Data Clustering: A Very Brief Overview

Serhan Cosar INRIA-STARS

Outline

Introduction

Five Ws of Clustering Who, What, When, Where, Why?
One H of Clustering How?
Algorithms

Conclusion

Introduction

- Unsupervised Learning: a very important problem in machine learning
 - Big amount of data
 - Unlabeled data
 - Time and effort to label
 - Not enough information to label
- Data Mining: an interdisciplinary field in computer science
 - A very large set of data in a database
 - Intersection of
 - Machine learning
 - Database systems

Introduction

- Some examples
 - Classification of plants given their features
 - Finding patterns in a DNA sequence
 - Recognizing objects, actions from images
 - Image segmentation
 - Document classification
 - Customer shopping patterns
 - Analyzing web searching patterns

5Ws of Clustering

- Who, What, When, Where, Why?
- As a researcher, you are given a (large) set of points without labels
- Grouping unlabeled data
 - Points within each cluster should be similar (close) to each other
 - Points from different clusters should be dissimilar (far)

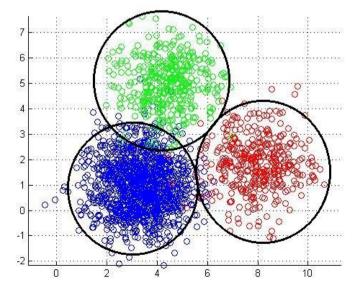
5Ws of Clustering

- Given points are usually in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean Distance,
 - Mahalanobis Distance,
 - Minkowski Distance,

1H of Clustering

- How do we cluster?
- In general two types of algorithms:
 - Partition Algorithms
 - Obtain a single level of *partition*
 - Hierarchical Algorithms
 - Obtain a *hierarchy* of clusters

- K-Means
 - Set the number of clusters (k)
 - Initialize k centroids
 - Group points close to centroid • Re-calculate centroids
 - Always converges (may be to local minimum)
 - Kmeans++
 - Not highly scalable, Computation
 - Minibatch K-means



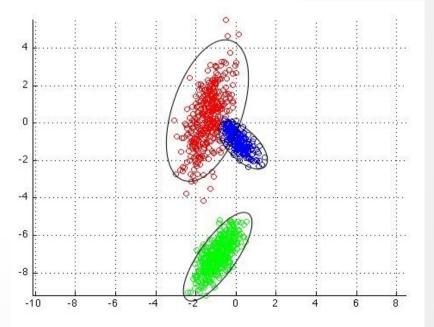
- Mean Shift
 - Set the bandwidth (max. distance)

 $\left\|x_i - m_j\right\|^2 \le BW^2$

- Mixture of Gaussian
 - Mahalanobis distance

$$\sum_{i=0}^{N} \min_{\boldsymbol{\mu}_{j} \in C} \left((\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}_{j}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}) \right)$$

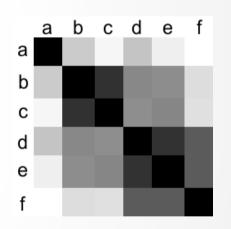
Not highly scalable



- Spectral Clustering
 - Set the number of clusters (k)
 - Similarity Matrix (pair-wise distance)

$$L = D - S \qquad D_{ii} = \sum_{j} S_{ij}$$

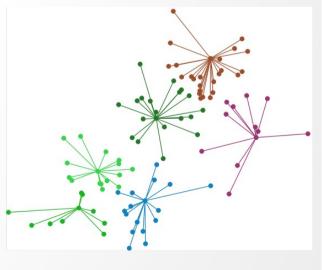
- Laplacian Matrix
 - Eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$
- Take first k eigenvectors and cluster using K-means
- Eigenvector computation could be a problem for large datasets



- Affinity Propagation
 - No need to specify number of clusters
 - Similarity Matrix
 - Responsibility Matrix
 - $r(i,k) \rightarrow Quantify$ how well x_k will be to serve as "exemplar" for x_i
 - Availability Matrix
 - $a(i,k) \rightarrow Quantify$ how appropriate it will be for x_i to pick x_k as its "exemplar"
 - "Message-passing" between data points
 - Initialize matrices R and A to zero
 - Iteratively update

 $r(i,k) \leftarrow s(i,k) - \max_{\substack{k \neq k}} \{a(i,k) + s(i,k)\}$

 $a(i,k) \leftarrow \min\{0,r(k,k) + \sum_{i \neq i,k} \max\{0,r(i,k)\}\}$



- Affinity Propagation
 - Computation complexity
 - Time
 - Memory
 - Not suitable for large datasets

How do we cluster?

- In general two types of algorithms:
 - Partition Algorithms
 - Obtain a single level of partition
 - Hierarchical Algorithms
 - Obtain a *hierarchy* of clusters

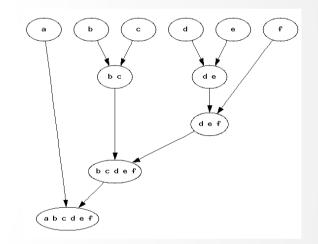
Hierarchical Algorithms

- Bottom up agglomerative
 - Iteratively merging small clusters into larger ones
- Top down divise
 - Iteratively splitting larger clusters

Can scale to large number of samples

Bottom up Algorithms

- Incrementally build larger clusters out of smaller clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
 - Obtain *dendrogram*



Need to define "closeness" (metric and linkage criteria)

Bottom up Algorithms

- Linkage criteria
 - <u>Ward:</u> minimizing the sum of squared differences within all clusters (~K-means)
 - <u>Single linkage</u>: minimizes the distance between samples in a cluster (~K-NN)
 - <u>Complete linkage</u>: minimizes the maximum distance between samples in a cluster
 - <u>Average linkage</u>: minimizes the average of distances between samples in a cluster
- Distance Metric

Top down Algorithms

- Put all samples in one cluster and iteratively split the clusters
 - Distance metric to measure dissimilarity

Other Algorithms

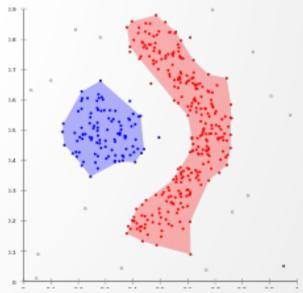
DBSCAN*

- Core samples: samples that are very close to each other
- Non-core samples: samples that are close to core samples (except core samples themselves)
- Set epsilon (ε) (distance) and min. number of samples to form a dense region
 - Take an arbitrary point
 - Check its ε-neighborhood
 - If it contains more samples than *min. number of samples*, create a cluster
 - If not mark as noise (outlier)

*Density-based spatial clustering of applications with noise

Other Algorithms

- DBSCAN
 - Can find arbitrarily shaped clusters
 - Can detect outliers
 - Can scale to very large datasets



Conclusion

- Clustering is a huge domain
- Need to select the approach suitable for the problem
 - Parameters to set (e.g., number of clusters)
 - Data geometry
 - Convergence: local / global optimum
 - Number of samples
 - Computation time

Conclusion

- Clustering performance evaluation
 - Adjusted Rand Index
 - Mutual Information
 - Homogeneity, completeness
 - Silhouette Coefficient
 - Davies-Bouldin Index

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{i \neq j} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

THANK YOU

- References
 - Scikit-learn: Python Library
 - http://scikit-learn.org/stable/modules/clustering.html
 - Anil K. Jain, M. N. Murty, and P. J. Flynn. "Data clustering: a review", ACM Computing Surveys, 31(3):264–323, 1999
 - Nizar Grira, Michel Crucianu, Nozha Boujemaa, "Unsupervised and Semi-supervised Clustering: a Brief Survey", A Review of Machine Learning Techniques for Processing Multimedia Content
 - Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007

