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Abstract

We propose a new approach to deal with the first and
second order statistics of a set of images. These statis-
tics take into account the images characteristic deforma-
tions and their variations in intensity. The central algorithm
is based on non-supervised diffeomorphic image matching
(without landmarks or human intervention). As they con-
vey the notion of the mean shape and colors of an object
and the one of its common variations, such statistics of sets
of images may be relevant in the context of object recogni-
tion, both in the segmentation of any of its representations
and in the classification of them. The proposed approach
has been tested on a small database of face images to com-
pute a mean face and second order statistics. The results
are very encouraging since, wheras the algorithm does not
need any human intervention and is not specific to face im-
age databases, the mean image looks like a real face and
the characteristic modes of variation (deformation and in-
tensity changes) are sensible.

1. Introduction

How to find or recognize an object in an image? This is
one of the most outstanding open problems in computer vi-
sion. Its solution will require a better understanding of the
various possible visual aspects of a given object or a class
of objects. For example, in the case of faces the descrip-
tion should include variations due to viewpoint, illumina-
tion, expression (happiness, surprise, . . . ), or the identity of
the person. Like [3, 4] we think that statistics on images
are necessary in order to tackle this problem. What we pro-
pose in this article is in a sense an extension to the set of
images of an object of the work done on the statistics of 2D
or 3D shapes [7, 1, 6]: by computing, from a set of images

of a class of objects, the various ways these images can be
warped onto one another we define and compute a mean im-
age for that class and its second order statistics. Note that
unlike previous approaches, e.g., [4] our approach does not
require any manual intervention to identify landmarks or re-
gions of interest. We work directly on the deformation fields
which establish the correspondences between the whole im-
ages, since these fields are the fundamental elements of the
problem. In order to do this we build upon previous work on
non-supervised algorithms that build such correspondence
fields between images, e.g., [7, 8, 5, 2]

In Section 2 we model the matching problem between
two images and describe a variation of a matching algo-
rithm proposed in [5] and analyzed in [2]. In Section 3 we
use it to define and compute the mean image of a set of im-
ages and in Section 4 to define and compute its second order
statistics.

2. Image matching

The main difficulty when defining the mean of several
images is that this mean is supposed to look like each one
of the images. This implies that the images have been reg-
istered and supposes the knowledge of a way to estimate
the similarity of any couple of images. This is why we first
consider the matching problem between only two images.

2.1. Basic framework

Let A and B be two images. We think of them as posi-
tive real functions functions defined in a rectangular subset
Ω of the plane R

2. We search for a deformation field f from
Ω to Ω such that the warped image A◦f resembles B. More
precisely, we would like the field f to be smooth enough and
invertible, i.e. it should be a diffeomorphism from the rect-
angular subset Ω to itself, which leads us to assume that the
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diffeomorphism f equals the identity on the image boundary
∂Ω. Other possibilities are offered by extending the images
to a larger subset Ω1.

In order to keep f continuous, we have to consider a reg-
ularizing term R(f) on f , for example

R(f) = ‖f − Id‖H1

Ω

where Id is the identity function on Ω and the H1-norm is,
for any field from Ω to R

2,

‖a‖H1

Ω =
∫

x∈Ω

‖a(x)‖2 + ‖Da(x)‖2 dx.

If we prefer to be sure f is a diffeomoprhism and remains
invertible, we can consider ‖f − Id‖H1

Ω + ‖f−1 − Id‖H1

Ω ,
where f−1 is the inverse of f .

Now we have to choose a criterion C(A,B) which ex-
presses the similarity between the two images A and B. The
simplest one is

C(A,B) = ‖A − B‖L2

Ω =
∫

x∈Ω

(A(x) − B(x))2 dx,

but we prefer the following one, which has the advantage
of being based on intensity variations and consequently the
one of being contrast-invariant.

2.2. Local Cross-Correlation

Given a scale σ, the cross-correlation of two images A
and B at point x is defined by:

CC(A,B, x) =
vAB(x)2

vA(x) vB(x)

where vA(x) is the local spatial variance of A in a gaussian
neighborhood of size σ centered on x, and vAB(x) the local
covariance of A and B on the same neighborhood, i.e. we
define:

g(x, y) = e
‖x−y‖2

2σ2

µ(x) =
∫

y∈Ω

g(x, y) dy

Ā(x) =
1

µ(x)

∫
y∈Ω

A(y) g(x, y) dy

vA(x) = ε +
1

µ(x)

∫
y∈Ω

(A(y) − Ā(x))2 g(x, y) dy

vAB(x) =
1

µ(x)

∫
Ω

(A(y)−Ā(x))(B(y)−B̄(x)) g(x, y) dy

The positive constant ε is added only not to have a null
divider in the expression of CC(A,B, x). Given this, the
local cross-correlation on the whole images are defined by
[5]:

LCC(A,B) =
∫

x∈Ω

CC(A,B, x) dx

2.3. The Image Matching Algorithm

The two-image matching algorithm consists in minimiz-
ing with respect to the deformation field f (initialized to the
identity) through a multi-scale gradient descent the follow-
ing energy (see [2] for details)

E(A,B, f) = LCC(A ◦ f , B) + R(f)

Thus we obtain a field f which establishes the correspon-
dences between the two images A and B.

3. The mean of a set of images

Now that we know how to compute a diffeomorphic
matching between two images, we can try to infer from this
a new algorithm for the computation of the mean of n im-
ages Ai indexed by i ∈ {1, . . . , n}. This is not as easy as
one could guess. We present here three different methods,
from the simplest, naive one, to a less intuitive but far better
one.

3.1. An intuitive algorithm: find the mean

We can first define the mean as the image M which looks
the most like all the warped images, i.e., if we introduce n
diffeomorphisms fi in order to warp each image Ai on the
mean M , we could minimize∑

i

E(Ai ◦ fi,M, fi)

with respect to both M and the fields fi. But how do we
choose the initial image M? Besides, here is the main prob-
lem: we should not minimize the energy E with respect to
an image. Indeed, if we consider the case where n = 2 and
the two images are the same one translated by a few pixels,
the gradient term due to the diffeomorphisms should move
them so as to find the translation, but this is prevented by the
minimization with respect to the mean image M , which, by
averaging the intensities, introduces new contours induced
by those in the two images. Consequently, contours from
both images appear in the image M , and each of the two im-
ages ”sees” its contours appear in M at the same location,
and the diffeomorphisms will not evolve from the identity.

3.2. Another intuitive algorithm

We can then try to substitute in E an expression for M
as a function of the diffeomorphisms and images, thus ef-
fectively eliminating the unknown M , in order not to have
to take the derivative of E with respect to an image. For
example, we can choose

M =
1
n

∑
i

Ai ◦ fi
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Figure 1. The ten face images.

and minimize with respect to the fi the following criterium:

∑
i

E(Ai ◦ fi,
1
n

∑
k

Ak ◦ fk, fi)

We then encounter another problem: we do not take the
derivative of E with respect to an image, but we try to
match for each i the warped image Ai ◦ fi and the mean
1
n

∑
i Ai ◦ fi. As 1

n

∑
i Ai ◦ fi is the sum of the warped

images, it contains in particular all the contours of Ai ◦ fi,
which means that we still have the same problem as before:
the diffeomorphisms are immediatly stuck in a local mini-
mum.

3.3. The final word: eliminating the mean

The problem comes mostly from the fact that we are try-
ing to work directly on the mean of the images, whereas we
should work only with the fields fi, which carry all the in-
formation about the problem. Indeed, the mean M contains
much less information than the diffeomorphisms fi: for ex-
ample the mean of a white disk on a black background and
a black disk on a white background is uniformly grey and

Figure 2. The ten warped images Ai ◦ fi.

Figure 3. The mean of the previous ten faces.

consequently has not a large LCC-correlation with the ini-
tial images. Therefore we should rather deal with pairs of
warped images than with pairs of a warped image and the
mean. The mean then becomes an auxiliary quantity, just
computed at the end when the diffeomorphisms are known.

The algorithm proceeds as follows: initialize all defor-
mation fields fi to the identity, and let them evolve in a mul-
tiscale framework in order to minimize

1
n − 1

∑
i�=j

LCC(Ai ◦ fi, Aj ◦ fj) +
∑

k

R(fk)
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Thus, at the end of the evolution, each Ai ◦ fi is supposed
to look like each of the others, and the mean is naturally
computed as M = 1

n

∑
i Ai ◦ fi. The regularizing term∑

i R(fi) implies that if several sets of fields fi conduct to
approximatively the same energy

∑
i�=j LCC(Ai ◦ fi, Aj ◦

fj) (for example by adding a common diffeomorphism fc
to every field and replacing fi with fi ◦ fc), then the most
intuitive one is chosen (the one of least regularizing cost).
In order to accelerate the process in pratice, we also impose
the condition

∑
i fi = 0 at each time step by substracting

the mean of the fields 1
n

∑
i fi to each of them.

3.4. Example

We have tested this algorithm on a face database from
Yale1. More precisely, we have computed the mean face
out of photographs of ten different people with similar ex-
pressions, approximatively the same illumination and posi-
tion conditions, and the same size (195 * 231 pixels). The
ten image Ai are shown in figure 1, the ten warped images
Ai ◦ fi in figure 2, and their mean in figure 3.

Note the accuracy of the mean: it looks like a real face,
its features are very sharp, not blurred at all (except the
ears), thanks to the simultaneous accurate matching of all
images. If we had used one of the algorithm centered on the
mean image instead of the diffeomorphisms themselves, we
would have obtained a completely blurred image because of
non-corresponding edges of different images (the fields be-
ing stuck in local minima before starting to evolve), not far
better than a bad simple average of every pixel of all initial
images without warping.

The strange white curved line below the eyes of the
mean comes from the reflects of the light into the eighth
man’s glasses, which the algorithm probably confused (and
matched) with the brightness of the top of the ohter cheeks.

This computation took about 10 minutes on a standard
workstation. Note once again the good job done by the dif-
feomorphisms fi, on figure 2, with in mind the fact that there
is no human intervention to help the algorithm find the good
correspondences, that the algorithm is absolutely not spe-
cific to face databases, and that there is no use of any kind
of prior on the images.

4. Second order statistics of a set of images

Now that we are able to compute the mean image of a set
of images, we would like to study its characteristic modes of
variation. Indeed, the knowledge of only the mean may be
not sufficient to have a good idea of the whole set of images.
For example, there may exist some relevant typical kinds of
changes in the shape of the intensity of an object, without

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html

the knowledge of which you may not be able to discuss the
belonging of a new image to the class defined by the set of
images you studied before.

As the information about the shape variations in the set
of images Ai lies in the diffeomorphisms fi, we compute
statistics on these warping fields. The same way, as the
information about the intensity variations (changes of skin
texture, of hair color...) lies in the intensity of the warped
images Ai ◦ fi, since when they are warped their pixels are
corresponding, we also compute statistics on the intensity
of the warped images. Finally, as there could be links be-
tween shape variations and intensity variations, we compute
combined statistics.

4.1. Definition and computation of shape variations

The deformation fields are functions from a subset Ω of
the plane R

2 to itself, therefore the natural way to express
correlation between two fields a and b is to compute their
scalar product for the usual norm L2(Ω → R

2):

〈a |b 〉L2(Ω→R2) =
1
|Ω|

∫
Ω

a(x) · b(x) dx

Since the mean f̄ of the fields fi is 0 (see above), the
(shape-)correlation matrix SCM defined by

SCMi,j =
〈
fi − f̄

∣∣fj − f̄
〉

L2(Ω→R2)

can be simplified in

SCMi,j = 〈fi |fj 〉L2(Ω→R2) .

Then we diagonalize the correlation matrix SCM ( its
size n × n depends on the number of images, not on the
number of pixels), and extract its eigenvalues σk and nor-
malized eigenvectors vk. We obtain n − 1 modes of de-
formation (one being null because of the linear constraint∑

i fi = 0), and the kth mode mk is given by the coeffi-
cients of vk:

mk =
∑

i

(vk)i fi.

As statistics were made in the linear space L2(R2 →
R

2), we can continuously apply a mode mk to the mean
image M with an amplitude α (∈ R) by computing the im-
age M ◦ (Id + α(mk − Id)), and then produce animations
of the deformations.

4.2. Example

These modes are illustrated in figure 4. Each column
represents a mode, starting from the main one (leftmost col-
umn) to the one with the smallest eigenvalue, which is ac-
tually 0 since one mode is null (rightmost column). Each
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column is divided in five images: in the central image of
each column, we represent the mean we computed before;
in the images just above and underneath the mean, we rep-
resent the mode applied to the mean with amplitude +σk

and σk; and then with amplitude +2σk and −2σk in first
and last image of each column, in order to exaggerate and
better visualize the deformations.

Note that the images on the second and fourth lines still
look like normal faces of various people; it is a very good
point since they are supposed to be characteristic examples
of what shape variations the mean face can undergo without
getting out of the class of face images.

On the contrary, images on the first and last lines are
stranger: even if we still recognize they look human a bit,
we see immediately that there are not real; which is not the
case of the other lines. This is also a very good point, since
these images have been obtained by applying the character-
istic modes two times too far (with amplitude 2σk instead
of σk), which shows that the amplitudes of the deformations
(the values of σk) are right, and shows that a set of images
is well described by its characteristical shape variations.

4.3. Intensity variations

In order to take all the face variations into account, we
should not only consider the shape variations (i.e. the dif-
feomorphisms) but also the intensity variations. As before,
we can define an intensity-correlation matrix ICM on the
intensity variations Ii:

Ii = Ai ◦ fi − M

for the L2(R2 → R) scalar product. Thus, we can com-
pute the principal modes of intensity variations, which cor-
respond to skin or hair changes for a shape-fixed head.

We can also combine shape and intensity variations. If
we note σ2

S = 1
n

∑
i ‖fi‖2 and σ2

I = 1
n

∑
i ‖Ii‖2 the stan-

dard deviations of shapes and intensities, we can define a
combined correlation matrix CCM

CCM =
1
σ2

S

SCM +
1
σ2

I

ICM

and proceed as before, compute and display principal
modes of variations. This matrix can be considered as re-
sulting from a inner product on the set of variations (shape
and intensity): from two elements (fi, Ii) and (fj , Ij) in this
set, we can compute their correlation:

〈fi, Ii |fj , Ij 〉 =
1
σ2

S

〈fi |fj 〉 +
1
σ2

I

〈Ii |Ij 〉

where the two coefficients stand for the relative variability
of each component.

The results are shown on figure 5. Note again how these
faces are realistic and diversified (hair, skin, illumination,

mustache). We can see more various attitude than before,
when we considered only shape variations. This is partly
due to the fact that illumination and shadow carry informa-
tion on the 3D shape (for example, the shape of the cheeks)
which is not directly retrievable from the sharpest edges of
2D images.

5. Summary and Conclusions

We have defined and computed first and second order
statistics of a set of images with a diffeomorphic matching
approach (without landmarks or human intervention). We
have tested this general approach, which is non specific to
any set of images, on a face database, and the results are
very encouraging: the mean face really looks like that of a
real human being, with sharp contours, and the characteris-
tical modes of variations (shape and intensity) are very sen-
sible, which proves the quality of this approach. We insist
on the fact that our methods are not specific to the particular
case of face databases and do not use any prior on the kind
of images. We are in the process of including these relevant
statistics to segmentation and classification algorithms.
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