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Video-Based Human Behavior Understanding:
A Survey

Paulo Vinicius Koerich Borges, Nicola Conci, and Andrea Cavallaro

Abstract—Understanding human behaviors is a challenging
problem in computer vision that has recently seen important
advances. Human behavior understanding combines image and
signal processing, feature extraction, machine learning, and
3-D geometry. Application scenarios range from surveillance to
indexing and retrieval, from patient care to industrial safety
and sports analysis. Given the broad set of techniques used in
video-based behavior understanding and the fast progress in this
area, in this paper we organize and survey the corresponding
literature, define unambiguous key terms, and discuss links
among fundamental building blocks ranging from human detec-
tion to action and interaction recognition. The advantages and
the drawbacks of the methods are critically discussed, providing
a comprehensive coverage of key aspects of video-based human
behavior understanding, available datasets for experimentation
and comparisons, and important open research issues.

Index Terms—Behavior analysis, computer vision, human
detection, video analysis.

I. Introduction

THE CAPABILITY of automatically detecting people and
understanding their behaviors is a key functionality of

intelligent video systems. The interest in behavior understand-
ing has dramatically increased in recent years, motivated by
societal needs that include security [1], natural interfaces [2],
gaming [3], affective computing [4], and assisted living [5].
Significant technological advances in hardware and communi-
cation protocols are also facilitating new services, such as real-
time collection of statistics on group sports [6] and annotation
of videos for event detection and retrieval [7]. A number of
processing steps are necessary to analyze the scene at different
levels of abstraction, starting from the behaviors of objects
of interest. The first step consists of detecting and tracking
subject(s) of interest to generate motion descriptions (e.g.,
motion trajectory or combination of local motions), which
are then processed to identify actions or interactions. When
considering local motions, the analysis generally deals with
a fine-grained level of understanding to recognize gestures
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Fig. 1. Visual description of the contents of this paper in relation to previous
surveys (indicated by the references).

and motion patterns at intrabody level [8]. Depending on
the quality of the camera view, position information can be
complemented by other descriptors, such as the trajectories of
body joints [9] or head pose changes [10].

Recognizing specific behaviors requires for example the
definition of a set of templates that represent different classes
of behaviors. However, in many scenarios not all behaviors can
be characterized by a predefined number of classes nor can be
known (and therefore represented) a priori. In such cases, it
is common to use the concept of anomaly, namely, a deviation
from the learned behaviors [1]. In fact, although anomalous
behaviors are generally difficult to model a priori, they can
be detected as dissimilar from patterns acquired during regular
behaviors.

Recent reviews on human behavior understanding
focused on specific aspects of the overall problem, such
as monocular pedestrian detection [11], human detection
for driver-assistance systems [12], and pedestrian detection
benchmarks [13], [14]. Morris and Trivedi [15] surveyed
features and model motion trajectories focusing on trajectory
analysis. Moeslund et al. [16] covered methods focusing
on motion capture and analysis for human understanding.
Comprehensive reviews on algorithms for detecting high-
level behaviors compare activity recognition and interaction
approaches [17]. Aggarwal and Ryoo [18] reviewed action
recognition approaches, extending actions and gestures to
human–object interactions and group activities. However, the
literature still lacks a comprehensive and up-to-date survey
that discusses different abstraction levels at which behavior
analysis can be developed depending on the application
requirements and the granularity at which the captured
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Fig. 2. Visual representation of the definitions for human behavior under-
standing as a combination of gestures (G), actions and interactions in a two-
person scenario.

information is represented. For this reason, in this paper, we
link fragmented aspects of this field in a coherent context for
human behavior understanding from video (Fig. 1). We present
a critical analysis and a comparisons of relevant approaches,
and we identify common features used by the methods
and standard datasets to assess the performances of human
behavior analysis algorithms. Moreover, because the use of
terminology is at times ambiguous in the literature, we provide
a consistent definition of the terms used in human behavior
analysis. Finally, we highlight open research challenges.

The paper is organized as follows. In Section II, we intro-
duce the definitions that will be used throughout the paper
to describe human behaviors. Section III presents a review
of human detection methods, whereas Section IV discusses
actions and gestures. Next, Section V discusses how contextual
information can be exploited to infer interactions. Finally,
Section VI concludes the paper with a discussion and presents
an overview on future trends and open research issues.

II. Definitions

Human activities can be categorized into four main groups,
namely, gestures, actions, behaviors, and interactions. Fig. 2
illustrates the relationship between these groups in a two-
person scenario.

Gestures are movements of body parts that can be used to
control and to manipulate, or to communicate [19]. Examples
of gestures include stretching an arm and raising a leg. Ges-
tures are the atomic components characterizing (describing)
the motion of a person. From these atomic elements, it is
possible to compose actions, namely, temporal concatenations
of gestures [20]. Actions represent voluntary body movements
of arbitrary complexity. An action implies a detailed sequence
of elementary movements that make them univocally decod-
able by an observer and can be combined to compose single
motion patterns or periodic motion patterns. Examples of
single motion patterns are bending, jumping, and grabbing an
object; whereas examples of periodic motion patterns include
walking, running, and swimming.

A behavior is the response of a person to internal, ex-
ternal, conscious, or unconscious stimuli [21]. Unlike the
recognition of actions that are represented by a sequence of
characterizing visual elements, the recognition of behaviors
requires a joint analysis of the (image) content and the (scene)
context [22]. While actions can be analyzed in terms of
motion and appearance features, the analysis of behaviors
also requires information about the context and other factors
influencing behaviors. Examples of contextual information
include place and presence of other objects. Fig. 3 illustrates
how the same spatio-temporal features corresponding to the
action of running lead to different behaviors depending on the
context.

An interaction happens when other subjects or objects
become a distinctive element to interpret the behavior of a
person. We can distinguish between interactions with objects
and social interactions. Interactions with objects happen when
for example people use kitchen appliances, manipulate doors,
or operate ATMs. Social interactions can be divided into two-
person and group interactions (Fig. 4). A social interaction
implies a feedback mechanism that contributes to establishing
a two-way communication [23], [24]. Examples of interactions
are shaking hands and fighting, but also a person stealing a bag
from another, since stealing serves as a stimulus to establish a
relationship between the two people. Note that this definition
differs from that of [20], which made no distinctions between
activities and interactions. Group interactions extend the con-
cept of one-to-one interactions to multiple people sharing a
common objective, such as a group marching and a group
meeting. The common objective is in general regulated by a
set of implicit or explicit rules, which are leveraged to alternate
the action-reaction loop. As the number of people increases, it
becomes more difficult to isolate them and to understand what
they are doing, mainly due to occlusions and the difficulty in
interpreting the role of each person in the group.

III. Human Detection

Video-based people detection methods can be divided into
three main classes, namely, appearance-based, motion-based,
and hybrid methods. Appearance-based techniques are a spe-
cific case of object detection in still images and are used
for example edge information. Motion-based methods consider
temporal information for the definition of the features defining
a human, in particular the movements of the legs. Hybrid
methods use combinations of the previous two classes. Table I
compares the characteristics of human detection methods,
which will be discussed next together with available datasets
to test their performance.

A. Appearance-Based Methods

Algorithms based on appearance features are specialized de-
tectors trained on large pedestrian databases [11], [12]. These
algorithms generally scan each frame, searching for patterns
that match predefined models. Appearance-based methods can
be directly applied to nonstatic cameras (e.g., for automatic
driver-assistance) [25], [26]. Effective representations include
the histogram of oriented gradients (HOG) [27], the Viola and
Jones algorithm [28], and Haar-like features [29].
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Fig. 3. Different behaviors generated by similar spatio-temporal features corresponding to the action of running. (a) Sports. (b) Robbery. (c) Catching a bus.

TABLE I

Characteristics of Human Detection Approaches (Key. DR: Detection Rate (%); DT: Detection Time (frames/s); HOG: Histogram of

Oriented Gradients; SVM: Support Vector Machine; MPL: Multipose Learning)

Fig. 4. Examples of (a) one-to-one interaction and (b) group interaction.

Using HOG, the local shape of a human can be represented
by the distribution of edge directions, given by intensity
gradients. HOGs are usually combined with a support vector
machine (SVM) classifier. However, despite being significantly
invariant to scale and illumination transformations, HOGs
change with object orientation. Several extensions of this rep-
resentation have been proposed using the concept of HOGs for
different body parts that are then combined [30], [31]. Another
popular approach is the combination of local and global cues
via a probabilistic top-down segmentation [32]. A combination
of multiple features, such as silhouette, appearance, holistic,
and part-based, can be used as input to a SVM classifier [33],
[34]. The Viola and Jones algorithm, used initially in face
detection, can be trained for pedestrian detection [35]. Haar-
like features have also been used in combination with co-
variance features [29], leading to computationally efficient

algorithms with performance comparable to HOGs in the
INRIA dataset [36].

Benchmark papers on appearance-based people detection
introduce a database with richly annotated videos and dis-
cuss evaluation measures for performance comparison [13],
[14]. Pishchulin et al. [37] perform training on synthetically
generated models, by employing a rendering-based reshaping
technique to create thousands of images from only a small
number of real images.

B. Motion-Based Methods

Motion-based methods generally detect the cyclic motion
of the legs and assume a static camera to identify the moving
foreground [38]. Although joint segmentation and detection
processes have been proposed [32], [39], person detection
often considers a blob segmented from the background,
over which further analysis is performed to verify whether
the blob is a pedestrian. However, when undersegmentation
occurs, these methods become unreliable. An alternative is to
analyze the motion statistics of the tracked blobs as a whole.
Useful cues include the cyclic pattern in blob trajectory and
an in-phase relationship between change in blob size and
position [40].

When observing cyclic motion, gait is analyzed based on
pixel or region-wise oscillations such that the general statistical
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TABLE II

Datasets for Human Detection. (Key. A: Annotation; Y: yes; N: no; P: partial)

periodic behavior is used for classification. Early works per-
formed a discrete Fourier transform (DFT) to quantify pixel
oscillations [41], [42]. Variations of the method analyze the
power spectral similarity in the walking pattern [43] or the
amount of change in a motion history image [44]. An alterna-
tive to analyzing the full pixel intensity information is to high-
pass filter the image, observing only a contour motion fea-
ture [45]. Cutler and Davis [46] look for the gait period by cal-
culating a similarity matrix for every image pair in a sequence.
He et al. [47] determine the angle formed by the centroid
point and the two bottom end points of the object skeleton.
The histogram of this angle over time is used for detection.

Other periodic detection algorithms use the phase-locked
loop [48] and autoregressive moving average models (ARMA)
for estimating frequencies of sinusoidal signals. For example,
Quinn and Hannan [49] use a second order ARMA model
and derive theoretical performance bounds. Another well-
known frequency estimation method is the multiple signal
classification (MUSIC) algorithm, which estimates the fre-
quency content of a signal using an eigenspace method [50].
Ran et al. [51] discuss the methods above addressing the
specific problem of periodicity estimation for pedestrian de-
tection. Other works analyzed the periodic change in the
optical flow [52], [53]. Perbet et al. [54] use a number of
point trajectories and identify those that are spatio-temporally
correlated as arising from feet in walking motion.

People detection performance can be improved by consid-
ering scene modeling that helps reducing the search space.

Knowledge of the scene can be used to train for a specific
area [55], [56]. The adaptation of a generic pedestrian detector
to a specific traffic scene can be performed [56], adding for
example information about common pedestrian in that scene,
and the most likely paths. Moreover, when the homography
between the ground and the camera is known, size features can
be used for the detection [57]. Liu et al. [58] manually annotate
the main surfaces in the scene providing spatial contextual
knowledge. The density distribution over surfaces is learned
from the scene and it is conditional on the surfaces semantic
properties. As an example, on a zebra crossing pedestrians
occur with a higher probability than cars, for a given direction
of movement. All these cues improve the pedestrian detection
reliability.

People detection in the infrared domain can be achieved
with slight modifications to visible-spectrum detectors [59].
Moreover, infrared imaging presents particular contrast

characteristics that can be exploited [60], [61]. Although
simple brightness analysis can be inefficient for characterizing
people due to the polarity switch phenomenon [61], employing
appropriate statistical models, such as the Infinite Gaussian
mixture model [60] for the contrast around potential areas
yields effective classification.

C. Hybrid Methods

Efficient people detection solutions combine appearance
and motion [35], [62]. These two approaches can separately
analyze the data, merging the final result according to a
given decision function, or apply a still-image detector to
regions potentially containing pedestrians, as indicated by a
blob tracker. The advantage of the former solution is that
the detection is not restricted to moving blobs. However,
the computational complexity is largely increased, as the
appearance-based detector performs a search over the full
frame, reducing the number of frames per second (frames/s)
in video analysis. The latter solution reduces computational
complexity and the false-positive rate.

Methods that consider a background model to segment
potential pedestrians generally present a better detection rate,
both in terms of false positives and false negatives.

One of the earlier works jointly exploiting both types of
features combines a Viola and Jones detector [28] operating
on differences between pairs of images [35] and training
using AdaBoost [63]. Each step of the AdaBoost selects
from the several motion and appearance features the feature
with lowest weighted error on the training samples. The final
classifier weighs pixel intensity and motion information such
that the detection rates are maximized. The accuracy of this
technique [35] can be improved by one order of magnitude at
the expense of using a higher number of frames [64]. A related
approach is also used by Dalal [62] and Bouchirika et al. [65],
combining HOGs with motion and gait patterns. The concept
can be extended to also include behavior as a cue in the
detection process [66], where blobs with affine movements
have a higher likelihood of representing a group of pedestrians.

Alternative sensing modalities using depth information are
becoming increasingly popular. Xia et al. [67] perform de-
tection by using a 2-D head contour model and a 3-D head
surface model, in a constrained office area. An adaptation of
HOGs to RGB-D data is proposed by Spinello and Arras [68],
where the direction of depth changes are locally encoded. An
accuracy of 85% in ranges up to 8 m is achieved.
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Fig. 5. Samples of different datasets used for training and evaluation of
human detection algorithms. Scenarios considered range from simple cropped
images (row A) to wide views with multiple people and complex background
(row C).

D. Datasets

Datasets for testing human detection algorithms include the
MIT pedestrian database [69], the USC Pedestrian Detection
Test Sets [70], [71], the CALTECH database [13], the INRIA
person dataset [36], and the ETH dataset [72]. The MIT
pedestrian database was one of the earliest datasets, with the
people poses limited to frontal and rear views. The images
are scaled to the size 64 × 128 and aligned such that the
person’s body is centered in the image. The INRIA person
dataset presents similar scenarios but with a larger variety
in poses and comprehensive annotation. Later datasets [13],
[70] contain lower resolution pedestrians in larger images,
recorded in cluttered urban areas. These datasets contain rich
annotation, including occlusion information.

The PETS database [73] contains single and multiview
footages including outdoor and indoor scenarios. The ETH
dataset [72] is collected using two cameras, with annotation
and camera calibration information. A comprehensive discus-
sion on datasets for pedestrian detection is presented in [14].

Sample images from detection datasets are shown in Fig. 5,
illustrating from top to bottom how the complexity of the
scenarios has evolved over time.

IV. Actions

Action recognition approaches commonly use as descriptors
low-level features, such as optical flow (both dense and sparse)
with gradient information [74], [75], silhouettes [76], and long-
term analysis of motion [77]. Semantics and context-based
techniques can be used to support and increase the system
reliability [78], [79]. A selection of relevant techniques for
action recognition using these techniques are described below
and compared in Table III.

A. Low-Level Features and Spatio-Temporal Interest Points

Common approaches for action recognition include dense
optical flow [80], [81] and spatio-temporal interest points
(STIPs) [75], [82]–[87]. Laptev and Lindeberg [88] origi-
nally presented STIPs for action recognition as a space-time
variation of the Harris corner detector [89]. Regions with
high intensity changes in both space and time are defined as
STIPs. Alternatively, temporal Gabor filters can be employed
to increase the robustness of the method [83], [90]. STIPs do
not necessarily rely on a person detector, they are robust to
clutter and are relatively invariant to temporal and appearance
changes. However, they are generally combined with bag-of-
features models and, therefore, do not account for temporal
and spatial probabilistic feature distributions.

Early work by Schuldt et al. [75] considered individual fea-
ture detections to be independent and built a single histogram
for the full video sequence. Ullah et al. [91] performed video
segmentation prior to STIP detection to eliminate misplaced
interest points. Alternative approaches use several binning
designs [92], [93] to obtain the relative structure of STIPs
across a video. Although results are generally better than the
single-bin (histogram) approach, rigid bin partitions can affect
the spatial or temporal shift in the video volume. Chakraborty
et al. [94] introduced a bag of visual words vocabulary
approach by combining spatial pyramid and vocabulary com-
pression techniques.

Dense optical flow has also been successfully used for
action recognition [80], [81], [95]. Wang et al. [80], [95] used
dense optical flow trajectories and segment the foreground
from background motion for moving cameras. Dense trajecto-
ries are more robust to irregular abrupt motions and are more
accurate in capturing complex motion patterns. The authors
showed that motion boundaries encoded along the trajectories
can outperform state-of-the-art trajectory descriptors, on the
KTH [75], Youtube [96], Hollywood2 [97], and UCF Sport
datasets [98].

An action spectrogram for interest points in 3-D volumes
is used by Chen and Aggarwal [99], with successful results
on the Weizmann dataset and 91% accuracy on the KTH
dataset. A variation of the problem is to consider not only
action recognition, but also action prediction [100], with 70%
accuracy in UT Dataset [101].

Given the redundancy of information collected through
spatio-temporal features, Castrodad and Sapiro [102] propose
a sparse coding pipeline, by classifying the incoming videos
using a dictionary of learned primitives. In spite of the
simplicity of the method, the achieved results reach very high
performances, scoring 100% on the KTH and UT datasets, and
96% on the UCF-Sports dataset.

B. Mid- and High-Level Representation

At a higher level, action recognition can be performed
by exploiting mid and high-level features, such as long-term
tracked trajectories and semantics. Choi et al. [77] present a
framework for collective activity recognition exploiting motion
trajectories and poses. By analyzing coherent activity, better
action recognition performance is obtained. Using their own
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TABLE III

Comparative Analysis of Action Recognition Algorithms (Key. Ref: Reference; DR: Detection Rate; MEI: Motion-Energy Image;

MHI: Motion-History Image; GMM: Gaussian Mixture Model; HMM: Hidden Markov Model; HMM-MIO: HMM with Multiple

Independent Observations; SVM: Support Vector Machine: EM: Expectation Maximization; MRF: Markov Random Field)

dataset [103] with actions, such as standing, queuing, walking,
and talking, they obtain an average accuracy of 82%. Raptis
et al. [104] use motion trajectories to spatially locate where
an event occurs. Trajectories are clustered, and the clusters’
properties are analyzed to classify the action. They achieve a
79.4% accuracy on the UCF-Sports dataset. Hoai et al. [105]
present a framework for joint segmentation and recognition
of actions based on multiclass SVM for action classification,
while segmentation inference is achieved by dynamic pro-
gramming. Regular expressions can be exploited to automati-
cally associate an observed activity pattern to a template of
activities learned a priori, achieving a 87.7% accuracy on
the Weizmann dataset and 42.4% on the Hollywood dataset.
Daldoss et al. [106] model actions through an abstraction of
the top-view trajectory. The expressions corresponding to the
activity models are learned as separate context-free grammars
(CFGs) using a set of training sequences, parsed using the
Earley–Stolcke algorithm. Zhang et al. [107] transformed the
motion trajectories in a set of basic motion patterns and used
a rule induction algorithm based on the minimum description
length (MDL) to derive the spatio-temporal structure of the
event from the primitives stream. Anomalous actions can
be detected based on spectral analysis of graphs [108] by
representing human motion trajectories as transitions between
nodes. Individuals span only a limited portion of all possible
trajectories on the graph and this subspace is characterized
by large connected components of the graph, on which it is
possible to implement invariant metrics for anomaly detection.

Most of the works discussed above define human actions
by their motion and appearance features. However, other con-
textual and semantic information can also be employed [78],

[79], [109]. Gupta et al. [109] used a storyline to describe
causal relationships between actions (e.g., baseball swinging
and running are typically related actions). AND-OR graphs are
used as a mechanism for representing storyline models. The
parameters and structure of the graph are learned from weakly
labeled videos, using linguistic annotations and visual data,
leading to joint learning of both storyline and appearance mod-
els. Lin et al. [78] use attribute graphs for activity recognition.
They model the variability of semantic events by a set event
primitives, which are learned as a object-trajectory mapping
that describes mobile object attributes (location, velocity, and
visibility). With this representation, one observed event is
parsed into an event parse graph, and variabilities of one event
are modeled into an AND-OR graph.

Raptis and Segal [110] model an action as a very
sparse sequence of temporally local discriminative keyframes.
Keyframes are learned as collection of poselets, a description
recently used in person recognition [111]. Poselets capture
discriminative action parts that carry partial pose information,
thus, reducing the impact of occlusions. The model seman-
tically summarizes actions in a storyline, which represents a
contextual temporal orderings of discriminant partial poses.

Inspired by the object bank approach for image segmen-
tation [112], Sadanand and Corso [79] proposed a high-level
representation of actions. The main idea is that a large set of
action detectors can be seen as the bases of a high-dimensional
action-space. This characteristic, combined with a simple
linear classifier, can form the basis of a semantically-rich
representation for activity recognition in video. The authors
report accuracy of 98.2% on the KTH, 95.0% on the UCF
Sports, and 57.9% on the UCF50 dataset. Promising results
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are also given by Messing [113], where the semantics are
incorporated to his previous work [114] on activity recognition
using a model for the velocity history of tracked points. Higher
level information, the relative position of a person, their body
parts and objects in known scenarios are incorporated in the
activity recognition system. As the knowledge of objects aid
activity recognition, Fathi et al. [115] used an egocentric
approach, where video captured from a wearable camera is
used to view the scene in front of the user at all times. They
perform the analysis of hand movements and interaction with
objects, using a weakly supervised technique. The method au-
tomatically segments the active object areas, assigning regions
to each object and propagating their information using semi-
supervised learning.

C. Silhouettes

The use of silhouettes to classify actions assumes that
human movements can be represented as a continuous pro-
gression of the body posture. These approaches are mainly
based on background segmentation [11]. Action descriptors
can be extracted from a sequence of silhouettes in consec-
utive frames, and traditional classifiers can be employed for
recognition [116], [117]. Alternatively a dynamic model of the
action of interest can be generated using characteristics from
each silhouette [76], [118].

Action descriptors extracted from a sequence of silhouettes
capture and combine spatio-temporal characteristics of the
activity. A common technique is to accumulate silhouettes
to generate motion energy images (MEI) as well as motion
history images (MHI) [116]. Hu moments [117] can be ex-
tracted from both MEI and MHI as action descriptors, and
action classification is based on the Mahalanobis distance
between each moment descriptor of the known actions and the
one under analysis. Chen et al. [82] fit star figure models to
human silhouettes to identify the five extremities of the shape
corresponding to head, arms, and legs. To model the spatial
distribution of the five points over time, Gaussian mixture
models are used, ignoring the temporal order of the silhouettes
in the action sequence. Nater et al. [119] used a hierarchical
approach based on silhouettes to detect falls, whereas Li
et al. [120] extended the silhouette approach to 3-D sensors.

Dynamic models of actions generated by extracting charac-
teristics from each silhouette generally employ statistics-based
techniques, such as conditional random fields (CRF) [121],
[122] and hidden Markov models (HMM) [118], [123]. The
features extracted from each silhouette capture the shape of the
body and possible local motion. Kellokumpu et al. [124] apply
Fourier-based shape descriptors to cluster a number of possible
postures. HMMs are employed to model the activity dynamics
such that each cluster is assumed as a discrete symbol from the
hidden states in the HMM. Instead of analyzing the behavior
of whole bodies, an alternative is to perform parts-based
analysis [125], [126], where template matching is combined
with a pictorial structure model to detect and localize actions.

Sun et al. [127] were the first to obtain 100% accuracy on
both the KTH and Weizmann datasets by generating a self-
similarity matrix (SSM) for each frame in the video using
a feature vector. The SSMs from all frames are combined

and the result is decomposed into its rank-1 approximation,
yielding a set of compact vectors that efficiently discriminate
different actions. Alternative methods analyze skeletons [16],
[20], [128], [129], which represent the human body in terms
of articulated joints, thus, extending the information provided
by silhouette and shape to analyze motion and pose at a finer
level of detail. In a simple form, skeleton-based articulation
considers a small number of points: the head, hands, and feet,
for example, forming a five-point star [128]. Most statistics are
derived from the absolute and relative motion of those points
with respect to the star centroid. The statistics can be analyzed
directly or can serve as input to a classifier.

When subjects are close to the camera, using RGB-D,
Shotton et al. [130] predict the 3-D positions of skeletal
body joints from a single image. Using a highly diversified
training dataset, they generate an intermediate body parts
representation that maps the complex pose estimation problem
into a simpler per-pixel classification task. Extending the
poses to activities, Sung et al. [131], [132] present learning
algorithms to infer the activities, using a hierarchical maxi-
mum entropy Markov model on RGB-D data. Their method
considers an activity as composed of a set of subactivities
of body parts, inferring a two-layered graph structure using
dynamic programming. They achieve an average precision rate
of 84.3% in house and office environments.

D. Datasets

Activity recognition datasets are either staged or natural,
and contain images or trajectory data. The KTH dataset [75]
and the Weizmann dataset [133] contain instances of walking,
jogging, running, boxing, hand waving, and hand clapping,
performed several times by different subjects. State-of-the-art
methods achieve recognitions rates of more than 90% [126],
[134] in the KTH and Weizmann datasets, which provide an
initial basis for comparison among algorithms [123]. More
realistic datasets include UCF50 [135] and Hollywood [134].
Other staged databases include INRIA Xmas [136] and
MuHAVi [137], which contain multicamera views. The UCF
YouTube database [96] has large variations in camera motion,
object appearance, and illumination conditions, as illustrated
in Fig. 6. Large variations are also found in the Hollywood
Human Action datasets [97], [134], which contain thousands
of video movies clips corresponding to more than 20 hours
of data representing 12 human actions classes, and ten scene
classes (e.g., kitchen, car, hotel).

Other datasets only consider the spatio-temporal motion
information provided by the trajectories of moving people.
These datasets include the 3-D People Surveillance Dataset
(3DPES) [138], the MIT trajectory dataset [139], and the Edin-
burgh Informatics Forum Pedestrian Database (EIFPD) [140].
3DPES [138] contains paths of about 200 people, acquired
over several days and complemented with ground-truth in-
formation in the form of bounding boxes and direction of
motion. The MIT trajectory dataset [139] contains more than
40 000 trajectories collected over five days from a single
camera monitoring a parking lot. EIFPD [140] covers several
months of observation resulting in about 1000 trajectories/day.
Although data do not include the ground truth, information
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Fig. 6. Samples of different datasets used for training and evaluation
of human activity classification algorithms. (a) and (b) Staged scenarios.
(c) Real sequences obtained from the Internet. Dataset Key: (a) KTH [75].
(b) WEIZMANN [133]. (c) YouTube [96].

about the detected blobs, the raw samples, and the interpolated
trajectory using splines is provided.

As subset of activity recognition, datasets for gesture recog-
nition include Australian Sign Language (ASL) [141], the Face
and Gesture Recognition Working Group (FGnet) [142]–[144],
Pointing’04 [145], Cambridge Gesture Database [146], and the
ChaLearn Gesture Challenge dataset [147]. The ASL [141]
dataset consists of a wide set of samples of Auslan (Australian
Sign Language) signs: 27 examples of each of 95 Auslan
signs were captured from a native signer using high-quality
position trackers. A small two-handed dataset is presented
in [142] provided by FGnet. The videos contain seven two-
handed gestures, collected using seven different subjects, and
recording ten videos per gesture per subject. The same working
group proposed in [148] additional datasets for hand posture
recognition, as well as a specific dataset for hand gesture
recognition [144]. This dataset includes deictic and symbolic
gestures for 400 samples. The benchmark data of Pointing’04
workshop [145] include ground-truth information indicating
where users are pointing. Nine static and four dynamic ges-
tures are presented and annotated in [143], including besides
the identifiers for event and user, the gesture, action start,
stroke start, stroke end, and gesture end. 900 image sequences
of nine gesture classes defined by three primitive hand shapes
and three primitive motions are presented in [146]. Each class
contains 100 image sequences (five different illuminations,
10ten arbitrary motions, two subjects). The target task for
the data set is to classify different shapes as well as different
motions at a time.

Recent RGB-D datasets include the RGBD-HuDaAct [149]
and the ChaLearn Gesture Challenge [147] datasets. The
RGBD-HuDaAct database contains videos showing subjects

performing various common daily life activities, such as
talking on the phone, getting up, and mopping the floor.
The dataset is annotated and one single subject is present in
each action. Each sequence spans about 30 to 50 s, totaling
approximately 46 hours of video at 640×480 resolution. Each
subject performs the same activity 2–4 times. In the ChaLearn
Gesture Challenge dataset [147], ground-truth annotation is
partially available, including temporal segmentation into iso-
lated gestures and body part annotations (head, shoulders,
elbows, and hands).

A summary of the characteristics of the datasets discussed
above is given in Table IV.

V. Interactions

We can distinguish between one-to-one and group interac-
tions. One-to-one interactions can be seen as extensions of
action for single subjects complemented by contextual and
social information. Group interactions require the detection
of a group entity in terms of social aggregation. In both
cases, motion features need to be combined with sociological
and psychological information that rule interpersonal relations.
However, the literature usually addresses them as two separate
problems. Table V compares the interaction recognition tech-
niques described below.

Recognizing the social component of behaviors and social
activities that involve multiple people requires observing the
activity of a person in reference of his/her neighbors. Consid-
ering position as the main source of information, interactions
can be modeled by the permanence for a specific amount of
time in the neighborhood of one or more meaningful spots in
the scene. Models from psychology and sociology that can be
used include the theory on proxemics [150], [151]. Proxemics
exploits the so-called social space (the space between subjects)
to infer interpersonal relationships. These relationships can be
seen as a summation of attractive and repulsive forces that
drive human behaviors, linking them with other people in
the surroundings. Helbing et al. [152] assimilate the human
behavior in a social context as a summation of forces that
lead a subject to its target (social force model). The idea of a
social force that binds and regulates the relationships between
subjects has been widely adopted to model both one-to-one
interactions and group interactions, as a generalization of the
one-to-one case. Mehran et al. [153] used grid of particles over
the image that are moved by the forces created by the space-
time optical flow as they were individuals. The moving forces
are then estimated using the social force model to identify
normal or abnormal behaviors.

A. One-to-One Interactions

The interaction level between two subjects can be measured
as an energy function (or potential) computed along the axis
connecting them [154]. Pellegrini et al. [155] applied this
model to crowded scenes, considering single moving entities
as agents. The motion of each agent is driven by its desti-
nation, and planned to prevent collisions with other moving
objects. Every agent is associated with a set of features,
comprising position, speed, and direction of motion. Path
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TABLE IV

Datasets for Gesture Recognition. (Key. A: Annotation; Y: yes; N: no; P: partial;

CGD: Cambridge Gesture Database; CGC: ChaLearn Gesture Challenge)

planning is achieved by implementing a social force model
to evaluate the interaction level between two subjects. From
the analysis of the energy function, the authors propose a
linear trajectory avoidance (LTA) model, based on a short
time prediction, to model the avoidance path. Longer predic-
tions would lose effectiveness, because of the casualness of
the human movement. Taj and Cavallaro [156] describe the
coupling between multiple object states using Coupled HMMs
on relative spatio-temporal features among the people under
analysis. Rota et al. [157] recognized normal and abnormal
two-people interactions exploiting proxemics cues combined
with motion information, also revealing the intentionality of
a specific interaction. Zen et al. [158] identified proxemics
cues in a close-range analysis to discriminate personality traits,
such as neuroticism and extraversion, and used the collected
data to construct a correspondent behavioral model. The social
interaction cues are then used to complement a people tracker
to improve its accuracy.

B. Group Interactions

Extending the concept to a group of several subjects implies
analyzing the scene from the social viewpoint and the dynam-
ics ruling these interactions are significantly different. Cristani
et al. [159] detect the so-called F-formations in the scene to
infer whether an interaction between two or more persons is
occurring. The interactions in a small groups of people can
be encoded in three categories, namely, self-causality, pair-
causality, and group-causality [160], where features character-
izing each category are identified based on the trajectories of
the subjects.

The social interaction model proposed in [155] and [161]
assumes that people behave consistently when walking in
groups. Trajectory hypotheses are generated for each person
within a time window, and the best hypothesis is selected
taking into account social factors, while estimating group
membership using CRF. The group membership allows opti-
mizing motion prediction also considering constraints imposed
by the group. The algorithm improves tracking performance
by introducing additional constraints for the tracker. Finally,
an interaction energy potential can be extracted to model the
relationships among groups of people [162]. The relationship

between the current state of the subject and the corresponding
reaction is then used to model normal and abnormal behaviors.

RGB-D data can be used to detect fine-grained human–
object interaction [163], identifying hand movements and other
cooking activities, considering the interactions between hands
and objects. The system combines global and local features,
also considering the duration of the events. The global feature
uses the principal component analysis (PCA) on the gradients
of 3-D hand trajectories. The local feature employs bag-of-
words of trajectory gradients snippets, which are useful for
distinctive isolated actions, such as chopping.

Zhang and Parker [164] employ RGB-D sensors on a
mobile robotic platform, aiming at efficient interaction be-
tween the robot and humans. The feature detector applies
separated filters on the 3-D spatial dimensions and to the
temporal dimension to detect a feature point. A feature de-
scriptor then clusters the intensity and depth gradients within a
4-D cuboid, which is centered at the detected feature point
as a feature. As a classifier for the activity recognition, the
authors employ the latent Dirichlet allocation [165] combined
with Gibbs sampling. Detection rates are relatively high in a
staged scenario, for basic activities, such as waving, walking,
and signaling. Koppula et al. [166] use a mobile robot and
consider the problem of labeling subactivities performed by a
human, but also use interaction with objects as cues (associated
affordances). The human activities and object affordances are
jointly modeled in a Markov random field (MRF) framework.
The learning problem is formulated using a structural SVM
approach, with 75.8% precision and 74.2% recall in a chal-
lenging dataset.

C. Datasets

Interaction detection datasets include the BEHAVE
dataset [167], the UT interaction dataset [101], the TV human
interactions Dataset [168], and the CMU MOCAP [169]
(Fig. 7). The BEHAVE dataset [167] covers interactions be-
tween multiple persons with subtly different behaviors, such as
InGroup (IG), Approach (A), WalkTogether (WT), Split (S),
Ignore (I), Following (FO), Chase (C), Fight (FI), RunTogether
(RT), and Meet (M). A smaller dataset is the UT interaction
dataset for the SDHA contest [101] that covers continuous
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TABLE V

Comparison of Social Interaction Modeling Approaches (Key. SFM: Social Force Model; BoW: Bag of Words; GA: Genetic

Algorithm; SVM: Support Vector Machine; EM: Expectation Maximization; CRF: Conditional Random Field;

STIP: Space Time Interest Points)

executions of six classes of human–human interactions: shake-
hands, point, hug, push, kick, and punch. Ground-truth labels
for these interactions are provided, including time intervals
and bounding boxes. There are 20 video sequences of around
1-minute length. For close-range interactions, the TV Human
interactions dataset (TV HID) [168] is used to analyze interac-
tions occurring in TV footages [170]. The dataset is annotated.
Finally, the CMU MOCAP [169] is an annotated 3-D dataset
that also includes a section for two-person interactions. The
position and motion information of body parts are captured
using markers that create the skeleton of the person. The
dataset includes several types of behaviors, ranging from
normal interactions, such as handshaking and passing an object
to quarrels and fights.

In the RGB-D domain, datasets include the Cornell
CAD-60 [131] and CAD-120 [166], and the LIRIS [171]. The
LIRIS dataset contains video of multiple subjects, with partial
focus on interactions, such as discussing, handling items,
handshaking, apart from some single subject actions present
in the RGBD-HuDaAct dataset. Full annotation is provided,
with information on the type of action and related spatial
and temporal position in the video. This dataset contains
fully annotated standard 720 × 576 video of the same scenes,
recorded with a consumer camcorder, providing a useful basis
for comparisons between RGB and RGB-D techniques. The
CAD-60 and CAD-120 datasets consider most environments of
a regular household (office, kitchen, bedroom, bathroom), with
three to four common activities identified in each location with
about 45 s of data for each activity and each person. The CAD-
120 extends the CAD-60 by separating high-level human–
object interactions (e.g., taking medicine, cleaning objects,
microwaving food) and subactivities like punching, reaching,
and drinking. Object characteristics labels such as movable,
reachable, and drinkable are also included. This dataset con-
tains a comprehensive annotation and each video is annotated
with subactivity labels, tracked human skeleton joints, and
tracked object bounding boxes. This dataset combines actions,
gestures, and interactions in its annotations.

Fig. 7. Samples from different datasets used for training and evaluation of
interaction classification algorithms. Examples include pulling, fighting, and
hugging. Dataset key: (a) MOCAP [169]. (b) UT [101]. (c) TV HID [170].

A summary of the characteristics of the datasets discussed
above is given in Table VI.

VI. Conclusion

This survey presented an extensive overview of video-based
behavior understanding, its related definitions, and an analysis
of datasets used for benchmarking. The goal was to provide
the reader with a critical analysis of the major steps, from
detection to high-level interpretation, contrasting key elements
of the different approaches using comparative tables. Based
on this survey, we can highlight successful approaches as
well as several important future directions, which include
promising methods, the generation and reconstruction of 3-D
observations, datasets and annotation.

From a representation viewpoint, and in spite of their
simplicity, low-level features (such as pixels), but also
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TABLE VI

Datasets for Action and Interaction Recognition. (Key. A: Annotation; Y: yes; N: no; P: partial)

spatio-temporal features as STIPs, revealed excellent per-
formances (e.g., [99], [102]), achieving 100% accuracy on
some of the common benchmark datasets. Low-level features
benefited from the fact that they were generally easy to extract.
However, they were unable to handle the temporal structure
of the action/behavior, implying the need for a higher level
analysis to construct a suitable temporal model. Mid and
high-level representations can bridge this gap, providing also
the spatio-temporal model (motion trajectories) associated to
each descriptor, both at a feature level [98] or objects level
[107], [111]. Also in this case, efficient performances can
be achieved, as demonstrated by Sadanand and Corso [79],
who reached 98.2% on the KTH dataset and 95% on the
UCF Sports dataset. Enriching the descriptors with contex-
tual information can also provide significant improvements
in the classification performances. This can be achieved by
complementing the features with semantics [109], defining
(or learning) a description of the video in terms of causal
relationships, as it is common, for example, in sport events.
These approaches are particularly efficient when observing
long-term actions, in which atomic elements can be com-
bined together to compose a more complex and structured
behaviors.

Although the appropriateness of the feature representation
is a key element to create a correct behavior model, the
choice of the classifier may strongly influence the quality of

the results. Deterministic classifiers (such as neural networks,
SVM), often combined with some efficient representation of
the input data as bag-of-words or dimensionality reduction, are
commonly used. However, a deterministic model is strongly
dependent on the set of training data. For this reason, deter-
ministic models are well suited to detect behaviors that show
a certain level of regularity and for which the salient details
that characterize them are persistent across the samples of
the dataset. A different category of methods model behaviors
as stochastic processes. A stochastic, or probabilistic process
assumes that the variables to be analyzed behave as probability
distributions, instead of single values, thus incorporating in
the model a certain degree of randomness. Some of the most
widely used include Markovian models and their variations
(e.g., HMM, MRF), as well as CRF and stochastic context-
free grammars (SCFG). These solutions often match very well
with the nature of behaviors that tend to evolve or change,
especially when observed over long temporal intervals, due to
the high variability with which humans accomplish the same
tasks over time.

Graphical models [172] have demonstrated their robustness
in dealing with noise both in data acquisition and behavior
interpretation [173]. Examples include action [77], [105],
[174], and interaction analysis [161], [175].

The problem of reconstructing the motion of a 3-D artic-
ulated body from 2-D point correspondences from a single
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camera for behavior understanding has gained increased at-
tention [176], [177]. However, methods still require capturing
the object at a high resolution and proximity to the camera.
New opportunities are offered by devices, such as RGB-
Depth (RGB-D) sensors (e.g., Asus Xtion [178] and Microsoft
Kinect [179]), that simplify tasks at close range for human
behavior analysis [67], [131], [132]. Another natural extension
is the use of multiple cameras [72], [136], [137]. Moreover, to
increase the performance achieved by pure vision systems in
real scenarios, multimodal sensing should be considered [180],
[181]. Examples include the integration of 2-D laser scanners
with cameras [180] or cameras and microphones [182].

Datasets and their fields of applicability were discussed
throughout the survey and are summarized in Tables II, IV,
and VI. Each dataset generally comprises a specific facet
of human behavior understanding. Annotated datasets that
combine detection, activity, and interaction analysis are still
missing and would greatly facilitate progress in this field
whose building components have been traditionally analyzed
separately. Moreover, especially in the area of action and
interaction recognition, datasets are generally small, making
it difficult to use a relevant number of examples for learning
and testing. As human analysis datasets grow larger and more
complex, it becomes harder to perform accurate annotation,
which is paramount for training. For this reason, crowdsourc-
ing annotation of datasets is growing in popularity [183]. Inter-
esting quality assessment for crowdsourced object annotations
have been proposed [184], illustrating the need for large and
reliably annotated datasets to help increase the performance
of algorithms.
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