Marked Point Process Model for Curvilinear Structures Extraction

AYIN research team INRIA Sophia-Antipolis Méditerranée

Seong-Gyun JEONG, Yuliya TARABALKA, and Josiane ZERUBIA

firstname.lastname@inria.fr

https://team.inria.fr/ayin/

- Introduction
- Marked Point Process modeling
 - MPP revisited
 - Generic model for curvilinear structures
 - Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

Introduction

- Marked Point Process modeling
 - MPP revisited
 - Generic model for curvilinear structures
 - Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

Curvilinear Structure

• Goal: detection + localization of curvilinear structures: wrinkles, road cracks, blood vessels, DNA, ...

Challenges

- Low contrast within a homogeneous texture
- Shown in a **complex shape**

Introduction

Marked Point Process modeling

- MPP revisited
- Generic model for curvilinear structures
- Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

Marked Point Process

- Counting unknown number of objects with higher order shape constraints
- Three essentials to realize MPP model:
 - 1. Parametric object
 - 2. Probability density
 - 3. Sampler

Marked Point Process

- Parametric object
 - Point (Image site) + Mark (Object shape): $s_i \in \mathbb{R}^2 \times \mathbb{M}$

- Probability density f(s)
 - Defines distribution of points

$$\hat{\mathbf{s}} = \operatorname*{argmax}_{\mathbf{s} \in \Psi} f(\mathbf{s}) = \operatorname*{argmin}_{\mathbf{s} \in \Psi} \sum_{i=1}^{\#(\mathbf{s})} U_d(s_i) + \sum_{i \sim j} U_p(s_i, s_j)$$
Prior energy

Marked Point Process

- Sampler
 - Goal: maximize unnormalized probability density over configuration space $\Psi = \bigcup_{n=0}^{\infty} \mathbf{s}_n$, where $\mathbf{s}_n = \{s_1, \dots, s_n\}$
 - Difficulties:
 - $f(\mathbf{s})$ is non-convex
 - Ψ 's dimensionality is unknown

– MCMC sampler

- Each state of a discrete Markov chain $(X_t)_{t\in\mathbb{N}}$ corresponds to a random configuration on Ψ
- The Markov chain is locally perturbed by sub-transition kernels and converges toward stationary state

Introduction

Marked Point Process modeling

- MPP revisited
- Generic model for curvilinear structures
- Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

Data Likelihood

- Features for curvilinear structure
 - Gradient magnitude
 - Homogeneity of pixel values

$$U_d(s_i) = \omega_d^m U_d^m(s_i) + \omega_d^v U_d^v(s_i)$$

Gradient magnitude A Intensity variance V

- Steerable filters
 - Linear combination of 2nd
 derivatives of Gaussian
 - Accentuate gradient magnitudes w.r.t. orientation

Input

Filtering responses

Prior Energy

• Spatial interactions on a local configuration

- Neighborhood system
 - Pairs of line segments, s.t. their center distance is smaller than half the sum of their lengths

$$i \sim j = \left\{ (s_i, s_j) \in \Psi^2 : 0 < \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le \frac{\ell_i + \ell_j}{2} + \epsilon \right\}$$

Prior Energy

$$U_p(s_i, s_j) = \Upsilon(s_i, s_j) + \mathbf{w}_p^{\mathsf{T}} \mathbf{c}_{ij}$$

Intersection Coupling energies

- Intersection
 - To avoid congestion in a local configuration
 - Dilate line segments $A(s_i)$
 - Count the number of pixels falling in the same area
 - Reject configurations if portion of intersection areas $\geq 10\%$
 - $\Upsilon(s_i, s_j) = \infty$

Prior Energy

$$U_p(s_i, s_j) = \Upsilon(s_i, s_j) + \mathbf{w}_p^{\mathsf{T}} \mathbf{c}_{ij}$$

Intersection Coupling energies

- Coupling energies
 - To obtain smoothly connected lines

$$\mathbf{w}_{p} = [\omega_{p}^{s}, \omega_{p}^{c}, \omega_{p}^{a}, \omega_{p}^{r}]^{\mathsf{T}}$$
$$\mathbf{c}_{ij} = [1, \varphi(d_{ij}, \epsilon), \varphi(\theta_{ij}, \tau), \varphi(\theta_{ij}^{\perp}, \tau)]^{\mathsf{T}}$$

- ω_p^s penalizes single line segment
- $\omega_p^c \varphi(d_{ij}, \epsilon)$ minimizes gap between lines
- $\omega_p^a \varphi(\theta_{ij}, \tau)$ prefers small curvature
- $\omega_p^r \varphi(\theta_{ij}^{\perp}, \tau)$ allows almost perpendicular lines

Introduction

Marked Point Process modeling

- MPP revisited
- Generic model for curvilinear structures
- Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

RJMCMC

- Stimulate a discrete Markov chain over the configuration space via sub-transition kernels
 - Birth kernel proposes a new segment
 - Death kernel removes a segment

Affine transform updates intrinsic variables of the segment

Delayed Rejection

 Gives a second chance to a rejected configuration by enforcing the connectivity

- 1. Let $\mathbf{s} = \{s_1, s_2, s_3\}$ be the current configuration
- 2. Propose a new configuration via affine transform kernel
- 3. If s' is rejected, DR kernel searches for the nearest end points in the rest of the line segments
- 4. An alternative line segment *s** will enforce the connectivity

- Introduction
- Marked Point Process modeling
 - MPP revisited
 - Generic model for curvilinear structures
 - Monte Carlo sampler with delayed rejection

Integration of line hypotheses

- Experimental results
- Summary

Create Line Hypotheses

- MPP model is sensitive to the selection of hyperparameter $\mathbf{w} = [\omega_d^m, \omega_d^v, \omega_p^s, \omega_p^c, \omega_p^a, \omega_p^r]^{\mathsf{T}}$
 - Learning is not feasible
 - Unable to obtain ground truth, e.g., wrinkles
 - Variable for different types of datasets

Integrate Line Hypotheses

Assumption

- Prominent line segment will be observed more frequently

- Mixture density $\mathcal{P}_{\hat{S}}$
 - Shows consensus between line hypotheses
 - Criterion for hyperparameter vector selection

Integrate Line Hypotheses

Updated data likelihood

$$U'_d(s_i) = U_d(s_i) + U^h_d(s_i)$$
$$U^h_d(s_i) = \int_0^1 -\log \mathcal{P}_{\hat{\mathcal{S}}}(s_i(t)) dt$$

- Reduce sampling space
- Quantifies consensus among line hypotheses w.r.t. s_i

- Introduction
- Marked Point Process modeling
 - MPP revisited
 - Generic model for curvilinear structures
 - Monte Carlo sampler with delayed rejection
- Integration of line hypotheses
- Experimental results
- Summary

Experimental Results

* H. Talbot *et al.,* "Efficient complete and incomplete path openings and closings," ICV 2007

Experimental Results

* H. Talbot et al., "Efficient complete and incomplete path openings and closings," ICV 2007

Experimental Results: missing

* H. Talbot et al., "Efficient complete and incomplete path openings and closings," ICV 2007

Experimental Results: over detection

* H. Talbot et al., "Efficient complete and incomplete path openings and closings," ICV 2007

Experimental Results: Precision-Recall

- + **Pros**: fully automatic
- Cons: varying line width, congestion

Summary

- Generic MPP model for curvilinear structures
 - Wrinkles, DNA filaments, road cracks, blood vessels, ...
- Modeling
 - Line segment: length & orientation
 - Data term: image gradient intensity & orientation
 - Prior term: provide smoothly connected lines
- Simulation: RJMCMC with delayed rejection
- Reduce parameter dependencies of MPP modeling using hypotheses integration

Thank you!

Marked Point Process Model for Curvilinear Structures Extraction

Seong-Gyun JEONG, Yuliya TARABALKA, and Josiane ZERUBIA

firstname.lastname@inria.fr https://team.inria.fr/ayin/