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Problem: object extraction

 Ubiquitous in applications

 In remote sensing imagery: road and 

hydrographic networks, trees, buildings…

 In medical imagery: vascular networks, 

tumors…

 Automatic methods need to incorporate

human knowledge into mathematical

models.
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Difficulties?

 Appearances of the background and the 

foreground are similar

 ‘shape’ (region) distinguishes between them. 

 Rivers are different from roads

 branch extremities tend to not end.

 at junctions, a significant change of branch 

widths occurs.

 The presence of occlusions: gap closure.
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Problem formulation?

 Calculate a MAP estimate of the region

R containing the entity:

 In practice, minimize an energy: 
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R̂ = argmax
R

P(RjI; K)

P(RjI; K) / P(IjR; K)P(RjK)

Prior: subject of 

talk

Likelihood: will not talk 

about this: important, but 

less generic.

R̂ = argmin
R

E(R; I)

E(R; I) = ¡ lnP(IjR;K)¡ lnP(RjK)
= EI(I; R) + EP(R) + const



Roadmap of the rest of talk

 Undirected network phase field HOACs

 The model.

 Limitations in the case of our purposes.

 Directed network phase field HOACs

 The model: extension of the undirected 

network model. 

 Results on VHR remote sensing images.

 Conclusions and prospects.
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First part: undirected phase 

field HOACs

 Active contours and HOACs.

 Phase diagram of a HOAC model.

 HOACs as phase fields?



Active contours?

 A region R is represented by its 

boundary, R = [ ], the ‘contour’.

 Classical prior energy:

 Length of R and area of R:

 Short-range dependencies between 

boundary points.

 Describes boundary smoothness.

EC;0(R) = ¸CL(R) +®CA(R)
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Limitations of EC,0?

 Remote sensing images are complex.

 EC,0 is insufficient for automatic solution of 

real problems.

 Regions of interest are distinguished by 

their shape. 

 But topology can be non-trivial, and 

unknown a priori.

 Need strong prior knowledge of shape, 

but without constraining topology.
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Build better shape prior: HOACs

 Incorporate prior knowledge about shape

via long-range dependencies between 

boundary points.

 How? Multiple integrals over the contour.

 E.g. Euclidean invariant two-point term:
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EC;Q = ¡
¯C
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Energy minimization

 Total energy (4 parameters): 

EC,P(R) = EC,0(R) + EC,Q(R)

 Problem: different stable 

configurations for some PSs. 

 Solution: stability analysis
) parameter constraints 
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Stability analysis

 Taylor series expansion up to second 
order around °0 (circle, bar):
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Result: Phase diagram.

Typical phase diagram of water. Wikipedia.
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Difficulties of HOACs?

 Model:

 Complex topologies require many contours.

 Algorithm:

 Implementation of EQ is very complex.

 Execution is slow, especially with long 

boundary.

 Not enough topological freedom.
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‘Automatic’ topological freedom? 

 Contour (explicit) representation

 No change of topology.

 Level set (implicit) representation

 Constrained to be a distance 

function.

 allows splitting and merging.

 but, not enough for our application.
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Solution: phase fields

 A phase field ½ R2 ! R is a function.

 It defines a region in the image       

domain : R = {x : (x) > z}. 

 Basic, local energy:
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Shape information?

 Write tangent vector  in terms of Á

ENL(Á) = ¡
¯

2

ZZ

­2
d2x d2x0 @Á(x) ¢ @Á(x0) ª

µ
jx ¡ x0j

d

¶
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Phase fields as HOACs?

 Total prior energy:

 For a given region R, one can show: 

 Result: one can use phase fields instead 

of HOACs.
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Overview of the first part

 Contribution: phase diagram of a HOAC 

model.

 Limitations:

 The undirected network model does not 

allow large range of stable branch widths 

 works very well for roads but not for rivers.

 Lack of connectivity: presence of gaps.

 Solution: directed network models.
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Preview of the second part

 Directed networks (e.g. rivers) carry 

‘flow’ through their branches. 

 Desiderata:

 large range of branch widths, but

 width changes must be slow, except

 at junctions, i wi = 0.

 Goal: build priors which favor network

regions with these geometric properties. 
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Second part: directed phase 

field HOACs

 The model.

 Stability analysis.

 Results on real images.



The proposed model?

 Introduce a local phase field model

incorporating two phase field functions:

 a scalar field Á representing a region by its 

smoothed characteristic function, and

 a vector field v representing the ‘flow’ 

through the network branches.

 Total prior energy:

EP(Á; v) = E0(Á; v) +ENL(Á)
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The local term?

 We require the vector field v to be:

 0 outside the network and |v| = 1 inside,

 smooth,

 parallel to the region boundary R, and 

 divergence-free.

 The proposed local phase field energy:
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The potential W(Á, v)?

 The potential must have 2 minima:

 (Á, |v|) = (-1, 0) for the exterior

 (Á, |v|) = (1, 1) for the interior

 E.g.: the simplest, a fourth 

order polynomial of Á and |v| 

W(Á; jvj) =
jvj4

4
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Intuitions?

 Large range of stable branch widths:

 We choose ª to be the Bessel function K0.

 Branch width changes must be slow:

 low divergence + transition of |v| from 0 to 1 

across R ) // to the boundary,

 // to R + smooth ) // in the interior,

 // in the interior + low divergence + |v| = 1 

) slow width changes and branches 

prolong. 
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Intuitions?

 At junctions, the total incoming widths 

equal total outgoing widths (‘flow 

conservation’ of v): 

 // in the interior + low divergence + |v| = 1 

) branch width conservation.

 The preferred configuation:
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Geometeric evolutions

Bessel BesselRochery et al. Rochery et al.

Undirected network model Directed network model
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Difficulties?

 Parameter learning: the model has many

free parameters (9). 

 Many stable configurations for some

parameter ranges: 

 e.g.: circular structures, line network 

structures.

 Solution: constrain the parameter values 

to favor stable networks.
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Turing’s stability

 Consider the energy without gradient (stabilizing) 
terms: E(W(Á, v)).

 Let (Á(x), v(x)) = (Á0, v0) 8x 2 being a uniform phase

of the system.

 (Á0, v0) = (-1, 0) and (1, 1) are two stable uniform 

phases i.e. (Á0, v0) minimum of E(W(Á, v)).

 Adding stabilizing terms to the energy, the uniform 
phase (Á0, v0) must remain stable:

 (Á0, v0)  is stable to infinitesimal perturbations (±Á(k), ±v(k)) 

, the 3x3 Hessian matrix H(Á0, v0) of EP is positive definite. 

) lower and upper bounds on parameter values.
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Why? Turing’s instabilities…

 The 3 invariants (, eigenvalues) of H: 
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(Á, v) = (-1, 0) + (±Á, ±v) 

(Á, v) = (1, 1) + (±Á, ±v) 



Network modelling: bar ansatz?

 A ‘network’ is thought of as a 
set of ¼ straight, long bars.

 The bar is defined by 4 physical
parameters: w0, w, Ám and vm.
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Energy of the bar

 Bar energy per unit length:

 º = W(Ám, vm) – W(-1, 0): 

energy gap between the 

background and the foreground,

 º > 0 to favor pixels belonging to 

backgound rather than foreground

(area force).
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eP(ŵ0; ŵ; Ám; vm) = ŵ0º(Ám; vm) + ŵ¹(Ám; vm)

¡ ¯(Ám + 1)2G00(ŵ0; ŵ) +
D̂(Ám + 1)2 + L̂vv

2
m

ŵ



Stability conditions of the bar?

 First order

 Second order:
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2G10(ŵ0; ŵ)
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ŵ2¹?v
2

> 0

H =

0
BBBB@

@2eP
@ŵ2
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Geometric evolutions…

 of a bar:
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 of a random configuration:

 for gap closure:



Likelihood?

 Multispectral Quickbird VHR images.
DigitalGlobe, CNES processing, images acquired via ORFEO Accompaniment Program.

 Likelihood term EI(Á):

 Multivariate mixture of two Gaussians for 

the background and foreground:

 Total energy: E(Á, v) = EP(Á, v) + EI(Á).
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Conclusions and prospects

 Conclusions:

 The stability analysis reduces the parameter 

tuning difficulties.

 The directed network model outperforms the 

undirected network model.

 Prospects:

 Parameter estimation.

 Global optimization algorithm (simulating 

annealing, …)
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