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ABSTRACT
The ultimate goal of land mapping from remote sensing im-
age classification is to produce polygonal representations of
Earth’s objects, to be included in geographic information sys-
tems. This is most commonly performed by running a pix-
elwise image classifier and then polygonizing the connected
components in the classification map. We here propose a
novel polygonization algorithm, which uses a labeled trian-
gular mesh to approximate the input classification maps. The
mesh is optimized in terms of an `1 norm with respect to the
classifiers’s output. We use a rich set of optimization oper-
ators, which includes a vertex relocator, and add a topology
preservation strategy. The method outperforms current ap-
proaches, yielding better accuracy with fewer vertices.

Index Terms— Remote sensing image classification,
polygon generalization, geographic information systems

1. INTRODUCTION

One of the central problems in remote sensing is the assign-
ment of a thematic class to every pixel in a satellite or aerial
image, typically referred to as classification [1]. One of the
most important applications is to integrate the data into geo-
graphic information systems (GIS), which requires to repre-
sent the detected objects as polygons.

Some object detection techniques in remote sensing im-
agery directly produce polygonal data, e.g., by fitting rectan-
gles to the image [2]. However, to account for more general
shapes one must first classify every pixel and then polygonize
the classification map. Moreover, with the advent of deep
learning, the pixelwise classification of remote sensing im-
agery is becoming more and more effective [3, 4]. The usual
approach is to vectorize a raster object in a naive way, i.e, by
creating a polygon with points at every pixel all around the
object boundary, and then to simplify such a polygon. This
second step is often referred to as polygon generalization [5].

The most common generalization algorithms can be clas-
sified into local and global processing routines. Local rou-
tines, such as the radial distance [6] and Reumann-Witkam [7]
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methods, compare subsequent points in a polygon to decide
if one of them may be eliminated. Visvalingam-Whyatt [8]
and Douglas-Peucker [9] are global greedy routines that mea-
sure the effect of including each point on the entire polygon
and not only with respect to the nearest neighbors. These
techniques are implemented in most GIS packages (e.g.,
GRASS, QGIS and ArcGIS), Douglas-Peucker being the
most commonly used method by the community [6]. It has
been adapted to preserve topology and to generate non-self-
intersecting polygons [10, 11].

We here propose a polygonization technique based on the
approximation of a triangular mesh to the classification maps.
While previous methods simplify based on some measure
of distance between the complex and approximated polygon
boundaries, our method proceeds in an integral manner, i.e.,
considering the approximation error over the entire surface
of the image. In addition, instead of just removing vertices,
our approach consists of a rich set of operators which also
allows their relocation, permitting to compensate for the
imprecisions in the classification map.

2. POLYGONIZATION AS MESH APPOXIMATION

Let us consider a triangular mesh T , consisting of a set of
triangles {ti}, overlaid on top of an image to partition it (see
e.g. Fig. 4). There is a set of class labels L and we define
C(l, x, y) to be the cost associated to assigning a certain label
l ∈ L to a pixel (x, y) in the image. We also assign a single
label lt to every triangle t. The cost of such an assignment
is simply the cost of assigning the label uniformly to all the
points inside the triangle. We naturally assume that the label
assigned to each triangle is the one with the lowest cost. Our
goal is to find the triangulation that minimizes:

E(T ) =
∑
t∈T

min
lt∈L

∫∫
x,y∈t

C(lt, x, y)dxdy + λ

. (1)

For each triangle we sum the cost incurred by assigning the
optimal label to it, plus an extra weight λ per triangle. Adding
λ implies that the mere existence of a triangle has a cost, in-
dependently of its label, and is thus used as a regularization
term to set the desired coarseness of the mesh.
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Fig. 1: Illustration of the `1 cost on a 1-D triangulation.
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Fig. 2: Operators: edge flip (a) and half-edge collapse (b).

We here consider that a classifier has been used to es-
timate P (l, x, y), the probability P (l, x, y) of assigning
a certain label l ∈ L to a point (x, y) in the image (s.t.∑

l∈L P (l, x, y) = 1 and P (l, x, y) ≥ 0,∀x, y, l). We here
define the cost as follows:

C(l, x, y) = ||1− P (l, x, y)||1, (2)

which can be seen as the volume contained between the clas-
sifier’s probability surface and the piecewise constant approx-
imation implied by the labeled mesh. Fig. 1 illustrates an ex-
ample of such cost in 1-D. Let us remark that in addition to
using the fuzzy probabilities of a classifier, we can also use a
hard classification map (i.e., a unique class assigned to each
pixel) by supposing that the probability was set to 1 for the
assigned class and 0 for the rest.

The triangular mesh is iteratively optimized by perform-
ing a local search, starting from an initial fine lattice. We sim-
ulate a number of changes that transform the mesh, from T to
T ′, and construct a modifiable priority queue on the energy
variation ∆E = E(T ′) − E(T ) associated to each change.
We can restrict the calculation of ∆E to the triangles affected
by the change, given the sum over independent triangles in
(1). The highest priority change is first extracted from the
queue and applied to the mesh. Note that we must relabel the
affected triangles and update those elements in the queue that
may have been altered as a side effect. This is iterated until
there are no changes left. We only consider changes that im-
mediately improve T (i.e., ∆E < 0) and that produce a valid
triangulation (e.g., they do not lead to overlapping triangles).

The first two types of changes we consider are the edge
flip and half-edge collapse [12, 13] operators (see Fig. 2). We
can transform a triangulation to become any possible simpli-
fied triangulation just by flips and collapses, as soon as the
vertices are on fixed locations [12], making those two types
of operators particularly appealing. However, we also add a
vertex relocation operator that computes a new position for a
certain vertex. This increases the expressiveness of the fam-
ily of operators, compensating the limitation of flips/collapses
that simply recombine predetermined vertices. For example,
vertex relocation allows us to start the optimization from a
relatively coarse mesh and yet achieve similar (or even better)

δ M̂⋅n̂
δ M̂

du
uM̂

M̂+δ M̂≈M

n̂
δ A(M , M̂ )u

Fig. 3: Elementary area variation δA generated by δM̂ .

results than if we departed from a fine mesh (e.g., a vertex on
every pixel) and only used flips and collapses. Note that dif-
ferent types of operators can be mixed together in the queue,
or they can be applied at will in subsequent stages of the al-
gorithm.

Once the mesh has been optimized, the connected com-
ponents of triangles with the same class label are outputted as
polygonal objects of such class.

3. VERTEX RELOCATION

While the application of flip and collapse moves is self-
explanatory, we dedicate this section to our vertex relocation
algorithm.

We first see the object boundaries in the classification map
as curves in the plane, an object being a connected component
of pixels of the same class. We also see the boundaries of
objects in the triangulation as curves in the plane. Denoting
by M the “real” boundaries on the classification map and by
M̂ the ones implied by the labeled triangulation, our goal is to
modify M̂ so that it approaches M . We also use the `1-norm
and seek to minimize the area A(M,M̂) contained between
the two curves. We adapt the algorithm from [14], where a
volume criterion was used to simplify 3-D meshes.

Given a curve M̂ parametrized by u, we define δM̂(u) as
the displacement of a point that belongs to such curve (see
Fig. 3), with the goal of approximating M . We assume that
M̂ can be locally approximated by its tangent, and define du
to be a small displacement along the tangent. The variation
of area δA(M,M̂)u incurred by performing the displacement
δM̂(u) corresponds to the parallelogram generated by δM̂(u)
and du. The area of such parallelogram is |δM̂(u) · n̂| · du,
being n̂(u) a vector normal to M̂ . Since the variation of area
δA(M,M̂)u may be positive or negative (because δM̂(u)
may approach or move M̂ away from M ), we define:

δA(M,M̂)u = η(u)(δM̂(u) · n̂)du, (3)

where η returns -1 if if n̂ points toward the area embedded
between M and M̂ and +1 otherwise, since it would be re-
ducing and increasing the area, respectively (assuming n̂ is
oriented so that δM̂ · n̂ is positive). The total area variation
upon applying all displacements is:

δA(M,M̂) =

∫
u

η(u)(δM̂(u) · n̂)du. (4)

However, while (4) applies to any curve, in our piecewise lin-
ear case when we move a vertex Xi the points along adjacent



edges move accordingly. In fact, the δM̂(u) of a point inside
a segment XaXb is a linear combination of δXa and δXb:

δM̂(u) = λa(u)δXa + λb(u)δXb, (5)

where λa,b(u) are shape functions [15] such that λi is 1 on
Xi and linearly decreases to zero until reaching the following
and previous vertices in the curve. This interpolates Xa and
Xb based on their relative distance to δM̂(u).

If we differentiate (4) with respect to a particular vertex
Xi and use (5), we get:

∂A(M,M̂)

∂Xi
=

∫
u∗
η(u)λi(u)n̂(u)du. (6)

We restrict the domain of integration to the points in edges
adjacent to Xi (which we denote by u∗) because only there
λi(u) is nonzero.

Note that the challenge of evaluating (6) reduces to the
computation of η(u). We evaluate (6) as follows: first we
take a discrete number of points along every edge adjacent to
Xi. From each of these points we “shoot a ray” to decide to
which side lies the curve we want to approach. For example,
in the 2-class case we just shoot rays in opposite directions
and see which one hits first the 0.5 probability level, where
there is a change of classes and hence an object boundary.

The iterative optimization of Xi is performed by gradient
descent. Being k the iteration number, we set:

X
(k+1)
i = X

(k)
i − α(k) ∂A

(k)(M,M̂)

∂Xi
, (7)

where α(k) is an adaptive step that starts at α(0) = α and
is multiplied by a factor γ < 1 whenever an oscillation is
detected (∂A

(k)

∂Xi
· ∂A

(0)

∂Xi
< 0).

As with the other operators, these moves are simulated
and added to the priority queue based on the associated ∆E.

4. TOPOLOGY PRESERVATION

While some mesh approximations may be energetically op-
timal in terms of (1), they may be unpleasant from a quali-
tative point of view because they modify the topology of the
objects. A notorious case is that nearby buildings are often
merged together into one single object, or buildings that were
not adjacent in the initial mesh are connected in the simplified
mesh.

We deal with this situation by preventing changes that
incur in topological changes. To describe the topology of
the objects of a certain class we use the Euler characteristic
χ = V − E + F , where V , E and F are the number of
vertices, edges and faces in a mesh, respectively [16]. For
example, when there is a single object of a class, χ = 1,
for two separate objects χ = 2, for one object with two holes
χ = −1. For each class we must verify that χ does not change

(a) Color input (b) Initial mesh (c) Edge flips

(d) Vertex relocations (e) Edge collapses

Fig. 4: Effect of applying the different mesh operators.

as a result of applying an operator. We do this in practice by
counting the changes ∆V , ∆E and ∆F incurred by the op-
erator, only doing this locally on the elements that may have
changed as a result of its application. We then verify that
∆χ = ∆V −∆E+ ∆F = 0. We count those vertices, edges
and faces that are adjacent to a triangle labeled with the class
for which we are verifying the topological change.

Notice that we may adjust the tolerance to topological
changes by the coarseness of the initial mesh. For example, if
a small hole in the classification map is ignored in the initial
labeling, it will remain like that. In other words, one reason-
ably expects that the initial mesh is finer than what is consid-
ered to be the minimum object size.

5. EXPERIMENTS

We experiment on a dataset of Pléiades satellite imagery,
manually labeled into two classes: building/not building.
We use the classification maps obtained by the two-scale
convolutional neural network (CNN) presented in [4].

Let us first illustrate the effect of applying the different
operators. Fig. 4(a) shows a piece of color image from the
dataset in [4]. In Fig. 4(b) we show the corresponding classi-
fication map outputted by the CNN, overlayed with the initial
mesh (a lattice with one vertex every 10 pixels). Through
the samples we amplify the fragment indicated by the green
square on Fig. 4(a). Upon filling the priority queue with flips
and applying them till the queue is empty, we get the mesh
on Fig. 4(c). On this mesh we perform vertex relocations in
a similar fashion, obtaining the mesh in Fig. 4(d). Finally,
collapses are done as shown in Fig. 4(e).

We now compare our polygonization method with com-
peting methods. Our algorithm is as follows: we first per-
forms a stage involving only edge flips, followed by a stage
of vertex relocations (as in Fig. 4). Then we perform edge
collapses and, after each collapse we immediately simulate a
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Fig. 6: Visual comparison (“DP, thr. 3”: Douglas Peucker with threshold 3).

vertex relocation on the collapsed node (because we assume
that the collapsed node does not end up in the optimal location
right away). We can alternatively just mix all the operations
together, but we found this way to be more efficient and ele-
gant because the first two stages better align the initial mesh
to the classification map at very low cost, prior to start to col-
lapse edges. We start from a fine mesh (one vertex per pixel,
in a band around object boundaries).

For vertex relocation we shoot five rays per segment
(weighting them based on their distance du) and perform
gradient descent with α = 0.1, γ = 0.1, stopping when
α(n) < 0.0001 or the displacement is below 0.01 pixels.

We compare our polygonization method with the stan-
dard techniques used in geographic information systems
(GIS). We first vectorize the rasters with GDAL library’s
function gdal polygonize and then use GRASS and QGIS
implementations of the simplification methods mentioned in
the introduction.

In Fig. 5 we plot the accuracy of the polygonal approxi-
mation as a function of the amount of vertices (e.g., for dif-
ferent values of λ in Eq. 1). This is done on the entire test set
of [4]. Since we have ground truth data, accuracy is directly
measured as the percentage of correctly classified pixels
when rasterizing the polygons. Our algorithm outperforms
the other techniques, including the popular Douglas-Peucker
and Vasvalingam-Whyatt which are the most accurate among
them. The advantage is significant, for example, for a de-
sired accuracy of 99.54%, Douglas-Peucker requires 1200
vertices while our technique achieves the same accuracy with
only 700. This is also appreciated visually. Figs. 6(a-b)
show a piece of color image and the corresponding classifi-
cation map. Figs. 6(c) and (d) show the result of applying
Douglas-Peucker with two different threshold parameters,
and Figs. 6(d) illustrates our results. The parameters of
Douglas-Peucker were selected so as to provide a similar
accuracy to our method (in Fig. 6c) and a similar amount of
vertices than our method (in Fig. 6d). We observe that for
a similar accuracy there are too many vertices compared to
Fig. 6(d), while for the same number of vertices the polygons
by Douglas-Peucker do not represent the underlying objects
well, explaining the gap between the curves in Fig 5.

Fig. 7: Examples of color inputs (left) and approximation
without (center) and with (right) topological constraints.
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Fig. 8: Approximation with and without vertex relocation.

In Fig. 7 we illustrate the effect of removing the topologi-
cal constraints described in Sec. 4, where we observe that our
methodology effectively outputs polygons that better convey
the topology of the underlying objects. Finally, as depicted in
Fig. 8, the use of vertex relocation consistently outperforms
an equivalent algorithm where vertex relocation is removed.

6. CONCLUDING REMARKS

We presented a mesh approximation algorithm to polygonize
remote sensing classification maps. The polygonal objects
are more accurate than the current methods used in the GIS
community, and provide good approximations of the objects
with a significantly lower number of vertices. This is partly
because we allow vertices to be located anywhere and not just
exactly on the boundary of the original raster objects. Another
essential difference of our technique and is that we measure
the approximation error in an integral manner over the entire
surface of the image.

In the future we plan to reinforce regularity relationships
(e.g., parallelism, right angles) in the framework, learned
from training data, as well as to introduce machine learning
in the decision of applying the different operators.
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