
Rössler attractor
continuous deterministic chaos

Rössler system

system state

parameters

Bifurcation diagram

References
Rössler, Otto E. "An equation for continuous chaos." Physics Letters A 57.5 (1976):
397-398.

This is the original paper. The Rossler attractor can be seen as a Lorenz attractor with one
lobe. Differently from Lorenz, in Rossler there is just one non-linearity.

Letellier, Christophe, and Valérie Messager. "Influences on Otto E. Rössler's earliest
paper on chaos." International Journal of Bifurcation and Chaos 20.11 (2010):
3585-3616.

Historical overview on the Rossler system and its main influence in physics.

Delage, Olivier, and Alain Bourdier. "Selection of Optimal Embedding Parameters
Applied to Short and Noisy Time Series from Rössler System." Journal of Modern
Physics 8.09 (2017): 1607.

All you need to smartly succeed in this TP.

Observability
Jacobian

State

measure matrix

measure

The system is observable in X if

for Rossler m = 3 and r = 1
observing one coordinate

Observability in Rossler

Observability in Rossler

● Generate the data (time series) with a = b = 0.2, c = 5.7
● Learn the discrete or continuous dynamical system from the time series

● 70% of the note: recover statistics
○ PDF
○ Time Correlations
○ Spectral density
○ ...

● 30% of the note: recover dynamics
○ Equilibrium point (at least one)
○ Lyapunov exponents (the largest one)

These analysis are enough to
reach the 70% of the note but
more analyses can make the

difference!

Differences:

Discrete Continuous

Jacobian

Linearized system

Dynamical system

Note that:

Equilibrium state

Constraints

If you use temporal embedding or architectures with memory: you can use just
ONE coordinate (y of course!)

memory in RNN

Without temporal embedding, discrete or continuous systems: use the whole state

One approach is enough

Be smart

To find the equilibrium point and to evaluate the Lyapunov exponent, the Jacobian
has to be computed. Introduce a penalization onto the sensibility of your model wrt
the inputs!

Attention: with a RNN the total Jacobian needs to be computed!
Appendix D in: “Backpropagation Algorithms and Reservoir Computing in Recurrent Neural
Networks for the Forecasting of Complex Spatiotemporal Dynamics”

There is not a unique way to
proceed! If you use a purely

data driven approach (without
explicitly introducing the true
Jacobian in the loss function)

will be appreciated.

Be Zen 1/2

Before start take some time to study the problem, read the papers. Take care to
re-formulate the problem according to your choice. For instance, given
the equilibrium point, if you choose:

1) temporal embedding
the new equilibrium point is

2) derivative embedding
the new equilibrium point is

With temporal embedding the Lyapunov exponent might change but still positive.
The reconstructed phase space is a diffeomorphism wrt the original phase space
(Takens’s theorem): one-to-one mapping between original and reconstructed phase
space but the geometry might change!

Be Zen 2/2

Try to recover a pure data driven model. If you choose to recover a continuous
system, time derivatives can be evaluated from the observed trajectory through
finite differentiation.

Another possibility is to use ODE Net which solves the variational problem under
continuous-in-time constraint [Chen, Ricky TQ, et al. "Neural ordinary differential equations."
arXiv:1806.07366 (2018)]. ODE Net available at: https://github.com/rtqichen/torchdiffeq

The Jacobian can be computed through automatic differentiation librairies.
Straightforward to use in Tensorflow or PyTorch. If you don’t want to use automatic
differentiation to recover the Jacobian, finite differentiation can do the job.

GOOGLE IS YOUR FRIEND

Deliver

1. small report (~4 pages max, 5 figures max)
a. Justify the loss function
b. Justify the regularization (if any)
c. Justify the analysis you carried out to validate the model

2. codes to reproduce the pictures in your report (+ trained NN)
3. code to generate a new time series with your trained model, please complete

the script time_series.py. I will choose a new initial condition with the SHELL
command:

 $ python time_series.py --init a b c

where a b c are float numbers used as initial condition. Please follow the
comment in the script without change the output file shape/name.

Appendix

Lyapunov exponent:

where

Appendix

Initial guess with unitary energy

w = np.eye(n)

Lyapunov exponent:

where

Appendix

Initial guess with unitary energy

w = np.eye(n)

Evolution of the initial guess following the tangent trajectory

w_next = np.dot(expm(jacob * delta_t),w)

Lyapunov exponent:

where

Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Lyapunov exponent:

where

Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Lyapunov exponent:

where

Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Store the amplification factors

rs.append(r_next)

Lyapunov exponent:

where

Appendix

Evaluate the mean amplification

mean(rs)

mean(log(rs))/t

Lyapunov exponent:

where

Personal considerations

Training a RNN for a discrete system using just y coordinate is fast and safe. On the other
hand recover the Jacobian is not straightforward.

Training a Neural Network to emulate the discrete Rossler system without temporal
embedding is fast but you need to accurately design the loss function and the penalization.
Recover the Jacobian is easy with automatic differentiation.

Training a Neural Network to recover the continuous Rossler system is hard. Exponentially
more complicated (), an error on A￼ is amplified in the solution propagation by
￼J. Moreover in the continuous space, cross trajectories are not allowed. BUT, if you are
able to got it, the Jacobian is for free and almost exact.

