Dealing with small data

Data augmentation
- For image classification tasks: add rotation, scale, flip, contrast, color balance, noise...
- Model the "noise" non-meaningful transformations

- Use a simulator to produce quantities of input data

Multi-tasking
- Consider (at the same training time) another task

Transfer learning
- Sequential transfer: First \(C_s \) - Second \(C_R \)
- Pick a pre-trained network, pre-train \(V_{66} \) on ImageNet
- For computer vision task, \(V_{66} \) on ImageNet
- Small data (few labeled examples)
- Big data (with training from scratch)

Forms of weak supervision
- Few labeled examples
- Semi-supervision
- No labeled samples (small part)
- Example: when labeling is costly (requires time, expert)
Several approaches:

1) unsupervised training (on full set) → good representation → supervised training
 Typically: auto-encoders

2) supervised training → label some of the unlabeled samples
 Use
 \[D_u \rightarrow \text{ newly build} \]

Issues: SF mistakes, learn from wrongly labeled data

Weak supervision

Less general: ex: labels could be noisy

Self-supervision

→ unsupervised pretraining
 → supervised task (on \(F \)) → with a fake task
 with labels for all samples in \(F \)

ex: image classification
→ image puzzle: extract patches from some image and ask for geometrical relation

→ add a relation to the image → task: retrieve the single (random)

→ data augmentation
 1. define “classes”:
 1 class = \{ all augmented input data coming from same sample \}

ex: video classification

by auxiliary task:
→ predict next frame: fully supervised
→ give 3 frames, ask whether temporal order is correct
Active learning

Same setting as semi-supervision, + ask some samples to be labeled

- Large dataset \(\mathcal{D} \subset \{ \mathbf{x}_i \} \)
- Lists for few: \(\{ y_{1i}, \ldots, y_{p_1} \} \) with \(p \ll |\mathcal{D}| \)
- Which \(x_i \) (with \(i \in [p] \)) to pick? tradeoff for labels

\[\text{\(\hat{y}_i = \arg \min_{c \in \mathcal{C}} \sup_{\mathbf{x}_c} \hat{g}_i \quad \text{if classification task} \)} \]

Local methods

- To quantify the impact of the choice on the chosen sample only
- Uncertainty sampling:
 - Pick \(x_i \) for which the model is the most uncertain \(\rightarrow \) lowest prediction confidence
 \[\arg \min_{\mathbf{x}_i} \sup_{c \in \mathcal{C}} \hat{g}_i \]

- Margin sampling
 \[\hat{y}_i = \arg \min_{c \in \mathcal{C}} \hat{g}_i \]

- Entropy sampling:
 \[H(\hat{g}_i) = -\sum_{c \in \mathcal{C}} \hat{g}_{ci} \log \hat{g}_{ci} \]
 - High: if prob. well dispersed over classes
 - Low: if Dirac peak

- Query by committee
 \[\hat{y}_{ik} = \arg \min_{c \in \mathcal{C}} \frac{1}{k} \sum_{k=1}^{n} \hat{g}_{ci} \]
 - Do models agree?

\[\text{\(\text{If most agree, pick \(x_i \)} \)} \]

Global methods

- To quantify impact of the choice over all dataset samples
- Expected model change
 \[\text{do one gradient-descent step with chosen sample} \]
 \[\theta_{t+1} = \theta_t - \eta \nabla \text{Loss}(\hat{g}_i, \hat{x}_i) \]
 \[\text{for large \(\theta \) update} \]

- Direct pull or push
 \[\text{use predictions as class probe estimate} \]
Incorporation of Priors

- Small data
- Help the training of the network by adding priors from physical knowledge

A) Invariance

Enforcement of invariance by design

- Symmetry of the problem: Group of transformations G

 $V g \in G, \quad F(x) = F(g x)$

 - No need to learn it
 - Easier training vs. data augmentation
- Translation equivariance:
 \[F(\text{translated}(x)) = \text{Translated}(F(x)) \]

- Permutation invariance:
 \[\text{one input: } x \xrightarrow{\text{permutation}} x' \text{ (raw permutation)} \]

[DeepSets]

Theorem: any permutation-invariant function can be re-written as:

\[F(x) = g\left(\sum \psi(x^r) \right) \]

\[\forall \psi, g \text{ ...} \]

\[\sum \rightarrow g \rightarrow \text{ universal permut-} \]

\[\text{equivariant approximator} \]

- Row-wise equivariant

- Stack

- one block equivariant

- Ex: point clouds \(\rightarrow\) pointNet++

- Input: laser measurements on an object \(\rightarrow\) 3D object classification

- Ex: population genetics

- Input: DNA

- DNA from individuals living now \(\rightarrow\) lose order-invariant

- Task: demography site inference: to how many people were living 5000 years ago?

- Invariance to rotations

- Input: molecule

- Predict toxicity

- Input: equi-biases, inv. biases

- Predict
Learning the invariance → Spatial Transformers

(image) input \(x \) → Predict rotation angle \(\theta(x) \) → Network → Return \(\theta(x) \) → Works angle-insensitive

→ Capsule networks action: equiv

B) by task design ← metrics → data