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AutoML: an Intro



Successes of Machine learning

—— NLP Computer vision

Enter text Translation

Speech recognition

i, how can | help?

TR T YN T

... relies on extensive and manual tuning
of algorithms and their hyperparameters4




M ac h -i ne L earn .i N g e ——————— e —

‘Machine Learning algorithm:
.~ Decision Tree, CNN, SVM, etc

{Xia Yl} S/ RN P(ay)

performance
(or po(y X)) (e.g. accuracy)
\ ,,,,,,,,,,,,,,,,,,,
R c:
Dogs vs Cats _ - sy > > -t[i“TiG'_i"i
dataset - # “cat” o T m
< 4 trained CNN

CIFAR-10 dataset >  another trained CNN (for another A)

Iris dataset >  trained SVM (for another A)

encoded by: hyperparameters 4 € A
hand-crafted by ML experts :




MaChine Learning .............................................................................................................................................

éMachine Learning algorithm:

.~ Decision Tree, CNN, SVM, etc

D P(ay)

performance
(e.g. accuracy)

Dogs vs Cats _
dataset

IN (for another A)
nother A)

encoded by: hyperparameters 4 € A
hand-crafted by ML experts 6




Today’s lecture

Trained
model

AutoML
black box

Answer
y




The AutoML problem: definition

max Z P(a; D,,) where a=pMD,) and p=y(D,)
y Dtr’ Dte
€D,
M reinforcement
learning

learning to learn <_—— two layers of learning

computational efficiency:

P(&; D,,) may involve time I:> should be not only correct
but also fast

initially we may have ®,, = @ |:> BB-F r(:gl: i)épge;eenr;ied

(D, Pr> ay, Py) (D, P, 0, Py) , (Dyy, Py 03, P3) 5 -
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Table 7.1 Supervised learning illustration of the three-level formulation. An algo-
rithm’s level is entirely determined by its type of input and output. For a given task,
finding a good o -level algorithm is the ultimate goal. y-level algorithms exploit data
from all past experience, in the form of a “meta-dataset”, to allow us to select a better
B-level algorithm, which in turn exploits the dataset of a given task to produce an
«-level algorithm by training.

Level | Input Output Examples Encoded by
o- sample or | prediction | heuristically hard- | parameters,
level | example of label | coded classifier | hyper-parameters
(e.g. an | (e.g. ‘dog’| or already trained | if any) and
image) or ‘cat’) classifier meta-parameters
(if any)

B- task/dataset | a-level al- | learning algorithms | hyper-parameters
level | (e.g. gorithm (e.g. SVM, CNN); | and meta-
MNIST, HPO algorithms | parameters
CIFAR- (e.g. grid search | (if any)

10) cross-validation,
SMAC [56],
NAS [124])
Y- meta- B-level al-| meta-learning  algo- | meta-parameters
level | dataset (e.g. | gorithm rithms (e.g.  meta-
OpenML learning part in
[115]) Auto-sklearn  [36]);

algorithms from this
thesis.

Image from L. Sun. Meta-Learning as a Markov Decision Process. Machine Learning, 2019



AutoML: what's exciting”?

* 100% autonomous
* Beat “no free lunch”
* Any time

* Any resource

= Al for everyone

10



AutoML: a trending topic

Google’s AutoML L.‘\_U_UQ_DL AutoML.org

Autol,; | ®

HHHHH
aaaaaaaaa
nnnnnn

eeeeeeeeeeeeeeeee
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

AutoML Workflow

M\ AuTO KERAS Auto-Sklearn
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AutoML methods

with application to Deep Learning



We'll focus on the simplest case

D,.=@ (initially) and D,, = {(D,.D,,)} (single dataset)
:> Hyperparameter Optimization
—— > single fixed training dataset: D,,
—— > we only need to focus on g, € A
Reminder:
max Z P(a;D,,) where & = f(D,) and f = y(D,)
4 Dtr’ Dte
€D,

13




Hyperparameter Optimization: a reformulation

an HPO algorithm aims to solve: max P(a; D,,) where a = p,(D,,)
AEA

unknown test score: P(a;D,,) —— > use an estimation (e.g. CV): P(1)

so usually the problem becomes

N black-box optimization
max P(1) P
AEA expensive to compute

— > surrogate model

h
where (not discussed)

P:-A>R
) s = PO) & P(BD,), D,,)

is an estimation of the test score

Remark: some approaches optimize ~ bi-level optimization
2 and @ at the same time (ex. DARTS H. Liu et al., 2018)
14



p,, 4 € A encodes an architecture A

archlte%ure
Search Space _—— | Performance
P > Search Strategy Estimation
A S~ Strategy
performance

estimate of A

Image adapted from: Automated Machine Learning - Methods, Systems, Challenges, Frank Hutter et. al, (2018) Springer.

3 ingredients in HPO (NAS):
« Search space

e Search strategy

e Performance estimation strategy

15



Search Space (for DL)

:B/b /1 & A architecture, optimizer, regularization, etc

chain-structured
(feed-forward)

A=Ln°Ln—1°"'°LO

in _ 71out
Li — Li—l

Different layer types are visualized by different colors.

output

output

multi-branch

Liin — gz(

Automated Machine Learning - Methods, Systems, Challenges, Frank Hutter et. al, (2018) Springer.

L0ut

-1

L2
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Search Space (for DL)

observation: some approaches only use some

building blocks (sub-modules): ResNes, Inception, ...

Normal Cell Reduction Cell

"NASNet search space” only uses two building blocks

Zoph B, Vasudevan V, Shlens J, Le QV. Learning Transferable Architectures for Scalable Image Recognition. CVPR2018
17
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Search Strategy

o

Model-Free Model-Based

| Bayesian
‘ Grid Search ‘ Optimization
Experiential I I_‘ Random Evolut%onary
Search Algorithms
Response Design Reinforcement

Surface of Learning

Methods Experiments
Other

Methods

18



Grid Search (exhaustive search)

A=A, x A, with A, = {1,2,3,4} and A, = {0.001,0.001,0.1,1}
AN “~

# neurons in hidden layer learning rate

Input layer . Hidden layer Output layer

try every possible combination in
A — Al X A2 X1

evaluate it and return argmax in o
the end

curse of dimensionality!

19



Random Search

A=A, x A, with A, = {1,2,3,4} and A, = {0.001,0.001,0.1,1}
AN “~

# neurons in hidden layer learning rate

Input layer . Hidden layer Output layer

Randomly sample certain number
of combinations in

A=A XA,

evaluate it and return argmax in
the end

20



Grid Search and Random Search

two model-free black-box optimization methods

Grid Layout Random Layout

M -

bt et
()

: = °

© || @ o

a S

+ +

- [

K o
o)

: : '

= O o O = o

) ) (@)

Important parameter Important parameter

RS tends to perform better than GS when some HP are more important than others

Random Search provides already a strong HPO baseline (surprisingly...?)

Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization. JMLR. 2012 21



Evolutionary Algorithms

Population-based derivative-free optimization methods

Initialize Population

Y

Done

Evaluation

Y

Selection

Y

Crossover

Y

Mutation

similar to: genetic algorithms, evolutionary
strategies, particle swarm optimization

Optimize w.r.t a population (a
set of points) or a distribution
instead of one single point

Often encode an individual by
“chromosome”

Explore new points by mutation
or crossover

Select individuals by fitness

Just some vocabulary...but the
idea is simple

Easy to parallelize

22



Evolutionary Algorithm: an example

Real E, Moore S, Selle A, et al. Large-Scale Evolution of Image Classifiers. ICML2017

possible mutations:
1000 individuals

o ALTER-LEARNING-RATE
o IDENTITY

pair-wise competition e RESET-WEIGHTS
(select two individuals and kill the weaker one) e INSERT-CONVOLUTION

« REMOVE-CONVOLUTION.
o ALTER-STRIDE

o ALTER-NUMBER-OF-CHANNELS
massively-parallel e FILTER-SIZE

(due to huge computation cost) e INSERT-ONE-TO-ONE

chromosome (DNA): tensor graph « ADD-SKIP
« REMOVE-SKIP

fitness: accuracy on validation dataset

the winner gets to reproduce and
mutate

begins from single layer individuals

23



Evolutionary Algorithm: an example

u T T
94.6 |
91.8 |
85.3 |
<
>
SN—
>
o
S
8 [C+BN+R+BN+R+BN+R+BN+R|
g
7]
]
-— BN + R
22.6 = § —
< ; .n:.

0.9 28.1 70.2 wall time (hours) 256.2

Real E, Moore S, Selle A, et al. Large-Scale Evolution of Image Classifiers. ICML2017
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Bayesian Optimization

max P(1) WithP:A >R
AEA As
Original idea:
4 and s = P(1) follow
prior distributions p(4), p(s|A)
we choose next point to evaluate

by maximizing an acquisition
function (active learning-like)

we gain more information and
update p(1) and p(s|A) (or p(s, 1))

repeat until convergence

Automated Machine Learning - Methods, Systems, Challenges, Frank Hutter et. al, (2018) Springer.

e ————

- ~~

-
-
-
-
-
-
-

o=

observation
acquisition max

Iteration 3

objective function

acquisition function

Iteration 4

_______
——————
- ~

posterior mean

posterior uncertainty

25




Bayesian Optimization (cont'd)

max P(1) WithP:A >R

_______
s =~
-
-
——’—
-
-
o=

AEA A s e
usual acquisition function: T
Expected Improvement (El)
A Iteration 3
aEI(ﬂ | Dn) = [E[maX(P(ﬂ) —_ Smax’o)] objective function\

usual prior model:
Gaussian Process (GP)

acquisition function

but state-of-the-art tends to Iteration 4
use tree-based classifier such [ st
as Random Forest to model

posterior mean

p(/i) (Or p(S | /1) ) posterior uncertainty

(thus not so Bayesian anymore...),
see Auto-sklearn

Automated Machine Learning - Methods, Systems, Challenges, Frank Hutter et. al, (2018) Springer. 26



Bayesian Optimization: an example
Swersky K, Snoek J, Ada;s RP. Freeze-Thaw Bayesian Optimization. 2014

Intuition:

Maintains a set of “frozen” (partially completed but not being actively trained)
models and uses an information-theoretic criterion to determine which ones to
“thaw” and continue training

Use Bayesian Optimization for:
- learning curve prediction —> offers quick evaluations
- HP space modeling

J

(b) Training curve predictions (c) Asymptotic GP
P(fi+1|D1:t) p(fnew|D1:ta xnew)

use notation f: x — yinstead of P: A — s 27




Reinforcement Learning

A reminder:

'_l Agent I
state reward action
S, R, A,
§< Rz+1 d
<] Environment ]<
State space: S Transition model: 2%, = p(s’|s,a) : S X A xS = [0,1]

Action space: A Reward: #¢,: SXAXS— R

Goal: Learn a policy: z(s,a) = p(a|s): Sx A — [0,1]

T
E, Z y'r,
=1

with T € [0, + o],y € [0,1] and sy, ay, 1, S1, Ay T2y Sps Qs - -

that maximizes the (discounted) expected return

. the agent’s trajectory

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018. 28




Reinforcement Learning: an example
Zoph B, Le QV. Neural Architecture Search with Reinforcement Learning. ICLR 2017

Sample architecture A
with probability p

The controller (RNN)

l

'

Trains a child network
with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller

Objective: J(0:) = Epay.r:0.) 1]

REINCFORCE rule: s, J(0

an estimation:

T
c) = ZEP((”:T;H(.) [ V. log P(at|@(t—1);119(:)R]
t=1

m T

1
m Z Z Vo, log P(ag|ag_1).1:0c) Re

k=1t=1 29



sSummary

Method

Grid Search

Random Search
Bayesian
Optimization

Evolutionary
Algorithms

Reinforcement
Learning

Differentiable
Methods

Type

model-free

model-free

sequential-based

population-based

mixed/can be
very general

gradient-based

How to take next
action

loop over all choices
(Cartesian product)

totally random

maximizes acquisition
function

each individual
randomly mutates

according to learned
policy

follow (negative)
gradient

Update/Learn

take max

take max

update surrogate
model

eliminate the weakest
(with least fitness)

policy gradient method

gradient descent

There is learning in EVERY method
Is there exploration-exploitation trade-off in each method?

How do we do benchmarking and fairly evaluate these methods?
—— > AutoDL challenge!!!



Some other AutoML methods

Transfer Learning
Meta-learning

Ensemble methods
(competition winners)

embedded methods*: bi-level optimization methods
(related to transfer learning)

filter methods*: narrowing down the model space,

without training the learning machine
(related to meta-learning)

* Guyon I, Bennett K, Cawley G, et al. Design of the 2015 ChaLearn AutoML challenge. I/JCNN 2015
31



From one to multiple datasets: meta-learning

Given:
» Algorithms j =1,....m

» PAST datasetsi=1,....n—1
» a NEW dataset n

Meta-dataset: S where S(i, j) = score of algo. j applied on dataset .

Find
argmax,;_—y . m S(n? ])

l.e. We want to learn some transferable knowledge across datasets (a meta-learning
model y), to solve a new dataset better and faster.

* Sun-Hosoya. Meta-learning as a Markov decision process. 2019

32



Meta-Learning: 1st trial with Auto-sklearn

Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F. Efficient and Robust Automated Machine Learning. 2015

Intuition:
Warm start the BO with meta-learning techniques, ensemble the top models.

AutoML)
system

—— Bayesian optimizer ¢—

data pre- ’ ‘ feature :
[ processor preprocessor

ML framework

{X train Y'train ]
Xtest ] bs c}

—_— o = Ytest

"

Figure 1: Our improved approach to AutoML. We add two components to Bayesian hyperparameter optimization
of an ML framework: meta-learning for initializing the Bayesian optimizer and automated ensemble construction
from configurations evaluated during optimization.

Meta-learning [Brazdil et al., 2009]:
- characterize the dataset using meta-features,
- Initialize BP with config. That performed well on old similar dataset

BO subroutine: SMAC [Hutter et al. 2011]:

- Random Forest prior

- Expected improvement acquisition

- 1 fold quick evaluation 33



Meta-Learning: example 2
Model-Agnostic Meta-Learning [Finn et al. 2017]

» Assumption: a single learning algorithm (NN)
» Setting: Given a distribution of datasets noted D; with w; the optimal model
for D;

MAML finds a generally good solution:

w = argmax E sp,(w—aVsp,)
D;

This solution is used as starting point for the new pb.

W

Meta-learning VS,

VS;
................................ Adaptation VSI *
w parameter vector e w2

being meta-learned

® X
| W 1 W 3
w * optimal parameter vector
7 fortask| 3



AutoML challenges



The AutoML challenge (Guyon et al., 2015-2016)

medical | speech marketing

Task variabilities:
- classification / regression
- various scoring functions
- various time budget
- efc.
Goal: Find a process to identify the best f, for each task

[1]: Design of the 2015 ChalLearn AutoML challenge, Guyon et al., 2015
[2]: Lessons learned from the AutoML challenge, Sun-Hosoya, Guyon and Sebag, 2018

36



After the AutoML challenge series

http://automl.chalearn.orqg/

% AutoML

of
) eS"‘ma‘
'Vi\\'\ea(
asA

Vavigation HO e \!
Home ep\acem
How to cite us? 09'“‘ <
Winning Software Qo 2 d‘
Data S ol (\ VA 2
Platform a( (“\(\% .\—3551

EVENTS \A\e “\“e\ea a((\(. ~_~=stitoML on temporal
Competition~~ /S “\’AC J0% c_,\k‘\-e _ondl data [Competition]

X'O aed 3c@%> ko .
Worksho, a\) u‘_o(“ 53_“ 3 300+ U —
Workshop, y 2 c\_aﬁ < .}Ca‘\. peoming Spring 2019
Workshop@ oiea™ e2™ (as5> ; O AutoDL challenge [SIGN UP]
Workshop@l  4utO” 0% . A0 S
Cumpetjt'i’uns(t o oY a““OS\(\'ea(“ N t(a-): C‘\\I\/“e December 7, 2019
Y . 3 - P B

Workshop@IC) >7 3““‘) = a\){\/\ tfa“\ ‘\_S Qfedl Competition Workshop at NeurlPS 2019
GPUtrack@ICMy N W= 2 5 :
prasetAl e a7 WOTKShOP mmew: we August 28, 2018

ki B > C o %a We had a workshop at PRICAI 2018.
Bootcamp@Stanfor \ »7 (e 3 _ad€s below]
MLIschool@Petersby 77 \Y a¥; Becember 12, 2015 July 14-15 2018:
Hackathon@ICML20\ _ardis des Congres de Montréal We had a nice workshop at ICML 2018.
Workshop@ICML2015 Convention and Exhibition Center
Hackathon@ESPCI2013 Room 512 € [Floor map] March 2018:
Workshop@ICML2014 Our next competition on Life Long ML is
BeatAutoSKLearn (v1) Morning session (9:00 am-12:00 pm) accepted to NIPS 2018,
AutoSKLearn worksheet 9:00 - Welcome and introduction. Evelyne Viegas [slides]

LINKS 9:10 - Invited talk, Challenges in Medical Image Analysis: Comparison, June 21, 2016: Microsoft published a BLOG
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AutoDL

https://autodl.chalearn.org/

MumberofEpochs
ConvolutionKernellwidth
Optimiser

Regularization

BatchMMaormalizatiaon

ActivationFunctiaon

eightDecay
Metworkbeightinitializatiaon

DropgutlfliiniBEatchSize

=
=
3
o
n
ﬁ
0
m
I3
Q0
Q
n
J
C
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pry
n

umberofHiddenLayers
LearmingRate
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O
’ D)
e o

Q
®
N
O

A
P
N
O
N
O

e IMAGE
e VIDEO
e SPEECH
l o TEXT
e TABULAR
LA e Multi-label tasks
Liu Z, Xu Z, Rajaa S, Madadi M. Towards
Automated Deep Learning: Analysis of the

AutoDL challenge series 2019. To appear in
NeurIPSCD2019 in Proceedings of Machine
Learning Research (PMLR) 2019:10.

(1) Raw data from 5 modalities: Image, Video, Speech, Text,

(2) Fixed time budget. Any-time learning (ALC metric). Blind testing.
(3) Starting kit, sample “public” data and baselines provided.

(4) Fixed computational resources.

(5) Using Deep Learning was NOT imposed. “



Neural architectures used in the winning approaches

Base predictor / architecture

10 responsas

RosNat )

Incegisen|- 0 (0%)

(
Natve CNN, BERT 1 (10%)
(

EfcientNot ) 1 (10% )

Architecture name

ResNet-18, ResNet-9 (He et al

2015)

MC3 (Du Tran et al CVPR 2018)

EfficientNet-(b0, b1, b2)
(M. Tan and Q. Le. 2019)

MobileNetV2 (V. Sandler et al
2019)

TextCNN

Fast RCNN (Ross Girshick)

LSTM, BiLSTM (Hochreiter
Schmidhuber 1997)

GRU, BiGRU, (Kyunghyun Cho et

al 2014) GRU with Attention

BERT-like (Tiny-BERT(X.Jiao

etal))

DNN

# Parameters

11.4M, 5.7M

32.8M

5.3M, 7.8M,
9.2M
3.4M

variable

0.2M-1M

0.1M-1M

<110M

<1M

Domains

image, video

video

image, video

image, video

text

text

text, speech

text, speech

text

tabular

Teams

Kakaobrain,
DeepWisdom,
automl_freiburg

DeepWisdom

DeepWisdom,
automl_freiburg

team_zhaw, DeepBlueAl
Upwind_flys,
DeepWisdom
DeepWisdom
frozenmad, PASA_NJU
DeepBlueAl,
DeepWisdom

frozenmad, upwind_flys

DeepWisdom

40



AutoML technigues vs domains

Approach

image

video

speech

text

tabular

Meta-learning

meta-data. (DeepWisdom)

augmenta
(PASANJU), fast
autoaugment
(DeepBlueAl)

frames and adaptive
image size (DeepBlueAl)
Adaptive image size

STFT '

Offline meta-training transferred with AutoFolio [25] based on meta-features (automl freiburg)
Offline meta-training generating solution agents, searching for optimal sub-operators in predefined sub-spaces, based on dataset

with stemmer,
meaningless words
filtering (DeepBlueAl)

| MAML-like method [17] (feam zhawz
reprocessing image crogglr?g and data |>ub-sampling keeping MECC, Mel spectrogram, [Toot 1eatures extractions . numericar ana

Categorical data detection
and encoding

Iransier learning

Pre-trained on imagenet |
;%8] )(aII teams except
on

[28] (all top-8 teams
except Kon) MC3 model
pretrained on Kinetics

Offline with BOHB [26] (Bayesian Optimization and Multi-armed Bandit) (automl freiburg) Sequential Baysien Optimization
(H)y;tqerpagtameter Model-Based Optin[1izz]at(|on¥or Generr)al Algorithm Configuration (SMAC; Eautoml freiburg; a PXSANJLB HyperOpt
pumization 27] (Inspur AutoDL)

Pre-trainea on mage Net ninResnetas pre-fralned

on VoxCeleb2
(DeepWisdom)

FastText pre-trained on
Common Crawl

frames (DeepBlueA)

CNN+GRU (DeepBlueA)

(DeepWisdom) (frozenmad)
Ensemble Adaptive Ensemble Ensemble Selection [29] [last best predictions Weighted Ensemble over [LightGBM ensemble with
| : Learning (ensemble latest [(top 5 validation ensemble strategy | |20 best models [29] bagging method [30]
earning 2 to 5 predictions) predictions are fused) DeepWisdom) averaging |(DeepWisdom) (DéepBlueAl), Stacking
(DeepBlueAl) (DeepBlueAl); Ensemble [5 best overall and best o and blending
models sampﬁng 3, 10, 12|each model: LR, CNN (DeepWisdom)




Teams vs domains

Speecn

Text

tapular

176

on VoxCele

~_[fewshotlearning T [LR,
ThinRestnet34 modelg]zapretralned

RCNN, GRU, GRU with At

[fewshot Tearning] [task difficul
and similarity evaluation for mo

selection] [SVM,
TextCNN,[fewshot learnin

glel

tengﬂon]

é , Xgboost,
atboost, DNN models]

[no pretrained]

[iterative data loader (7, 28, 66,
90%)] [MFCC and Mel
Spectrc')\?ram pre rocessmq] LR,

CNN, CNN+GRU models

data truncation(2.5s to

[Samples truncation and
meaningless words filterin
[Fasttext, TextCNN, BiGR

models] [Ensemble with restrictive

linear model]

éS ~ models]
[Ensemble with Bagging]

22. ,3?1][LSTMI, VggVox ResNet
with pretrained weights of
DeepWis- dom(AutoSpeech2019)

ThinRestnet347]

[data truncation(300 to 1600

words)][TF-IDF and word
embedding]

N[lteratlve data Ioadmg*
[Non Neural Nets models]
[models complexity

increasing over time]
[Ba%smn Optimization of
yperparameters]

Team image VIdeo
DeepWisdom |4ResNet-18 and [MC3 model] [pretrained
esNet-9 models] on Kinelics]
[pretrained on
ImageNet]
DeepBIlueAl [[data augmentation with [fsubsam ling keepin
Fast AutoAugment rames] [Fusion of 2 best
[ResNet-18 model models ]
PASANJU ResNet-18 and ResNet-18 and
SeResnext50; SeResnext50;
preprocessing: shape | preprocessing: shape
standardization and standardization and
image flip agiata image flip Sdata
augmentation) augmentation)
frozenmad [llmages resized under | _[Successive frames
28x128] [progressive |difference as input of the
data loading increasin model] lpret,ralned
over time and epochs ResNet-18 with RNN
[ResNet-18 model] models]
[pretrained on
ImageNet]

{progresswe data Joading in 3
steps 0.01, 0.4, 0.7] [time length
adjustment with repeating and
clipping] [STFT and Mel
Spectrogram ereprocessm ] [LR,
LightGBM, VggVox models]

tokenizer%]’\gﬁ

[TF-IDF and BERT

, tinyBERT ]

VM, RandomForest

progressive data |Oadll’]ﬁ]
no preprocessing] [Vanilla
ecision Tree, .
RandomForest, Gradient
Boosting models a?plled
sequentially over time]




Lessons learned from the AutoDL challenge

(1)
(2)
(3)
(4)

The winning methods are capable of generalizing on new unseen
datasets => Potential universal AutoML solutions

Domain-dependent approaches are dominant
=> No universal workflows, mostly hand-tuned meta-learning

We cannot afford to run expensive NAS for every new task
=> Need transferability of learned architectures

Beating Baseline 3 by using “true” meta-learning is hard
=> Need more meta-train datasets (public datasets)
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MetaDL challenge

Input Output Comp. Ex.
. X y

Hodc naeam, CTECIETBE g GodeJam
a classifier '+ (eg-animage) LeetCode
Beta level: T a (Auto)ML
fit() in sklearn, ML task alpha-levelalgo  challenges
a learning algo. (dataset) & AutoDL
Gamma level: D p . MetaDL .
meta_fit() on a Meta-dataset beta-level algo | "

meta-dataset J ;

Check and stay tuned https://metalearning.chalearn.org/
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Conclusion



Take-home messages

AutoML problem can be formulated in 3 levels:
a—p<y

Domain specific AutoML solution generalizes

Hand-crafted gamma-level learning
=> Cross-domain meta-learning yet to be studied

Any-time learning aspect to be studied further



Stay tuned! autodi.chalearn.org

}ﬁ AutoDL challenges Home  AutoGraph  AutoSpeech 2020 Benchmark NeurlPS 2019 AutoDL  AutoSeries AutoWeakly AutoSpeech 2019

Overview Winner Code Data Self-service Cite us Sign up

=g Google 4Paradigm |
Sign up
AUtO D I_ C ha | |en g eS You will be notified of our new challenges

* Required

Following the success of AutoDL 2019-2020 (which was
part of the competition selection of NeurlPS 2019, see our
workshop page), we are continuing to organize a series of

challenges. Email *
® Coming soon KDD 2020 will be held in San Diego, CA, USA Your answer
fommn Aiimiiasr NN 4. N7 felalelal Tha Accdaaala MNeaolL
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