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Abstract

We extract heart rate and beat lengths from videos by
measuring subtle head motion caused by the Newtonian
reaction to the influx of blood at each beat. Our method
tracks features on the head and performs principal compo-
nent analysis (PCA) to decompose their trajectories into a
set of component motions. It then chooses the component
that best corresponds to heartbeats based on its temporal
frequency spectrum. Finally, we analyze the motion pro-
jected to this component and identify peaks of the trajecto-
ries, which correspond to heartbeats. When evaluated on
18 subjects, our approach reported heart rates nearly iden-
tical to an electrocardiogram device. Additionally we were
able to capture clinically relevant information about heart
rate variability.

1. Introduction
Heart rate is a critical vital sign for medical diagnosis.

There is growing interest in extracting it without contact,

particularly for populations such as premature neonates and

the elderly for whom the skin is fragile and damageable by

traditional sensors. Furthermore, as the population ages,

continuous or at least frequent monitoring outside of clin-

ical environments can provide doctors with not just timely

samples but also long-term trends and statistical analyses.

Acceptance of such monitoring depends in part on the mon-

itors being non-invasive and non-obtrusive.

In this paper, we exploit subtle head oscillations that ac-

company the cardiac cycle to extract information about car-

diac activity from videos. In addition to providing an unob-

trusive way of measuring heart rate, the method can be used

to extract other clinically useful information about cardiac

activity, such as the subtle changes in the length of heart-

beats that are associated with the health of the autonomic

nervous system.

The cyclical movement of blood from the heart to the

head via the abdominal aorta and the carotid arteries (Fig. 1)

causes the head to move in a periodic motion. Our algo-

rithm detects pulse from this movement. Our basic ap-
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Figure 1: Blood flows from the heart to the head via the

carotid arteries on either side of the head [11].

proach is to track feature points on a person’s head, filter

their velocities by a temporal frequency band of interest,

and use principal component analysis (PCA) to find a pe-

riodic signal caused by pulse. We extract an average pulse

rate from this signal by examining its frequency spectrum

and obtain precise beat locations with a simple peak detec-

tion algorithm.

Our method is complementary to the extraction of pulse

rate from video via analysis of the subtle color changes in

the skin caused by blood circulation [14, 18]. These meth-

ods average pixel values for all channels in the facial re-

gion and temporally filter the signals to an appropriate band.

They then either use these signals directly for analysis [18]

or perform ICA to extract a single pulse wave [14]. They

find the frequency of maximal power in the frequency spec-

trum to provide a pulse estimate. Philips also produced a

commercial app that detects pulse from color changes in

real-time [13]. These color-based detection schemes require

that facial skin be exposed to the camera. In contrast our ap-

proach is not restricted to a particular view of the head, and

is effective even when skin is not visible. There have also

been studies on non-invasive pulse estimation using modal-

ities other than video such as thermal imagery [6] and pho-

toplethysmography (measurement of the variations in trans-
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mitted or reflected light in the skin) [21].

The analysis of body motion in videos has been used in

different medical contexts, such as the measurement of res-

piration rate from chest movement [17, 13], or the monitor-

ing of sleep apnea by recognizing abnormal respiration pat-

terns [20]. Motion studies for diseases include identification

of gait patterns of patients with Parkinson’s disease[4], de-

tection of seizures for patients with epilepsy [12] and early

prediction of cerebral palsy [1]. The movements involved

in these approaches tend to be larger in amplitude than the

involuntary head movements due to the pulse.

Our work is also inspired by the amplification of imper-

ceptible motions in video [22, 10]. But whereas these meth-

ods make small motions visible, we want to extract quanti-

tative information about heartbeats.

The idea of exploiting Newton’s Third Law to measure

cardiac activity dates back to at least the 1930’s, when the

ballistocardiogram (BCG) was invented [15]. The subject

was placed on a low-friction platform, and the displace-

ment of the platform due to cardiac activity was measured.

The BCG is not widely used anymore in clinical settings.

Other clinical methods using a pneumatic chair and strain-

sensing foot scale have also been successful under labora-

tory conditions[9, 8]. Ballistocardiographic head movement

of the sort studied here has generally gained less attention.

Such movement has been reported during studies of vestibu-

lar activity and as an unwanted artifact during MRI studies

[2]. Recently, He et al.[7] proposed exploiting head motion

measured by accelerometers for heart rate monitoring as a

proxy for traditional BCG.

In this paper we first describe a novel technique that ex-

tracts a pulse rate and series of beat sequences from video

recordings of head motion. We then evaluate our sys-

tem’s heart rate and beat location measurements on subjects

against an electrocardiogram. Results show that our method

extracts accurate heart rates and can capture clinically rele-

vant variability in cardiac activity.

2. Background

2.1. Head Movement

The head movements related to cardiac activity are small

and mixed in with a variety of other involuntary head move-

ments. From a biomechanical standpoint, the head-neck

system and the trunk can be considered as a sequence of

stacked inverted pendulums. This structure allows the head

unconstrained movement in most axes. There are sev-

eral sources of involuntary head movement that complicate

the isolation of movements attributable to pulsatile activity.

One is the pendular oscillatory motion that keeps the head in

dynamic equilibrium. Like He et al. [7], we found that the

vertical direction is the best axis to measure the movement

of the upright head caused by pulse because the horizon-

tal axis tends to capture most of the dynamic equilibrium

swaying. A second source of involuntary head movement

is the bobbing caused by respiration. We deal with this by

filtering out low-frequency movement.

The net acceleration of involuntary vertical head move-

ment has been measured to be around 10 mG (≈ .098m
s2 )

[7]. The typical duration of the left ventricular ejection time

of a heart cycle is approximately 1
3 seconds. Using these

numbers we can calculate a rough estimate of the displace-

ment of head movement to be 1
2 · 0.098 · ( 13 )2 ≈ 5 mm.

Though this calculation neglects the complex structure of

the head system, it does provide an indication of how small

the movement is.

2.2. Beat-to-beat Variability

Pulse rate captures the average heart rate over a period of

time (e.g., 30 seconds). It is useful primarily for detecting

acute problems. There is a growing body of evidence [16]

that measuring beat-to-beat variations provides additional

information with long-term prognostic value. The most es-

tablished of these measures is heart rate variability (HRV).

HRV measures the variation in the length of individual nor-

mal (sinus) heartbeats. It provides an indication of the de-

gree to which the sympathetic and parasymathetic nervous

systems are modulating cardiac activity. To measure HRV,

the interarrival times of beats must be accurately measured,

which can be determined by locating the ”R” peaks in suc-

cessive beats in an electrocardiogram (ECG). A lack of suf-

ficient variation when the subject is at rest suggests that the

nervous system may not perform well under stress. Patients

with decreased HRV are at an increased risk of adverse out-

comes such as fatal arrhythmias.

3. Method
Our method takes an input video of a person’s head and

returns a pulse rate as well as a series of beat locations

which can be used for the analysis of beat-to-beat variabil-

ity. We first extract the motion of the head using feature

tracking. We then isolate the motion corresponding to the

pulse and project it onto a 1D signal that allows us to extract

individual beat boundaries from the peaks of the trajectory.

For this, we use PCA and select the component whose tem-

poral power spectrum best matches a pulse. We project the

trajectories of feature points onto this component and ex-

tract the beat locations as local extrema.

Fig. 2 presents an overview of the technique. We as-

sume the recorded subject is stationary and sitting upright

for the duration of the video. We start by locating the

head region and modeling head motion using trajectories

of tracked feature points. We use the vertical component

of the trajectories for analysis. The trajectories have extra-

neous motions at frequencies outside the range of possible

pulse rates, and so we temporally filter them. We then use
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Figure 2: Overview of our pulse estimation approach. (a)

A region is selected within the head and feature points are

tracked for all frames of the video. (b) The vertical compo-

nent is extracted from each feature point trajectory. (c) Each

trajectory is then temporally filtered to remove extraneous

frequencies. (d) PCA decomposes the trajectories into a

set of source signals s1, s2, s3, s4, s5. (e) The component

which has clearest main frequency is selected. (f). Peak

detection identifies the beats of the signal.

PCA to decompose the trajectories into a set of indepen-

dent source signals that describe the main elements of the

head motion. To choose the correct source for analysis and

computation of the duration of individual beats, we examine

the frequency spectra and select the source with the clear-

est main frequency. Average pulse rate is identified using

this frequency. For more fine-grained analysis and calcu-

lation of beat durations, we perform peak detection in the

time-domain.

3.1. Region Selection and Tracking

We find a region of interest containing the head and track

feature points within the region. For videos where the front

of the face is visible, we use the Viola Jones face detector

[19] from OpenCV 2.4 [3] to first find a rectangle contain-

ing the face. We opt to use the middle 50% of the rectangle

widthwise and 90% heightwise from top in order to ensure

the entire rectangle is within the facial region. We also re-

move the eyes from the region so that blinking artifacts do

not affect our results. To do this we found that removing the

subrectangle spanning 20% to 55% heightwise works well.

For videos where the face is not visible, we mark the region

manually.

We measure the movement of the head throughout the

video by selecting and tracking feature points within the re-

gion. We apply the OpenCV Lucas Kanade tracker between

frame 1 and each frame t = 2 · · ·T to obtain the location

time-series 〈xn(t), yn(t)〉 for each point n. Only the verti-

cal component yn(t) is used in our analysis. Since a mod-

ern ECG device operates around 250 Hz to capture heart

rate variability and our videos were only shot at 30 Hz, we

apply a cubic spline interpolation to increase the sampling

rate of each yn(t) to 250 Hz.

Many of the feature points can be unstable and have er-

ratic trajectories. To retain the most stable features we find

the maximum distance (rounded to the nearest pixel) trav-

eled by each point between consecutive frames and discard

points with a distance exceeding the mode of the distribu-

tion.

3.2. Temporal Filtering

Not all frequencies of the trajectories are required or

useful for pulse detection. A normal adult’s resting pulse

rate falls within [0.75, 2] Hz, or [45, 120] beats/min. We

found that frequencies lower than 0.75 Hz negatively affect

our system’s performance. This is because low-frequency

movements like respiration and changes in posture have

high amplitude and dominate the trajectories of the feature

points. However, harmonics and other frequencies higher

than 2 Hz provide useful precision needed for peak detec-

tion. Taking these elements into consideration, we filter

each yn(t) to a passband of [0.75, 5] Hz. We use a 5th order

butterworth filter for its maximally flat passband.
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Figure 3: Examples of the first two eigenvectors for two

subjects. Each white arrow on a face represents the mag-

nitude and direction of a feature point’s contribution to that

eigenvector. The eigenvector decomposition is unique to

each subject.

3.3. PCA Decomposition

The underlying source signal of interest is the movement

of the head caused by the cardiovascular pulse. The feature

point trajectories are a mixture of this movement as well as

other motions caused by sources like respiration, vestibu-

lar activity and changes in facial expression. We must de-

compose this mixed motion into subsignals to isolate pulse.

To do this we consider the multidimensional position of the

head at each frame as a separate data point and use PCA

to find a set of main dimensions along which the position

varies. We then select a dimension on which to project the

position time-series to obtain the pulse signal.

Formally, given N feature points, we represent the N -

dimensional position of the head at frame t as mt =
[y1(t), y2(t), · · · , yN (t)]. The mean and the covariance ma-

trix of the positions are:

m̄ =
1

|T |
T∑

i=1

mi (1)

Σm =
1

T

T∑
i=1

(mt − m̄)(mt − m̄)T (2)

PCA finds the principal axes of variation of the position

as the eigenvectors of the covariance matrix:

ΣmΦm = ΦmΛm (3)

where Λm denotes a diagonal matrix of the eigenval-

ues λ1, λ2, · · · , λN corresponding to the eigenvectors in the

columns of Φm, φ1, φ2, · · · , φN . Fig. 3 displays the first

two eigenvectors for two of the subjects. Each eigenvec-

tor represents the N-dimensional direction and magnitude

of movement for the feature points. The eigenvectors differ

for each subject. We obtain the 1-D position signal si(t) by

projecting the position time-series onto φi:

si(t) =

⎛
⎜⎜⎜⎝

m1

m2

...

mT

⎞
⎟⎟⎟⎠ · φi (4)

There are periods in the video during which the head

moves abnormally (e.g. swallowing, adjustments in pos-

ture). Such movement adds variance to the position vectors,

thereby affecting the PCA decomposition. To deal with this

one could discard a percentage α of the mt with the largest

L2-norms before performing PCA. However, all of the mt

must still be used in the projection step (Eq. 4) to pro-

duce a complete signal. We set α at a value of 25% for our

experiments.

A popular alternative to PCA is independent component

analysis (ICA). We did not see any improvement in our re-

sults using ICA.

3.4. Signal Selection

The question remains of which eigenvector to use for

pulse signal extraction. The eigenvectors are ordered such

that φ1 explains the most variance in the data, φ2 explains

the second most, and so on. Although φ1 explains most

of the variance, s1 may not be the clearest pulse signal for

analysis. We instead choose the si that is most periodic.

We quantify a signal’s periodicity as the percentage of total

spectral power accounted for by the frequency with maxi-

mal power and its first harmonic.

We found that it was not necessary to consider any sig-

nals beyond the first five, i.e. s1, ..., s5 for any of our sub-

jects. We label the maximal frequency of the chosen signal

fpulse and approximate the pulse rate as 60
fpulse

beats per

minute.

3.5. Peak Detection

Average pulse rate alone is not sufficient to fully evaluate

the cardiovascular system. Clinicians often assess beat-to-

beat variations to form a complete picture. To allow for
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such analysis, we perform peak detection on the selected

PCA component signal.

The peaks are close to 1
fpulse

seconds apart with some

variability due to the natural variability of heartbeats, vari-

ations of the head motion, and noise. We label each sample

in the signal as a peak if it is the largest value in a window

centered at the sample. We set the length of the window (in

samples) to be round(
fsample

fpulse
), where fsample = 250Hz.

4. Experiments

We implemented our approach in MATLAB. Videos

were shot with a Panasonic Lumix GF2 camera in natural,

unisolated environments with varying lighting. All videos

had a frame rate of 30 frames per second, 1280 x 720 pixel

resolution and a duration of 70-90 seconds. We connected

subjects to a wearable ECG monitor [5] for ground truth

comparison. This device has a sampling rate of 250 Hz and

three electrodes that we placed on the forearms.

4.1. Visible Face

We extracted pulse signals from 18 subjects with a

frontal view of the face (as in Fig. 3). The subjects varied

in gender (7 female, 11 male) and skin color. They ranged

from 23-32 years of age and were all seemingly healthy.

We calculate our program’s average pulse rate using the

frequency of maximal power for the selected PCA compo-

nent. Similarly, we compute the true pulse rate by finding

the main frequency of the ECG spectrum. Table 1 presents

our results. The average rates are nearly identical to the true

rates for all subjects, with a mean error of 1.5%. The num-

ber of peaks were also close to ground truth values, with a

mean error of 3.4%.

We also evaluate the ability of our signal to capture sub-

tle heart rate variability. Clinically meaningful HRV mea-

sures typically use 10-24 hours of ECG data. Therefore we

did not attempt to compute any of these for our 90 second

videos. Instead, we compare the distributions of time be-

tween successive peaks for each signal. Incorrect or missed

peaks can introduce spurious intervals too large or small to

be caused by the natural variations of the heart. We account

for these cases by only considering intervals with length

within 25% of the average detected pulse period.

We use the Kolmogorov-Smirnov (KS) test to measure

the similarity of the distributions, with the null hypothesis

being that the observations are from the same distribution.

Table 2 presents the results. At a 5% significance level,

16 of the 18 pairs of distributions were found to be simi-

lar. Fig. 4 presents histograms of 4 of the 16 distributions

binned at every 0.05 seconds. Our method was able to cap-

ture a wide range of beat-length distributions shapes, from

the flat distribution of subject 4 to the peakier distribution

of subject 10.

Table 1: Average pulse rate and number of peaks detected

from ECG and by our method.

Avg. Pulse (beats per minute) Number of peaks

Sub. ECG Motion (% error) ECG Motion(% error)

1 66.0 66.0(0) 99 98(1.0)

2 54.7 55.3(1.1) 82 84(2.4)

3 81.3 82.6(1.6) 122 116(4.9)

4 44.7 46.0(2.9) 67 70(4.5)

5 95.3 96.0(0.7) 143 142(0.7)

6 78.9 78.0(1.1) 92 78(15.2)

7 73.3 71.3(2.7) 110 100(9.1)

8 59.3 58.6(1.2) 89 88(1.1)

9 56.7 58.6(3.4) 85 84(1.2)

10 78.7 79.3(0.8) 118 117(0.8)

11 84.7 86.6(2.2) 127 121(4.7)

12 63.3 62.6(1.1) 95 95(0)

13 59.3 60.0(1.2) 89 89(0)

14 60.0 61.3(2.2) 90 89(1.1)

15 80.0 81.3(1.6) 120 114(5.0)

16 74.7 74.6(0.1) 112 110(1.8)

17 50.0 49.3(1.4) 75 76(1.3)

18 77.1 78.8(2.2) 90 85(5.6)

Table 2: Results when comparing the interpeak distributions

of the ECG and our method. Presented are the means (μ)

and standard deviations (σ) of each distribution, the number

of outliers removed from our distribution, and the p-value

of distribution similarity. 16 of the 18 pairs of distributions

were not found to be significantly different.

Sub. ECG Motion KS-Test

μ(σ) μ(σ) p-value

1 0.91(0.06) 0.90(0.06) 0.89

2 1.08(0.08) 1.06(0.11) 0.52

3 0.73(0.04) 0.73(0.08) 0.05

4 1.34(0.19) 1.28(0.18) 0.14

5 0.62(0.03) 0.63(0.07) <0.01

6 0.76(0.04) 0.76(0.04) 0.64

7 0.81(0.05) 0.81(0.06) 0.85

8 1.01(0.04) 1.02(0.09) 0.16

9 1.04(0.07) 1.04(0.11) 0.27

10 0.75(0.04) 0.75(0.04) 0.75

11 0.70(0.06) 0.70(0.08) 0.30

12 0.94(0.08) 0.94(0.09) 0.85

13 0.99(0.04) 0.98(0.12) <0.01

14 0.99(0.11) 0.98(0.12) 0.47

15 0.74(0.05) 0.75(0.06) 0.95

16 0.80(0.05) 0.80(0.06) 0.60

17 1.18(0.08) 1.18(0.11) 0.70

18 0.76(0.05) 0.76(0.06) 0.24

4.1.1 Motion Amplitude

Pulse motion constitutes only a part of total involuntary

head movement. We quantify the magnitude of the differ-
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Figure 4: Beat distributions of the ECG and our motion

method for 4 subjects. We were able to accurately capture a

wide range of distribution shapes.

ent movements within [0.75, 5] Hz by calculating root mean

square (RMS) amplitudes of the feature point trajectories.

For each subject we calculated the mean RMS amplitude

of the trajectories before and after filtering to a passband

within 5% of the pulse frequency. The mean RMS ampli-

tude of the trajectories without filtering was 0.27 (std. dev

of 0.07) pixels across the subjects. The mean RMS ampli-

tude after filtering to the pulse frequency was 0.11 (0.05)

pixels. Thus the pulse motion had roughly 40% the RMS

amplitude of other head motions within the [0.75, 5] Hz fre-

quency range.

4.1.2 Comparison to Color-Based Detection and Noise
Analysis

We compare the robustness of our method to a color-based

pulse detection system [14] in the presence of noise. The

color method spatially averages the R, G, and B channels

in the facial area and uses independent component analysis

(ICA) to decompose the signals into 3 independent source

signals. The source with the largest peak in the power spec-

trum is then chosen as the pulse signal.

We added varying levels of zero-mean Gaussian noise to

the videos and swept the standard deviation from 5 to 500
pixels. For each subject we found σmotion, the maximum

noise standard deviation before our method first produced

an average pulse rate outside 5% of the true rate. We calcu-

lated σcolor in a similar manner for the color method. Fig.

5 plots the results. Our method outperformed color for 7 of

the 17 subjects, and performed worse for 9 subjects. Note

that color failed to produce a correct pulse rate for subject 7
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Figure 5: Comparison of our method to color-based detec-

tion. σmotion and σcolor are the maximum noise standard

deviations where motion and color give reliable results. The

blue line is where σmotion = σcolor. Our method worked

longer for 7 of the 18 subjects while color worked longer for

9 subjects. The color method failed to give a correct result

for subject 7 before the addition of noise.

before adding any noise.

We see a large variance in σmotion and σcolor across the

subjects, suggesting that there are subject-specific factors

that affect performance. To understand why, we compare

σmotion against β, the ratio of the total energy of the fea-

ture points within 5% of fpulse to the maximal energy at

any other frequency. Fig. 6 plots σmotion against β for all

subjects. The subjects with the 10 highest σmotion values

also have 10 of the top 11 β values. This indicates that our

method performs best for subjects with a large ballistocar-

diac motion relative to any other periodic head movement.

We were unable to find a similar relationship between

σcolor and the frequency content of the R, G, and B chan-

nels. This is likely due to the layer of complexity intro-

duced by the ICA algorithm. However, when simplifying

the method to extracting a signal from the G channel alone,

we found that noise performance is indeed strongly related

to the ratio of power at the pulse frequency to the next

largest power in the spectrum. Contrary to our initial hy-

pothesis we saw no relationship between motion or color

performance and skin tone.

4.2. Other Videos

One of the advantages of motion-based detection over

color is that a direct view of the skin is not needed. We took

videos of the backs of the heads of 11 subjects and a video

of one subject wearing a mask, as shown in Fig. 7. We were
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Figure 6: Log plot comparing σmotion (the max noise stan-

dard deviation before our method produced an incorrect

pulse rate) and β (ratio of the total energy of feature points

at the pulse frequency to the maximal energy at any other

frequency) for each subject. Subjects with large β tended to

have better noise performance.

able to get average heart rates close to the true values for all

videos.

We also tested our system on a 30-second video of a new-

born recorded in situ at a hospital nursery (see Fig. 8). We

also obtained a video of the baby’s actual pulse rate from

a hospital-grade monitor measuring the perfusion of blood

to its skin. Our algorithm extracts a clean pulse signal that

matches the pulse rate reported by the monitor.

Figure 7: Reference frames from two videos of the back of

the head and one of a face covered with a mask.

5. Discussion
Our results show it is possible to consistently obtain ac-

curate pulse rate measurements from head motion. The re-

sults for beat detection were equally encouraging. Most of

our beat interval distributions looked qualitatively similar

0 2 4 6 8 10
seconds

0 2 4 6
Frequency (Hz)

2.53 Hz = 152 bpm  

Figure 8: Results from video of a sleeping newborn. The ac-

tual heart rate is about 152 bpm (top right). Our method pro-

duces a clean signal (bottom left) and a frequency closely

matching the ground truth.

to the ECG distributions, indicating that we do capture a

real physiological variability. For 16 of the 18 subjects, we

found that there was not a statistically significant difference

between the ECG and the motion beat intervals. It is worth

noting that this is a stronger test than is required in most

clinical contexts. Typically heart rate variability (HRV) is

used to dichotomize patients into high and low risk groups,

so the precise shape of the distribution is not relevant. The

relevant test would be whether the distribution of motion-

generated intervals yields the same set of high risk individ-

uals as ECG generated intervals. Since all of our subjects

were healthy volunteers, we were not able to perform this

test.

Several factors affected our results. First, our camera

has a sampling rate of 30Hz. ECG used for HRV analy-

sis normally has a sampling rate of at least 128 Hz. Cu-

bic interpolation of our signal only partially addresses this

discrepancy. Second, extra variability might be introduced

during the pulse transit time from the abdominal aorta to the

head. In particular, arterial compliance and head mechanics

could affect our results. Third, the variable and subopti-

mal lighting conditions can affect our feature tracking. We

believe this to be the case for several of our videos. Fi-

nally, our videos were only a maximum of 90 seconds long.

Normally, HRV measures are computed over many hours to

obtain reliable estimates.

An important future direction is to develop approaches

for moving subjects. This is complicated because, as our

results show, even other involuntary head movements are

quite large in relation to pulse motion. Clearly with larger

motions such as talking, more sophisticated filtering and de-

composition methods will be needed to isolate pulse.
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In this work we considered the frequency and variabil-

ity of the pulse signal. However, head movement can offer

other information about the cardiac cycle. If head displace-

ment is proportional to the force of blood being pumped by

the heart, it may serve as a useful metric to estimate blood

stroke volume and cardiac output. Additionally, the direc-

tion of the movement could reveal asymmetries in blood

flow into or out of the head. This might be useful for the

diagnosis of a stenosis, or blockage, of the carotid arteries.

Another future direction is to better assess the strengths

and weaknesses of the color and motion pulse estimation

methods. Our results suggest that neither method is strictly

more robust than the other in the presence of noise. How-

ever, further work needs to be done with varying lighting,

skin tones, and distance from the camera to form a com-

plete picture. In addition, we need to understand how sen-

sitive the methods are to voluntary motions like talking or

typing. For many applications, this is a critical factor. A

motion-based approach is certainly better when the face is

not visible. Based on these ideas, we believe that a com-

bination of the color and motion methods will likely prove

more useful and robust than using either one independently.

6. Summary
We described a novel approach that offers a non-

invasive, non-contact means of cardiac monitoring. Our

method takes video as input and uses feature tracking to ex-

tract heart rate and beat measurements from the subtle head

motion caused by the Newtonian reaction to the pumping of

blood at each heartbeat. A combination of frequency filter-

ing and PCA allows us to identify the component of motion

corresponding to the pulse and we then extract peaks of the

trajectory to identify individual beats. When evaluated on

18 subjects, our method produced virtually identical heart

rates to an ECG and captured some characteristics of inter-

beat variability.
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