within the 3D volumes, and being strictly con-
secutive in time. An infinite penalty is imposed if a) growth is imposed but the
voxels switch from tumor, ystp = 1, to non-tumor, ys(t+1)p = 0, or b) shrinkage is
imposed but the voxels switch from non-tumor, ystp = 0, to tumor, ys(t+1)p = 1:

f∞(gt, ystp, ys(t+1)p) =


∞ if (gt = 1) ∧ (ystp > ys(t+1)p) ,

∞ if (gt = 0) ∧ (ystp < ys(t+1)p) ,

0 else .

(4)

The inclusion constraints are imposed on voxel pairs of the same time point and
having the same index within the 3D volumes. An infinite penalty is imposed if



the voxels belong to two modalities in between which the inclusion constraint
holds, (s′, s′′) ∈ Sincl, and if the voxel in s′ is tumor and the voxel in s′′ is not:

h∞(ys′tp, ys′′tp) =

{
∞ if ((s′, s′′) ∈ Sincl) ∧ (ys′tp > ys′′tp) ,

0 else .
(5)

Once the edge weights have been assigned based on this energy function, the
CRF is solved by graph cut, as described in [6].

Spatial regularisation parameter λ. The regularisation parameter, λ, is an
important system parameter: an overly high value leads to under-segmentation
and an overly low value leads to poor spatial regularisation. Moreover, a good
value for λ differs from one case to another. There are several methods to learn
this parameter. A fairly easy, fast and robust method is adopted in [7], where
the parameter is made spatially adaptable. That is, λ is set to lower values for
voxels close to the edges of the images:

λstp = (1− Lstp)λmax , (6)

where Lstp is the edge probability of a single voxel and λmax is empirically set
to 3. We calculate the edge probability map L based on the tumor probability
maps X, by applying an edge detector and subsequent Gaussian smoothing.

2.2 Switching from Tumor Shrinkage to Tumor Regrowth

Once the CRF is solved by graph cut, we obtain an energy value. In [8] these
energy values are used to calculate the confidence in spatial voxel classifications.
More precisely, the confidence in a single voxel classification in [8] is based on
the energies acquired from graph cuts with and without a voxel classification
constraint, which is imposed by an infinite link.

As our growth constraints are enforced by the same infinite link functions,
we can transfer this spatial uncertainty measure to the temporal domain and
quantify uncertainties – or confidences – in specific tumor growth constraints.

First, consider a growth constraint for a single time transition from t to
t + 1: gt = a. We define the min-marginal energy for this growth constraint
ψt,a (t being the time index, a ∈ {0, 1} the shrinkage/growth constraint), as the
minimal energy within the family of energies obtained from graph cuts for all
growth constraint patterns where gt is kept equal to a:

ψt,a = C−1 min
g,Y

E(X,Y , g) , ∀g ∈ {{0, 1}T−1|gt = a} , (7)

with C as the number of voxels constrained with an infinite temporal link. Note
that the calculation of ψt,a requires 2T−2 graph cuts. The confidence in the
growth constraint for this single time transition, σt,a, can then be calculated as
a function of the min-marginal energies ψt,a, similar to [8]:

σt,a =
exp (−ψt,a)

exp (−ψt,a) + exp (−ψt,1−a)
, a ∈ {0, 1} . (8)



This calculation requires 2T−1 graph cuts. Note that this set of graph cuts cov-
ers all possible patterns of growth constraints. The energies of these graph cut
solutions can be re-used to calculate σt′,a′ for all other time points t′ 6= t.

The confidence in the entire pattern of growth constraints, σg, is then calcu-

lated as the product of confidences over all time transitions: σg =
∏T−1

i=1 σi,gi .

3 Experiments

Data specifications. We used ten datasets acquired at the German Cancer
Research Center (DKFZ). Each patient-specific dataset contains multimodal se-
quences (T1, T1c, T2 and FLAIR) for three to nine time points, with time
intervals of ± 90 days. Patients initially suffered from low grade gliomas, but
some developed high grade gliomas in the course of the study. All images within
the same dataset are skull-stripped and affinely co-registered. For each image,
manual ground truth segmentation is available in three orthogonal slices in-
tersecting at the tumor centre. The manual segmentations were acquired by a
clinical expert who took images of several time points into account at once.

We calculated tumor probability maps with a generative model based on an
Expectation-Maximisation (EM) segmenter, as in [9]. The segmentation maps
are concatenated over all time points, to obtain a valid input for the NPGM.

Experiment 1: Segmentation accuracy. In this experiment we compare
a) EM segmentations (i.e. acquired from generative model), b) NPGM segmen-
tations (i.e. acquired from the nonparametric growth model) where no growth
constraints are included, c) NPGM segmentations where the tumor is constrained
to grow over all time transitions and d) NPGM segmentations where the spatial
regularisation parameter is voxel-adaptive as in (6).

Table 1 reports the FLAIR Dice scores for all ten datasets, for each of these
segmentations. Dice scores of T2 and T1 are comparable and not all datasets are
suitable for T1c segmentations. The Dice scores are highest for the segmentation
where the tumor is constrained to grow along time and where the spatial regu-
larisation parameter is voxel-adaptive. Figure 1 shows tumor volumetry for three
datasets along time. This figure illustrates that the use of growth constraints does
not only attain higher Dice scores, but also results in a more realistic progress in
tumor volume. T2 and FLAIR segmentations, corresponding to the volumetry in
the rightmost plot in Fig. 1, are shown in Fig. 2. In terms of computation time, a
NPGM segmentation of a dataset of eight time points and four modalities takes
± 10 s on a Intel R© Xeon R© Processor E3-1225 v3.

Experiment 2: Detection of tumor regrowth. We adopt the probabilistic
formulation for different patterns of growth constraints (Sect. 2.2) to detect at
which point tumor regrowth begins. We shorten the datasets to include three
time points. Based on the ground truth volumes, we rearranged the order of the
three time points in order to get a) 84 sequences with shrinking tumor for both
time increments, g0 = [0, 0], and b) 84 sequences with shrinking tumor for the
first time increment and growing tumor for the second time increment, g1 =



Table 1. FLAIR Dice scores for all ten datasets segmented by the EM segmenter
and by the nonparametric growth model (NPGM) with different parameter settings
concerning growth constraints and spatial regularisation parameter.

EM segmentation: [79%± 8%]

63% 79% 89% 77% 67% 84% 80% 79% 84% 86%

NPGM - no growth constraints, adaptive λ: [81%± 5%]

78% 80% 90% 82% 71% 84% 80% 80% 82% 87%

NPGM - constrained to grow, fixed λ: [82%± 5%]

74% 78% 91% 81% 80% 85% 81% 82% 83% 86%

NPGM - constrained to grow, adaptive λ: [83%± 4%]

81% 78% 93% 82% 81% 84% 83% 82% 83% 87%
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Fig. 1. Tumor volumetry of T2 (dashed lines) and FLAIR (solid lines) showing a clear
advantage in the application of growth constraints (red) rather than leaving them out
(green) when comparing with ground truth (blue).
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Fig. 2. FLAIR and T2 images for one patient (same patient as in the rightmost plot
of Fig. 1) for six time points, annotated with EM segmentations (yellow), NPGM
segmentations with a strict growth constraint along time (red) and ground truth (blue).



[0, 1]. This experiment is of clinical relevance: tumors tend to shrink temporarily
after therapy and tumor regrowth needs to be detected as soon as possible.
For each dataset, the algorithm will estimate confidence measures in g0 and g1.
We obtain probabilities for both tumor growth patterns by normalising these
confidence measures: [pg0

, pg1
] = [σg0

, σg1
]/(σg0

+ σg1
).

Figure 3 illustrates the amount of correctly classified tumor growth patterns.
Of 168 datasets, 128 datasets were correctly classified, 35 datasets were falsely es-
timated to grow after the second time point (false positives) and only 5 datasets
were falsely estimated to keep shrinking after the second time point (false neg-
atives). To the right in Fig. 3, one can see that the accuracy of tumor regrowth
detection is highly related to the relative increase in tumor volume between
the last time points. As expected, the difference in the tumor growth pattern
probabilities (|pg1

− pg0
|) tends to be lower for misclassified tumor growth pat-

terns. Note that our classification detects either shrinkage or growth. In other
words, it does not account for cases of ‘stable disease’, where the tumor is neither
shrinking nor growing. This injects noise in our classification model, which gives
rise to misclassifications. Figure 4 illustrates the segmentation of a rearranged
dataset with a shrinking tumor that starts growing from the second time point
on, together with tumor volumetry of T1, T1c, T2 and FLAIR.
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Fig. 3. Distribution of correctly (◦) and incorrectly (×) classified tumor growth pat-
terns as a function of the difference in the growth pattern probabilities (|pg1−pg0 |) and
as a function of the relative increase in tumor volumes between the last time points.

4 Conclusion

In this study, we present a nonparametric model to segment brain tumors and
to estimate the occurrence of tumor growth and/or shrinkage along time. We
show the advantage of including longitudinal information in order to acquire
more accurate tumor segmentations and volumetry. Furthermore, we adopt a fast
and practical solution for the estimation of the spatial regularisation parameter



Tumor segmentations constrained to grow, g = [0, 1]

←
T
im

e
p
oi
n
ts

T1, T1c T2 and FLAIR Time points
1> 2< 3

4.5

5

5.5

6

6.5

7

7.5

8

Tumor volume in 2D
annotated slices (cm3)

T2 growth

Flair growth

T2 Ground Truth

Flair Ground Truth

Time points
1> 2< 3

0

10

20

30

40

50

60

70

80

90

100

3D Tumor
volume (cm3)

T1

T1c

T2

Flair

Fig. 4. Dataset depicting tumor regrowth occurring at the second time point, anno-
tated with EM segmentations (yellow), NPGM segmentations with g = [0, 1] (red) and
ground truth (blue). Volumes are given within the 2D ground truth annotated slices
(in the middle) and for the entire 3D volumes (to the right).

in the CRF energy function. Our model was extended to include probabilistic
formulations for tumor regrowth after therapy, and it was shown to succeed in
accurately estimating the occurrence of tumor regrowth.
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