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Problem: object extraction

e Ubiquitous in applications

N remote sensing imagery: road and
nydrographic networks, trees, buildings...

n medical imagery: vascular networks,
tumors...
e Automatic methods need to incorporate
human knowledge into mathematical
models.
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Difficulties?

e Appearances of the background and the
foreground are similar

'shape’ (region) distinguishes between them.

e Rivers are different from roads
branch extremities tend to not end.

at junctions, a significant change of branch
widths occurs.

e The presence of occlusions: gap closure.




Problem formulation?

R containing the entity:

e Calculate a MAP estimate of the region

A

R = argmgxP(RH, K)
P(R|I, K) x P(I|R, K)P(R|K)

e |n practice, minimize an energy:

A

R = arg m}%n E(R,I)

E(R,I)=—InP(I|R,K) — nP(R|K)

=|Ei(I, R] + Ep(R)

+ const

Prior: subject of
talk




Roadmap of the rest of talk

e Undirected network phase field HOACs
The model.
Limitations in the case of our purposes.

e Directed network phase field HOACs

The model: extension of the undirected
network model.

Results on VHR remote sensing images.
e Conclusions and prospects.




First part: undirected phase
field HOACSs

Active contours and HOACSs.
Phase diagram of a HOAC model.
HOACSs as phase fields?



Active contours?

e Aregion R Is represented by Its
boundary, oR = [y], the ‘contour’.

e Classical prior energy:

Length of R and area of R:
EC’()(R) — AcL(R) + Oé(jA(R)
Short-range dependencies between
boundary points.

Describes boundary smoothness.




Limitations of E¢ ,?

e Remote sensing images are complex.

Ec o Is Insufficient for automatic solution of
real problems.
e Regions of interest are distinguished by
their shape.

But topology can be non-trivial, and
unknown a priori.

e Need strong prior knowledge of shape,
but without constraining topology.




Build better shape prior: HOACs

e Incorporate prior knowledge about shape
via long-range dependencies between
boundary points.

(1), 3()

e How? Multiple integrals over the contour.
E.g. Euclidean invariant two-point term:

Ecq—‘—//51)2dtdt (1 (h() dW>|>
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Energy minimization

e Total energy (4 parameters):.
Ecp(R) = Eco(R) + Eco(R)

e Problem: different stable
configurations for some PSs.

e Solution: stability analysis
= parameter constraints

I <<wy,
W0¢ f @

Analysis of a Analysis of a
long bar circle
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Stabllity analysis

e Taylor series expansion up to second
order around -, (circle, bar):

ES (v) = ES (0 + 87)

e 1 6’Eq

A
£ Ec(vy) + (69| —=| )+ =(0v
6(70) + 07| == ’YO> 5 |5v? .

VAR \

Energy of ~, First order term Second order term

|67)

[ Eg has a minimum -y,
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Result: Phase diagram.

Pressure

Typical phase diagram of water. ©Wikipedia.
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Result: Phase diagram.

asinh(e.)
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Result: Phase diagram.

asinh(e.)
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Result: Phase diagram.

E(wo, 1) =~ le(wy)
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asinh(e.)
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Result: Phase diagram.

asinh(e.)
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Result: Phase diagram.

asinh(e.)
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Result: Phase diagram.

asinn(a )
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Difficulties of HOACS?

e Model:
Complex topologies require many contours.

e Algorithm:
Implementation of 0E Is very complex.

Execution is slow, especially with long
boundary.

Not enough topological freedom.
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‘Automatic’ topological freedom?

e Contour (explicit) representation Sfaeses
No change of topology

Constrained to be a distance
function.
» allows splitting and merging.
Q :> O or O :> Q

e but, not enough for our application.
?

——>
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Solution: phase fields

e A phase field ¢: Q C R? — R is a function.

e |t defines a region in the image
domain Q: R = {x : ¢(x) > z}.

e Basic, local energy:

B (6 / { Do a¢+x(

b (x) 3 §6—-:---- _
Smoothed charact- | . "

eristic function.




Shape information?

e Write tangent vector-y in terms of d¢

Eeq(y) = -2 //31)2 dt dt' (W() dv(t’)l)

=

//de%d%’(?qﬁ - Op(z) U (' |)
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Phase fields as HOACSs?

e Total prior energy:
Ep(¢) = Ey(¢) + ExvL(9)
e For a given region R, one can show:

Ej(¢r) ~ AcL(R) + acA(R) £ Eco(R)
EnvL(ér) x Ec,q(R)

e Result: one can use phase fields instead
of HOACs.
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Overview of the first part

e Contribution: phase diagram of a HOAC
model.

e Limitations:

The undirected network model does not
allow large range of stable branch widths

o works very well for roads but not for rivers.
Lack of connectivity: presence of gaps.

e Solution: directed network models.
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Preview of the second part

e Directed networks (e.g. rivers) carry
flow’ through their branches.

e Desiderata:
large range of branch widths, but
width changes must be slow, except
at junctions, 2, w; = 0.

e Goal: build priors which favor network
regions with these geometric properties.
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Second part: directed phase
fleld HOACSs

The model.
Stability analysis.
Results on real images.



The proposed model?

e Intfroduce a local phase field model
Incorporating two phase field functions:

a scalar field ¢ representing a region by Iits
smoothed characteristic function, and

a vector field v representing the “flow’
through the network branches.

e Total prior energy:
Ep(¢,v) = Eo(¢,v) + ENL(9)
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The local term?

e We require the vector field v to be:

O outside the network and |v| = 1 inside,
smooth,

parallel to the region boundary R, and
divergence-free.

e The proposed local phase field energy:
Eo(gb,v):/Qd2w{gﬁgb-@qﬁ—l—&(@-v) +—(% ov + W (¢, )}

2 - J
W

Smoothness Divergence Smoothness otentia
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The potential W(o, v)?

e The potential must have 2 minima -
(6, [V]) = (-1, 0) for the exterior |
(¢, [V]) = (1, 1) for the interior |

e E.g.: the simplest, a fourth

. e
order polynomial of p and |v|

[ 5 W 1 3 5
W(e,|v]) = %+(A2z%+)\21¢—|—)\20) %—Mm %+>\03%—|—)\02%+)\01¢
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Intuitions?

e Large range of stable branch widths:
We choose ¥ to be the Bessel function K,.

e Branch width changes must be slow:

low divergence + transition of |v| from 0 to 1
across oR =- // to the boundary,

/I to OR + smooth = // In the Interior,

// In the interior + low divergence + |v| = 1
= slow width changes and branches
prolong.
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Intuitions?

e At junctions, the total iIncoming widths
equal total outgoing widths (‘flow
conservation’ of v):

// In the interior + low divergence + |v| = 1
= pbranch width conservation.

e The preferred configuation:
Il
e

NS
W\
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Geometeric evolutions

Undirected network model Directed network model

%% x| 0|8 ® x/8|
&Y @ u R
PR 8 B i

Bessel Rochery et al. Bessel Rochery et al.
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Difficulties?

e Parameter learning: the model has many
free parameters (9).

e Many stable configurations for some
parameter ranges:

e.g.: circular structures, line network
structures.

e Solution: constrain the parameter values
to favor stable networks.
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Turing’s stabillity

Consider the energy without gradient (stabilizing)
terms: E(W(¢, V)).

Let (o(x), V(X)) = (¢q, Vo) VX € Q being a uniform phase
of the system.

(¢, Vo) = (-1, 0) and (1, 1) are two stable uniform
phases i.e. (¢q, Vo) minimum of E(W(¢, v)).

Adding stabilizing terms to the energy, the uniform
phase (¢,, Vy) must remain stable:

(¢, Vo) IS stable to infinitesimal perturbations (6¢(k), ov(k))
& the 3x3 Hessian matrix H(¢,, v,) of E; is positive definite.

= lower and upper bounds on parameter values.
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Why? Turing’s instabillities...

xﬁxx
Y NN

(6.9 = (L 1) + 656, 50) |3 RPN
0¥ = (1) * (00, 00 SRR
S N D N

e The 3 invariants (<:> elgenvalues) of H:
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Network modelling: bar ansatz?

e A 'network’ Is thought of as a
set of ~ straight, long bars.

W+ Wy R
RI""I'

Wp

Om

0

HI"‘FI -1

e The bar is defined by 4 physical
parameters: w,, W, ¢, and v,,.
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Energy of the bar

e Bar energy per unit length:

Ep (UA)07 uAja ¢m: 'Um) — lD0V<¢m, Um) + wﬂ(¢ma ’Um)

— B(6mm + 1)2Goo (0, ) + 2

V= W(¢m1 Vm) _ W('11 O)
energy gap between the
background and the foreground, - \

(area force).
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Stability conditions of the bar?

e First order

Oep (Wo,W,Pm ;Vm )
a’wo
dep (Wo w,qu,vm)

0Pm
dep (Wo,W,Pm, ,Vm,)
0V,

e Second order:

/ 0%ep 9ep 9%ep
] Judh,  06m0n , N o
azuép A H is positive definite — lower

Owowg ow? 8¢m8w
Pen.  Pen  Hen and upper bounds on

000ty 00mOw 02, parameter values.
azep 82613 82613

0V, 0wy 0V 0w 0V 00, (’UA)(), ’Lf), 1’ 1)

(4
Oep (o, w,qu,’vm)
(4
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Geometric evolutions...

of a random configuration:

L---al--m--*.mr.! 11

i e 9 v w . ...l l‘.
.-1.‘-"'|'.‘IIF"

'0\ 'l.“ @
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Likelihood?

e Multispectral Quickbird VHR images.

© DigitalGlobe, CNES processing, images acquired via ORFEO Accompaniment Program.

e Likelihood term E,(¢):

Multivariate mixture of two Gaussians for
the background and foreground:

2
_%/ . {lnsz.lzﬂ-zi|—1/26—%(I($)—Mz’)t2¢1(I($)—Mi)
2 i=1

2
—In Z]jz |27Tii|_1/26_ %‘(I(w)—ﬂi)tzfl(f(x)—ﬁi) }qb(m)
1=1

e Total energy: E(¢, v) = Ex(¢, V) + E/(¢).
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Conclusions and prospects

e Conclusions:

The stablility analysis reduces the parameter
tuning difficulties.

The directed network model outperforms the
undirected network model.

® Prospects:
Parameter estimation.

Global optimization algorithm (simulating
annealing, ...)
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