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Deep learning for Physics

See how (deep) learning can leverage Physics/applications bottlenecks (online
computational time and memory, modeling capability (super regression), etc.).

But also how Physics can help learning (bounds, first principles, speed-up learning,
etc.).
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A minimally complex system model
Illustration on Lorenz ’63 attractor as a proxy good enough for its features.

Simplified mathematical model for atmospheric convection:

ẋ = σ(y − x), convection rate,

ẏ = x(ρ− z)− y , horizontal temperature variations,

ż = xy − βz vertical temperature variations.

Becomes chaotic for ρ > σ (σ + β + 3) / (σ − β − 1) .
Typically: σ = 10 (Prandtl number), β = 8/3, ρ = 28 (Rayleigh number). Most
“esthetic” values among the ones leading to chaos . . .
System of nonlinear deterministic ODEs.

One wants to learn to predict from observations:

u̇ = F (u) or ut+∆t = F ∆t (ut ).
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Quality of the Information

Get to know your “opponent”!

How much information is necessary to describe the system/dynamics? How big should
the training set be? How to design it?

Different definitions of dimension
The geometry of chaotic attractors can be complex and difficult to describe.
What is the dimension of the attractor of Lorenz’63? In other words, what is the
intrinsic dimension of its data manifold?

It is therefore useful to have quantitative characterizations of such geometrical objects.

Topological dimension −→ integer,

Metric dimension −→ fractional.

Minimum number of independent dynamic variables to define the state of the system
(nb degrees of liberty).
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Many definitions of dimensions
Box Counting Dimension
If the attractor exists in a d-dimensional phase space (d is necessarily an integer).
Let N(ε) be the number of d-dimensional cubes of edge length ε from the grid that
are needed to cover the attractor. Then

N ∝ 1/εd , ⇒ d0 = lim
ε→0+

log N(ε)

log 1/ε
.

Rényi dimension
Also called the ‘generalized dimension’, takes into account the frequency with
which cubes are visited via weighting them according to their natural measure µ,
defined as the fraction of the time that the long orbit on the attractor spends in any
given ε-region Cj of state space.
Accounts for time spent in cubes.

dq = lim
ε→0+

1
1− q

log
(
Σj (µ(Cj ))q)
log(1/ε)

.

Special cases: d0: ‘box counting’ or ‘capacity dimension’, d1 is ‘information
dimension’, d2 has been called the ‘correlation dimension’.
d2 ≤ d1 ≤ d0.
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Dimension d2

d2 has a nice numerical algorithm for its computation (Grassberger & Procaccia) as the
slope of the following function when ε→ 0: [Also a convenient algo (faster, less noisy
with few points)]:

d2 = lim
ε→0+

log
(
1/N2Σi 6=jH (ε− ‖xi − xj‖)

)
log ε

with H the Heaviside function.

Numerator is ratio of samples such that their distances is < ε.

Figure: Illustration of the estimation of the d2 dimension by varying the threshold ε.
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Kaplan-Yorke dimension
It is defined in terms of the Lyapunov exponents.
Illustrative example in 1-D

un = f (un−1),

εn = f (un−1 + εn−1)− f (un−1),

∣∣∣∣ εn

ε0

∣∣∣∣ =
∏

i

∣∣∣∣ εi

εi−1

∣∣∣∣ =
∏

i

∣∣f ′(u i−1)
∣∣,

εn = exp(λ n) ε0 ⇒ λ = lim
n→∞

1
n

n∑
i

ln
∣∣f ′(u i−1)

∣∣.
This extends to dynamical systems via singular values of the mean Jacobian of the
flow φt : u0 → φt (u0) = ut .
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Kaplan-Yorke dimension

For Lorenz’63: λ = (0.90, 0.00,−14.57)

The ‘Lyapunov dimension’ dL or dKY is given by

dKY = k +
λ1 + λ2 + . . .+ λk

|λk+1|
,

where k is the maximum value of i such that λ1 + . . .+ λi > 0, λ1 ≥ λ2 ≥ . . ..

The Kaplan-Yorke conjecture states that d1 = dKY for ‘typical’ systems, that is, the
information dimension is equal to the Lyapunov dimension.

This relationship is remarkable in that it relates dynamics (Lyapunov exponents) to
attractor geometry and natural measure (d1).
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Hausdorff dimension

Let N(r) be the minimal number of open balls of radius r necessary to cover a compact
metric space X . If, when r → 0, N(r) grows like 1

rd , the space X is said of dimension d .

More precisely, d is the number such that N(r)r s → 0 if s > d , and N(r)r s →∞ if
s < d :

Hs(X ) = lim
r→0

inf
diam(Ai )<r

{
∞∑
i=1

diam(Ai )
s

∣∣∣∣∣X ⊆
∞⋃
i=1

Ai

}
,

dH(X ) = inf
{

s | Hs(X ) = 0
}

= sup
{

s | Hs(X ) =∞
}
.

For Lorenz’63: d2 = 2.05± 0.01, dH = 2.06± 0.01.
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Considerations on the size of the training set
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Ergodic theory
Founding idea is that the long-term statistics of a system are equivalently described in
terms of invariant measure (independent of time), µ.

The Poincaré recurrence theorem guarantees that trajectories exiting a region S ∈ Ω of
non-vanishing measure will return to it infinitely many times.

Let S be an ensemble including a point u0 of the attractor. For an ergodic system, the
mean recurrence time for a given S is proportional to the measure of S:〈

τS(u0)

〉
µS
∝ 1
µ(S)

∼ ε−dA , with S = Bdambient
u0

(ε).

−→ the mean recurrence time then becomes large when ε is small (# accuracy)
and/or dA is large: “Curse of dimensionality”.

−→ If one wants a uniform learning accuracy of order ε (sampling of the natural
measure), the number of samples to be considered is then N ∼ ε−dA .

One could use a less severe bound, e.g., N & (1/ε)d/2 suggested by Eckmann &
Ruelle (1992).

Black-box approach
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Structure-based consideration

If the structure was known, need to identify {σ, β, ρ} only −→N ≥ 3 (noiseless)!

Physics/expertise is in the structure, not the data!

White-box approach
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A grey-box approach

Size of the training set is partially conditioned by the minimum complexity of

the physical system at hand (∼ ε−dA ),

the structure of the retained model (∼ # parameters of the network).

Choosing a model structure considerably restricts (the dimension of) the solution space
and reduces the required size of the training set.
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How to sample? Which observations?
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A numerical experiment
One training set, three different sampling strategies:

1 long trajectory on the attractor, N = 27, 000 points.
9 short trajectories on the attractor, N = 9× 3000.
3*3 short trajectories (N = 3× 3× 3000) initialized around the unstable fixed
points: (0, 0, 0),(
−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1

)
and

(√
β(ρ− 1),

√
β(ρ− 1), ρ− 1

)
.

Perturbations along the three orthogonal directions of the Jacobian.

Figure: Performance of different sampling strategies.

LSTM: ∆t = 0.01,
J =

∑N
n=1

∥∥un − ûn
∥∥2

2,
no noise.

Does not generalize

What happened? Any guess?. . .
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A numerical experiment

Several viewpoints:

The predictability of the system is better close to the equilibrium points (low
entropy, e.g. Kolmogorov-Sinai entropy).

The loss function is well suited to learn close to these equilibrium points
(non-chaotic dynamic). No need to further regularize the cost landscape [Scheme
smooth (equilibrium points) vs rough (attractor)].

Curriculum learning: first learn ẋ = α x , then the rest.
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What to learn?
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General considerations on the loss

Crucial to ask the right question (objective) to hope getting a good answer (model), i.e.,
a model relevant for our application.

Other problem: ease the learning.
The loss function induces the cost landscape and conditions how easy it is to get a
good solution.

Non-chaotic system (near equilibrium points) −→ the cost landscape J as a function
of the model parameters and/or of the initial condition is smooth.

However, opposite for a chaotic system and the output (loss function) does not exhibit a
smooth dependence with respect to inputs −→ learning via gradient is difficult, high
sensitivity.
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Workarounds

Restrict the solution space (parameters to be learned) by penalizing irrelevant
subspaces. For instance, by penalizing the deviation from the Jacobian:

J =
N∑

n=1

∥∥un − ûn
∥∥2

2 + α

N∑
n=1

∥∥∇un −∇ûn
∥∥2

2.

Here: L2−→H1. This can be generalized to higher order losses.
−→ promotes couplings (subspaces) between parameters and hence reduces the
variance of the loss as a function of variations of the parameters⇒ smoother
landscape.
Making it practical (no need for ∇u):

J =
N∑

n=1

∥∥un − ûn
∥∥2

2 + α
N∑

n=1

∥∥∇ûn
∥∥2

2.

Should fit u without going crazy (
∥∥∇ûn

∥∥).

Penalizing “accelerations”. The L2 loss does not allow to penalize zero-mean
accelerations.
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Workarounds (2)
Irregular sampling or more realistic loss (Ordinary Least Squares vs Total Least
Squares [SCHEME]): DTW.

Figure: Sketch of the alignment of two irregularly sampled time-series via DTW.

Dynamic Time Warping (DTW) computes the best possible alignment between
two discrete time series of respective length N and M by computing first the
N ×M pairwise distance matrix between these points to solve then a dynamic
program (DP) using Bellman’s recursion with a quadratic cost NM.
−→ Robust to shifts, dilatation, etc. It is based on optimal transport.

Soft DTW makes this loss differentiable and efficient to optimize (gradient-based
technique).
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Physics-motivated losses

Physics-agnostic machine learned systems are fragile, for instance wrt noisy, small
training datasets.

Example with stability
If one knows the system is stable⇒ to be enforced during learning.

Several definitions of stability:

Stability in machine learning: robustness wrt perturbations in data or
hyperparameters.

Stability in Physics: given u0, the system remains within a ball of size r ∀ t > 0
around u0.

Stability: ∀ε > 0, ∃δ > 0 \ |u0| < δ ⇒
∣∣∣f k (u0)

∣∣∣ < ε, k = 1, 2, . . ..
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Physics-motivated losses — Stability

Difficult to verify numerically (costly)⇒ Stablity in the sense of Lyapunov.

u0 = 0 is stable in the sense of Lyapunov if it exists a continuous function V : Rd → R
such that:

V(0) = 0, V(u) > 0, ∀u 6= 0,
V(f (u))− V(u) ≤ 0, ∀u 6= 0, |u| < r .

One can interpret V as a generalized energy function as it is often related to the total
energy of the system. Dissipative system: V will decrease along trajectories.
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Physics-motivated losses — Stability

If governing equations are linear, f (u) reduces to a matrix⇒ study of the
eigenvalues. Stability if modulus always ≤ 1. Penalization of overflows in the loss.

One wants to impose these rules to the learned model: form of regularization.

Example with learning the (stable) flow around a circular cylinder via an auto-encoder,
Erichson et al. (2019).

Figure: Performance and stability properties of Physics-agnostic and Physics-aware learning.
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Illustration with conservation laws

Expertise on Physics allows us to know there exist many conservation laws.

Allows to further reduce the size of the search space. These conservation laws are
counterparts of invariances with respect to some symmetry groups.

Noether theorem
To every differentiable symmetry generated by local actions there corresponds a
conserved current.

Each “invariance” illustrates the fact that physical laws do not change when an
experiment undergoes the associated transformation, hence there is no absolute
reference to carry it out.

Example: invariance wrt spatial translation −→ conservation of momentum p = m v .
Invariance in time −→ conservation of total energy.
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Imposing constraints in the form of Partial Differential Equations

One knows that the underlying physical system typically obeys certain equations, e.g.
Navier-Stokes. Introduction in the loss definition.
Example with Burgers, Raissi et al. (2017):

∂u
∂t

= αu · ∂u
∂x

+ β∆u,

J =
∥∥u − û

∥∥2
2 + λ ‖r‖2

2 ,

r =
∂u
∂t
− αu · ∂u

∂x
− β∆u.

Spatial gradient term is easy to get from NN.

This loss mimics
∥∥u − û

∥∥2
2 + λ

∥∥∥u̇ − ̂̇u∥∥∥2

2
.

Figure: Reconstructed solution.
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Deep Galerkin Method, Sirignano & Spiliopoulos (2018)

∂u(t , x)

∂t
+ N (u(t , x)) = 0, (t , x) ∈ [0,T ]× Ω,

u(t = 0, x) = u0(x),

u(t , x) = g(t , x), x ∈ ∂Ω.

Deep neural network approximates u(t , x) from just (t , x). No need to know the true u.

J =

∥∥∥∥∂u(t , x)

∂t
+ N (u(t , x))

∥∥∥∥2

[0,T ]×Ω

+ ‖u(0, x)− u0(x)‖2
Ω + ‖u(t , x)− g(t , x)‖2

[0,T ]×∂Ω

No need for a mesh. Training on randomly sampled points in space and time.

Operators such as ∂
∂t or N are easy to implement on top of the network providing u.

Norms are approximated with random points −→ Stochastic gradient descent.
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Predicting with the right variable, Ayed et al. (2019).
Aim: predict Ik+1 from previous snapshots {Ik}k . One knows that I obeys

∂I(t , x)

∂t
+ w(t , x) ·∇I(t , x) = D ∆I.

Initial conditions not known, nor the boundary conditions, nor the diffusion parameter
D. Instead, the displacement field w is learned from previous snapshots with the loss:

J =
∑
x∈Ω

∣∣∣It+1(x)− Ît+1(x)
∣∣∣+ λ1

(
∇ · ŵ t (x)

)2
+ λ2

∥∥ŵ t (x)
∥∥2

2 + λ3
∥∥∇ŵ t (x)

∥∥2
2 .

Figure: Sketch of the strategy to predict the next image Ît+1.
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Predicting with the right variable, Ayed et al. (2019).
Warping scheme:

Ît+1(x) =
∑
y∈Ω

k
(
x − ŵ t , y

)
It (y),

k
(
x − ŵ t , y

)
=

1

4π D̂ ∆t
exp

(
− 1

4 D̂ ∆t

∥∥x − ŵ − y
∥∥2
)
.

Figure: Performance of different learning schemes. From top to bottom rows: truth, DGM,
estimated displacement field w , CNN and other state-of-art methods.
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How to learn?

Structure / functional form to use
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Determinism of the reconstruction dynamics

Partial Observability
The way a system is observed is often critical and conditions the architecture and the
resulting performance.

Determining d : Trajectories in the phase space cannot cross. [Sketch]

Reconstruct a flow in dimension dr = 2 then dr = 3, etc., until the trajectory does not
cross itself anymore.
The smallest dimension this happens is the embedding dimension dp.
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Embeddings for dynamical systems

We seek a model for a dynamical system⇒ requires two ingredients:

a coordinate system,

a representation for the system evolution.

The first ingredient is obtained by an embedding: a (diffeomorphic) function g that
maps the observed data yt to a set of coordinates x̃ according to
g({yt}t ) = (x̃0, x̃1, . . .). It preserves the topology and the invariants (Lyapunov
exponents, ...).

We assume the system lies on a low dimensional attractor x(t) ∈ A ⊂ Rd , a smooth
submanifold of Rd and has a dimension dim(A) < d .

Then, Whitney embedding theorem says that if the number of coordinates
dc > 2 dim(A) then the dynamics of the state can be entirely captured by the new
coordinate system.

Made practical by the Takens embedding theorem by asserting that one can take this
number of delays.
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Embeddings for dynamical systems

Three common mappings:

1 Delays: x̃i = y(t − i∆t) for i = 0, 1, . . . and ∆t ∈ R+. x̃ =

 y(ti )
y(ti−1)
. . .

.

2 Derivatives: x̃i = y (i) for i = 0, 1, . . . x̃ =


y
ẏ
ÿ
. . .

.

3 Principal components: an SVD is used to first transform the space followed by a

use of delays or derivatives. H =

 y(ti )
y(ti−1)
. . .

 = U Σ V ∗, x̃ =

v1

v2

. . .


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Embeddings for dynamical systems

In practice, how to find the embedding dimension ? False neighbor algorithm to
check if topology is preserved.

Figure: Different reconstructed phase spaces. They are topologically equivalent to the Lorenz
canonical representation.

L. MATHELIN Deep learning for Physics M2 MVA 2020-2021 34 / 49



Observability
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Observability

Observing the system through the measurement operator h:

how much information can be extracted from it?

what can be inferred on the underlying model?

For instance, how much of the state x and of its dynamics can be inferred from
measurements y (t)?
⇒ observability issue (was extensively studied, in particular by the control community).

When both the model f and the observation operator h are linear, full observability of
x ∈ X ⊂ Rd from y (t) ∈ Rny is guaranteed whenever the Kalman rank condition is
satisfied, i.e., the observability matrix Oh is full rank ∀ x ∈ X:

Oh (x) :=


h

h f
...

h f d−1

 .
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Nonlinear observability
Extends to the nonlinear framework, for instance considering Lie derivatives of h
along the vector field f :

Lf h (x) :=
∂h
∂x

f (x) and Ln
f h (x) := Lf

[
Ln−1

f h (x)
]
, ∀ n ∈ N, L0

f h (x) := h (x) .

The system governed by f is fully observable via h iff Oh is full rank ∀ x ∈ X, with Oh

writing as:

y (t) = h (x (t)) , ẏ (t) =
∂h
∂x

ẋ ≡ Lf h (x) .

then

Oh (x) =


∂L0

f h(x)

∂x
∂L1

f h(x)

∂x
...

∂Ld−1
f h(x)

∂x

 =


y (t)
ẏ (t)

...
y (d−1) (t)

 .
Degree of observability can be quantified based on the spectrum of the observability
Gramian OT

hOh via the observability index δOh :

δOh (x) :=
λmin(OT

hOh)

λmax(OT
hOh)

∈ [0, 1].
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Choice of the observables

The above criteria are useful to quantify the relevance of the observables y (t) to
inform upon the state x .

It can also serve to improve observability by modifying the observables so that δOh

increases. −→ pivotal for sensor placement.

While similarity transformations of coordinates do not affect the rank of the
observability matrix, they can improve the observability index and provide a more
robust information on the system.

Is memory necessary ?
State vector (LSTM useless) vs Partial observation (memory-capable network, LSTM,
reservoir).
Alternative: embedding (delayed, differential, ODE) −→ augmented input state.
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A continuous viewpoint: Neural ODE
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Neural ODE (ODENet), Chen et al. (2018)
One can interpret Resnets like Ordinary Differential Equations discretized with an Euler
scheme:

ut+∆t = ut + f (ut , t ;θ).

In the limit of more layers and smaller ∆t :

d u(t)
d t

= f (ut , t ;θ).

Figure: In the limit of an infinite number of layers,
a ResNet (left) can be interpreted as an ODE
problem (right).

One can use an ODE solver to compute
u(t) at any real continuous time t > 0.

More flexible since the dynamics might also
depend on t , for instance using a neural net-
work with two inputs: t and u(t).
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Neural ODE (ODENet), Chen et al. (2018)
Training via the adjoint Loss is defined at a final time t = T : J (u(T ))
How to train / compute ∇θJ ?

L := J(uT )+� λ, u̇(t) + f (u;θ)�,

= J(uT ) +

∫
t
λ(t) (u̇(t) + f (u;θ)) dt ,〈

∂L

∂u
δu
〉

= 0 ∀ δu = ∇uJ δu +

∫
t
δu
(
−λ̇ + λ∇uf

)
dt + [u λ]T

0 ,

= −λ̇ + λ∇uf , with λT = − ∇uJ|T ,〈
∂L

∂λ
δλ

〉
= 0 ∀ δλ = u̇(t) + f (u;θ),〈

∂L

∂θ
δθ

〉
= 0 ∀ δθ =

∂J
∂θ

δθ +

∫
t
λ
∂f
∂θ

δθ dt , ⇒ ∂J
∂θ

= −
∫

t
λ
∂f
∂θ

dt .

Both u and λ are obtained via an ODE solver from 0 to T and from T to 0 respectively.

All this can be solved with a single call to an ODE solver considering the augmented

state: z :=

[
u,λ,

∂J
∂θ

]
.
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Neural ODE (ODENet) — Example
Model and complement an irregularly sampled time series (x0, x1, x2, . . . , xN)

I Difficult to do with recurrent networks.
I The dynamics learned / to be learned do not act directly on x t (observations) but

on the (latent) internal state z t (state vector) [in order to be able to deal with
partial or noisy information]

1 Transform the x t sequence into a
guessed initial (probabilistic)
internal state q (z0 | x0, . . . , xN)
using an RNN (going reverse in
time, from xN to x0; the RNN has
to be learned as well)

2 Apply the dynamics f θ previously
learned to z0 using an ODE solver
and produce guessed states z t>0

3 From z t>N , deduce missing
observations x t>N .

Figure: Sketch of the prediction strategy for future
observations x t>N .
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Field reconstruction

L. MATHELIN Deep learning for Physics M2 MVA 2020-2021 43 / 49



A shallow decoder for flow reconstruction, Erichson et al. (2020)
From sensors s ∈ R5 −→ to field estimation x̂ ∈ R78406
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Super-resolution — Rise. . .

Snapshot Low resolution Shallow decoder
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. . . and fall — On the requirement of satisfying sufficient statistics
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Weak solution of PDEs — Zang et al. (2020)

High-dimensional boundary value problem

∂u
∂t
−∇ (a∇u) + b∇u + cu + d = 0, in Ω× [0,T ],

u (x , t) = g (x , t) , on ∂Ω× [0,T ],

u (x , 0) = h (x) , on Ω.

Weak formulation

For time-independent problems, for instance

〈A [u] , ϕ〉 :=

∫
Ω

a∇u∇ϕ+ b∇uϕ+ cuϕ+ dϕ dx = 0, ∀ ϕ ∈ H1
0 .

Approximation basis for the solution is given by a neural network −→
u (x , t) ≈ uθ (x , t) ∈ H1 (Ω;R).
Test functions {ϕ} ∈ H1

0 (Ω;R)
The choice of the projection 〈·〉 is yours.
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Induced operator norm minimization

Let A [u] : H1
0 (Ω)→ R such that A [u] (ϕ) := 〈A [u] , ϕ〉.

Its operator norm is

‖A [u]‖op := max
{
〈A [u] , ϕ〉 / ‖ϕ‖2 | ϕ ∈ H1

0 , ϕ 6= 0
}
.

u is a weak solution of the PDE iff ‖A [u]‖op = 0.

Hence, a formulation for an approximation of the weak solution uθ could be

min
uθ∈H1

‖A [uθ]‖2
op ⇐⇒ min

uθ∈H1
max
ϕ∈H1

0

|〈A [uθ] , ϕ〉|2 / ‖ϕ‖2
2 .

A deep neural network parameterized by θ −→ uθ,

An adversarial network parameterized by η tending to maximize 〈A [uθ] , ϕη〉 −→
ϕη,
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Example with a parabolic equation

Nonlinear reaction-diffusion equation

∂u
∂t
−∆u − u2 = 0, in Ω× [0,T ],

u (x , t) = g (x , t) , on ∂Ω× [0,T ],

u (x , 0) = h (x) , on Ω.

Crank-Nicolson time scheme. 6 hidden layers, 40 neurons per layer. Trained on
collocation points in Ω.
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