DETECTING PULSE FROM HEAD MOTIONS IN VIDEO CVPR 2013

Guha Balakrishnan, Fredo Durand, John Gutag MIT Computer Science & Artificial Inteligence Lab.

> Rita Simões (Morpheme team) April 9th, 2014

Motivation

- Diagnosis
 - Pulse rate \rightarrow acute problems
 - Heat Rate Variability (HRV) \rightarrow longer-term cardiac assessment
- Electrocardiogram (ECG)
 - Accurate, but...
 - Electrodes must be attached to the skin

Doing it non-invasively

- Premature newborns
- Elderly
- Long-term statistical analyses

Previous works

Color changes in the skin

→ Include head motion information!

Physiology

Newton's Third Law $F_{blood \rightarrow head} = F_{head \rightarrow blood}$

 $\mathsf{F}_{\mathsf{blood} \rightarrow \mathsf{head}}$

Head motions

http://www.allinahealth.org/

Physiology (2)

Eulerian Video Magnification (MIT CSAIL 2012)

Input Video

Method

Whole framework

Method (2)

- Region selection and feature tracking
 - Viola-Jones face detector; remove the eyes
 - Lucas-Kanade tracker; select stable feature points

Method (3)

Temporal filtering

• 5th order butterworth bandpass filter: [0.75, 5] Hz

PCA decomposition

$$m_t = [y_1(t), y_2(t), \cdots, y_N(t)]$$
$$\Sigma_m = \frac{1}{T} \sum_{i=1}^T (m_t - \bar{m})(m_t - \bar{m})^T$$

 $\Sigma_m \Phi_m = \Phi_m \Lambda_m$

$$s_i(t) = \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_T \end{pmatrix} \cdot \phi_i$$

Method (4)

- Signal selection
 - Choose component that is most periodic
 - Analyze frequency content

Method (5)

- Peak detection
 - Largest value in a sample-centered window

Results – Pulse rate

Avg. Pulse (beats per minute)		Number of peaks		
Sub.	ECG	Motion (% error)	ECG	Motion(% error)
1	66.0	66.0(0)	99	98(1.0)
2	54.7	55.3 (1.1)	82	84(2.4)
3	81.3	82.6(1.6)	122	116(4.9)
4	44.7	46.0(2.9)	67	70(4.5)
5	95.3	96.0 (0.7)	143	142(0.7)
6	78.9	78.0(1.1)	92	78(15.2)
7	73.3	71.3(2.7)	110	100(9.1)
8	59.3	58. <mark>6</mark> (1.2)	89	88(1.1)
9	56.7	58.6(3.4)	85	84(1.2)
10	78.7	79. <mark>3</mark> (0.8)	118	117(0.8)
11	84.7	86.6(2.2)	127	121(4.7)
12	63.3	62.6(1.1)	95	95(0)
13	59.3	60.0(1.2)	89	89(0)
14	60.0	61.3(2.2)	90	89(1.1)
15	80.0	81.3(1.6)	120	114(5.0)
16	74.7	74.6(0.1)	112	110(1.8)
17	50.0	49.3(1.4)	75	76(1.3)
18	77.1	78.8(2.2)	90	85(5.6)
		V		

Results – Beat length

Sub.	ECG	Motion	KS-Test
	$\mu(\sigma)$	$\mu(\sigma)$	<i>p</i> -value
1	0.91(0.06)	0.90(0.06)	0.89
2	1.08(0.08)	1.06(0.11)	0.52
3	0.73(0.04)	0.73(0.08)	0.05
4	1.34(0.19)	1.28(0.18)	0.14
5	0.62(0.03)	0.63(0.07)	< 0.01
6	0.76(0.04)	0.76(0.04)	0.64
7	0.81(0.05)	0.81(0.06)	0.85
8	1.01(0.04)	1.02(0.09)	0.16
9	1.04(0.07)	1.04(0.11)	0.27
10	0.75(0.04)	0.75(0.04)	0.75
11	0.70(0.06)	0.70(0.08)	0.30
12	0.94(0.08)	0.94(0.09)	0.85
13	0.99(0.04)	0.98(0.12)	< 0.01
14	0.99(0.11)	0.98(0.12)	0.47
15	0.74(0.05)	0.75(0.06)	0.95
16	0.80(0.05)	0.80(0.06)	0.60
17	1.18(0.08)	1.18(0.11)	0.70
18	0.76(0.05)	0.76(0.06)	0.24

Results – Applications

Newborn monitoring

Results – Applications (2)

Hidden faces

• No need for the skin to be visible (unlike color-based approaches)

Discussion

- Accurate pulse and beat rate measurements
- Limitations
 - Only healthy individuals tested
 - Camera's sampling rate (<< ECG) and acquisition time
 - Pulse variability from the aorta to the head
 - Lighting conditions
- Possible future improvements
 - Filtering to account for macroscopic head movements
 - Other motion-derived cardiac metrics?
 - Combine motion and color information

Thank you!

http://newsoffice.mit.edu/2013/seeing-the-human-pulse-0620

Extra slides – Viola Jones

- Haar-like features
 - Integral image

AdaBoost (feature selection)

Cascade of classifiers (focus on positive windows)

Extra slides – Lucas-Kanade

Optical flow equation (brightness constancy assumption)

$$I_x(x,y) \cdot u + I_y(x,y) \cdot v = -I_t(x,y)$$

• One equation, two unknowns (*aperture problem*)

- Use pixel neighborhood (assume displacement is the same)
- Least-squares minimization