Generalization

I. Generalization

I.A) Ensemble methods
- aggregate different predictors
 - average all predictions
 - or more advanced ways (use the validation set)
 - in simple case: \(x \sum_{k} f_k(x) / \#k \) (predicted)

[Distilling the knowledge in a Neural Network] "Teacher-student" / "Distillation"
- Hard test
- "Small" network: training \(\Rightarrow \) poor performances
- "Small" network: teacher
- Set of predictions
- Ensemble method (average) \(\Rightarrow \) good performance
- Issue: many networks
 - use lots of space
 - use lots of computational resources
- train a "small" network \(g \)
 - to mimic the ensemble model
 - \(g \) is the training weights

Other ensemble techniques:
- Seeding: combining weak classifiers into a strong one

\(F_e \) \(\rightarrow \) \(F_{e+1} \) : different weights to samples
 - \(g \) weight for sample classified
 - train a weak classifier with these weights
 - agglomerate: \(F_{e+1} = F_e + \omega_g \)

I.B Generalization without regularization
- "double gradient descent"
- \(\text{log}: \sum \| \hat{s}_{ij} - y_i \|^2 \) or cross-entropy
- Search architecture
 - \(n \) neurons/layer
 - Neural Target Kernel
 - CNN model within layers
II. Learning from noisy data

Demisting auto-encoder [ICML 2009]
- dealing with noisy data vs. noise modeling
- originally: \(x \rightarrow \mathbb{R} \rightarrow \mathbb{R} \) auto-encoder
 - usually: narrower middle layer to concentrate information
- set-up:
 - input: noisy image \(x \)
 - \(\text{noise vars} \) if \(x \)
 - \(x^{\text{denoised}} \rightarrow \mathbb{R} \circ \mathbb{R} \rightarrow \mathbb{R} \)
 - goal: reconstruct \(\text{i.e., get rid of noise} \)
 - \(\Rightarrow \) learn more robust features to demisne

Classification with noisy labels
- True distribution \((x, y) \)
- Given noisy \((x, \hat{y}) \)
 - sometimes \(y \)
 - sometimes random labels

- If some samples are mislabeled (in the training set) \(\Rightarrow \) not much change of accuracy
- \(\text{significant part} \) of \(\text{train set} \)
 - \(90\% \) \(\Rightarrow \) still possible to get reasonable results
 - provided that data is available in large quantities
 - what matters is the number of correct labels
 - \(90\% \) \(\Rightarrow \) \(x \times 10 \) data
 - \(85\% \) \(\Rightarrow \) \(x \times 100 \) data

Regression with noisy labels
- dataset \((x, y + \epsilon) \)
- choose iid centered noise \(\epsilon \)

- Simplistic case:
 - always the same update
 - \(\epsilon \) is average over all samples

Loss
- \(\mathbb{E}_i \) \(\ell \) loss
- \(\ell = (y - \hat{y})^2 \)
- \(\text{noisy target} \)
- \(\hat{y} = g(x) + \epsilon \)
- \(\sum_i \left\| \hat{y}_i - y_i \right\|^2 \)
- \(\text{averaging} \) \(\hat{y} \) instead of \(y \)
Classical statistics

\[N \text{ samples } \Rightarrow [\mu - \sigma] \sim \frac{1}{\sqrt{N}} \]

\[\Rightarrow \text{W.N. will perform an "average" over similar points} \]

\[D(x) \]

Let's define "similarity" according to the network:

based on the ability of the W.N. to distinguish samples

\[\text{Similarity between samples } x \text{ and } x': \frac{\| \hat{f}(x) - \hat{f}(x') \|}{\| \|} \in [0, 1] \Rightarrow \text{within a range} \]

Let's see how does label noise in training set affect prediction at a given test point?

Let's compute a classifying factor

\[\text{noise } \xrightarrow{\text{predictor noise}} \frac{1}{\text{Factor}} \]

\[\text{depends on } x \text{ test sample} \]

Understanding deep learning predictions via influence functions, ICML 2017

\[\text{based on classical statistics} \]

\[\Rightarrow \text{noise on } x \]

\[\Rightarrow \text{noise on the sampling distribution: probability to pick } x \]

\[\text{some level of formulae} \]

\[\Rightarrow \text{loss instead of } \hat{f}^2 \]

\[\Rightarrow \text{inversely biased} \]

[Classification:

Learning with noisy labels]

Let's hypothesize the amount of noise

\[\Rightarrow \text{20\% of labels are inverted (given classifier)} \]

\[\Rightarrow \text{build a loss to balance} \]

\[\Rightarrow \text{an average correctness} \]

\[\Rightarrow \text{as if with true labels} \]

\[\Rightarrow \text{reduces bias} \text{and improves bound!} \]

\[\Rightarrow \text{given feat, size of dataset and complexity} \]
Formal proofs

- To prove (formally) that the NN will never mistake

- Express a property → check it

\[\forall x \in \mathcal{X}, |\hat{y}(x) - y(x)| < \varepsilon \]

- ACAS Xu:

 \[\text{given: locations, speeds (no perception)} \]

 \[\text{prove: no collision} \]

- Local properties: locally robust to adversarial attacks

 \[\text{no adversarial input in this ball} \]

- Keywords:
 - Obfuscation
 - ReLU

 N.N. with ReLU

 \(\Rightarrow \) piecewise-affine F

 \(\Rightarrow \) more replication of traditional powers \(\Rightarrow \) complexity \(\Rightarrow \) neurons

 \[\text{small network} \]

 3 inputs \(\rightarrow \) few outputs

 1000 neurons