

GraphNNs Practice

Installation Instructions

FOR ALL:
 source /opt/anaconda/bin/activate root
 conda deactivate

CPU/GPU (for cuda 10; adapt the command to your own config):
 conda create -n graphnn_gpu_env python=3.8 anaconda -y && \
 conda activate graphnn_gpu_env && \
 conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y && \
 conda install -c dglteam dgl-cuda10.2 -y

CPU ONLY (should work in all cases):
 conda create -n graphnn_cpu_env python=3.8 anaconda -y && \
 conda activate graphnn_cpu_env && \
 conda install -c pytorch pytorch-cpu -y && \
 conda install -c dglteam dgl -y

Description of the dataset

20 graphs for training, 2 graphs for test
2372 nodes on average per graph

Each node has 50 features and 121 labels

https://cs.stanford.edu/~jure/pubs/pathways-psb18.pdf

https://cs.stanford.edu/~jure/pubs/pathways-psb18.pdf

The task

- Take the code that has been provided and improve it
 (most improvements will come from the architecture)
 (using a Graph Attention Network is highly recommended)
 → This counts for 8/20 points

- Produce a diagram of the architecture that you’re using
 (shape information must be included) and explaining the
 difference between :
 * similarity attention (defined in https://arxiv.org/abs/1706.03762 (Vaswani et
al.))
 * utility attention (defined in https://arxiv.org/abs/1710.10903 (Veličković et
al.))
 Equations and brief mechanism explanation are expected !
 → This counts for 12/20 points

F1 Score

Epochs

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903

The task

- In summary, you have 4 files to produce:
 → the modified code (train_ppi.py)
 → the weights of the model (model_state.pth)
 → the diagram of the model (an image) with a summary about difference
 between utility and similarity attention

- Do not change the signature the of the train() and test() functions!

Make sure your submission correctly runs within your conda environnement with:
python3 train_ppi.py --mode test

Diagram (perfectible) examples

Multi-head attention
(shape information is missing)

ResNeXt
(a good legend is missing)

Important Hints

Use a Graph Attention Network (Veličković et al.):
https://arxiv.org/abs/1710.10903

Use the examples from the DGL dependency:
https://github.com/dmlc/dgl

https://www.dgl.ai/

Use inspiration from pytorch geometric (but don’t use it directly):
https://github.com/rusty1s/pytorch_geometric

https://arxiv.org/abs/1710.10903
https://github.com/dmlc/dgl
https://www.dgl.ai/
https://github.com/rusty1s/pytorch_geometric

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8

