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ABSTRACT
We examine the efficiency of Recurrent Neural Networks in forecasting the spatiotemporal
dynamics of high dimensional and reduced order complex systems using Reservoir Computing
(RC) and Backpropagation through time (BPTT) for gated network architectures. We highlight
advantages and limitations of eachmethod and discuss their implementation for parallel computing
architectures. We quantify the relative prediction accuracy of these algorithms for the long-
term forecasting of chaotic systems using as benchmarks the Lorenz-96 and the Kuramoto-
Sivashinsky (KS) equations. We find that, when the full state dynamics are available for training,
RC outperforms BPTT approaches in terms of predictive performance and in capturing of the
long-term statistics, while at the same time requiring much less training time. However, in the
case of reduced order data, large scale RC models can be unstable and more likely than the BPTT
algorithms to diverge. In contrast, RNNs trained via BPTT show superior forecasting abilities and
capture well the dynamics of reduced order systems. Furthermore, the present study quantifies for
the first time the Lyapunov Spectrum of the KS equation with BPTT, achieving similar accuracy
as RC. This study establishes that RNNs are a potent computational framework for the learning
and forecasting of complex spatiotemporal systems.

1. Introduction
In recent years we have observed significant advances in the field of machine learning (ML) that rely on potent

algorithms and their deployment on powerful computing architectures. Some of these advances have been materialized
by deploying ML algorithms on dynamic environments such as video games (Ha and Schmidhuber, 2018; Schrittwieser
et al., 2019) and simplified physical systems (AI gym) (Brockman et al., 2016; Mnih et al., 2015; Silver et al., 2016).
Dynamic environments are often encountered across disciplines ranging from engineering and physics to finance
and social sciences. They can serve as bridge for scientists and engineers to advances in machine learning and at
the same time they present a fertile ground for the development and testing of advanced ML algorithms (Hassabis
et al., 2017). The deployment of advanced machine learning algorithms to complex systems is in its infancy. We
believe that it deserves further exploration as it may have far-reaching implications for societal and scientific challenges
ranging from weather and climate prediction (Weyn et al., 2019; Gneiting and Raftery, 2005), to energy networks,
medicine (Esteva et al., 2017; Kurth et al., 2018), and the dynamics of ocean dynamics and turbulent flows (Aksamit
et al., 2019; Sünderhauf et al., 2018; Brunton et al., 2020).
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Forecasting of Complex Dynamics with RNNs

Complex systems are characterized by multiple, interacting spatiotemporal scales that challenge classical numerical
methods for their prediction and control. The dynamics of such systems are typically chaotic and difficult to predict,
a critical issue in problems such as weather and climate prediction. Recurrent Neural Networks (RNNs), offer a
potent method for addressing these challenges. RNNs were developed for processing of sequential data, such as
time-series (Hochreiter and Schmidhuber, 1997), speech (Graves and Jaitly, 2014), and language (Dong et al., 2015;
Cho et al., 2014). Unlike classical numerical methods that aim at discretizing existing equations of complex systems,
RNN models are data driven. RNNs keep track of a hidden state, that encodes information about the history of the
system dynamics. Such data-driven models are of great importance in applications to complex systems where equations
based on first principles may not exist, or may be expensive to discretize and evaluate, let alone control, in real-time.

Early application of neural networks for modeling and prediction of dynamical systems can be traced to the work of
Lapedes et. al. (Lapedes and Farber, 1987), where they demonstrated the efficiency of feedforward artificial neural
networks (ANNs) to model deterministic chaos. As an alternative to ANNs, wavelet networks were proposed in (Cao
et al., 1995) for chaotic time-series prediction. However, these works have been limited to intrinsically low-order
systems, and they have been often deployed in conjunction with dimensionality reduction tools. As shown in this work,
RNNs have the potential to overcome these scalability problems and be applied to high-dimensional spatio-temporal
dynamics. The works of Takens (Takens, 1981) and Sauer, Yorke and Casdagli (Sauer et al., 1991) showed that the
dynamics on a D-dimensional attractor of a dynamical system can be unfolded in a time delayed embedding of dimension
greater than 2D. The identification of a useful embedding and the construction of a forecasting model have been the
subject of life-long research efforts (Bradley and Kantz, 2015). More recently, in (Lusch et al., 2018), a data-driven
method based on the Koopman operator formalism (Koopman, 1931) was proposed, using feed-forward ANNs to
identify an embedding space with linear dynamics that is then amenable to theoretical analysis.

There is limited work at the interface of RNNs and nonlinear dynamical systems (Vlachas et al., 2018; Wan
et al., 2018; Pathak et al., 2017, 2018a; Lu et al., 2018). Here we examine and compare two of the most prominent
nonlinear techniques in the forecasting of dynamical systems, namely RNNs trained with backpropagation and Reservoir
Computing (RC). We note that our RC implementation also uses a recurrent neural network, but according to the RC
paradigm, it does not train the internal network parameters. We consider the cases of fully observed systems as well as
the case of partially observed systems such as reduced order models of real world problems, where typically we do not
have access to all the degrees-of-freedom of the dynamical system.

Reservoir Computing (RC) has shown significant success in modeling the full-order space dynamics of high
dimensional chaotic systems. This success has sparked the interest of theoretical researchers that proved universal
approximation properties of these models (Grigoryeva and Ortega, 2018; Gonon and Ortega, 2019). In (Pathak et al.,
2017, 2018b) RC is utilized to build surrogate models for chaotic systems and compute their Lyapunov exponents
based solely on data. A scalable approach to high-dimensional systems with local interactions is proposed in (Pathak
et al., 2018a). In this case, an ensemble of RC networks is used in parallel. Each ensemble member is forecasting the
evolution of a group of modes while all other modes interacting with this group is fed at the input of the network. The
model takes advantage of the local interactions in the state-space to decouple the forecasting of each mode group and
improve the scalability.

RNNs are architectures designed to capture long-term dependencies in sequential data (Pascanu et al., 2013; Bengio
et al., 1994; Hochreiter, 1998; Goodfellow et al., 2016). The potential of RNNs for capturing temporal dynamics in
physical systems was explored first using low dimensional RNNs (Elman, 1990) without gates to predict unsteady
boundary-layer development, separation, dynamic stall, and dynamic reattachment back in 1997 (Faller and Schreck,
1997). The utility of RNNs was limited by the finding that during the learning process the gradients may vanish
or explode. In turn, the recent success of RNNs is largely attributed to a cell architecture termed Long Short-Term
Memory (LSTM). LSTMs employ gates that effectively remember and forget information thus alleviating the problem of
vanishing gradients (Hochreiter, 1998). In recent years (Bianchi et al., 2017) RNN architectures have been bench-marked
for short-term load forecasting of demand and consumption of resources in a supply network, while in (Laptev et al.,
2017) they are utilized for extreme event detection in low dimensional time-series. In (Wan and Sapsis, 2018) LSTM
networks are used as surrogates to model the kinematics of spherical particles in fluid flows. In (Vlachas et al., 2018)
RNNs with LSTM cells were utilized in conjunction with a mean stochastic model to capture the temporal dependencies
and long-term statistics in the reduced order space of a dynamical system and forecast its evolution. The method
demonstrated better accuracy and scaling to high-dimensions and longer sequences than Gaussian Processes (GPs).
In (Wan et al., 2018) the LSTM is deployed to model the residual dynamics in an imperfect Galerkin-based reduced
order model derived from the system equations. RC and LSTM networks are applied in the long-term forecasting
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of partially observable chaotic chimera states in (Neofotistos et al., 2019), where instead of a completely model-free
approach, ground-truth measurements of currently observed states are helping to improve the long-term forecasting
capability. RNNs are practical and efficient data-driven approximators of chaotic dynamical systems, due to their (1)
universal approximation ability (Schäfer and Zimmermann, 2006; Siegelmann and Sontag, 1995) and (2) ability to
capture temporal dependencies and implicitly identify the required embedding for forecasting.

Despite the rich literature on both methods there are limited comparative studies of the two frameworks. The present
work aims to fill this gap by examining these two machine learning algorithms on challenging physical problems. We
compare the accuracy, performance, and computational efficiency of the two methods on the full-order and reduced-order
modeling of two prototype chaotic dynamical systems. We also examine the modeling capabilities of the two approaches
for reproducing correct Lyapunov Exponents and frequency spectra. Moreover, we include in the present work some
more recent RNN architectures, like Unitary (Arjovsky et al., 2016; Jing et al., 2017) and Gated Recurrent Units
(GRUs) (Chung et al., 2014; Cho et al., 2014) that have shown superior performance over LSTMs for a wide variety of
language, speech signal and polyphonic music modeling tasks.

We are interested in model-agnostic treatment of chaotic dynamical systems, where the time evolution of the full
state or some observable is available, but we do not possess any knowledge about the underlying equations. In the
latter case, we examine which method is more suitable for modeling temporal dependencies in the reduced order space
(observable) of dynamical systems. Furthermore, we evaluate the efficiency of an ensemble of RNNs in predicting the
full state dynamics of a high-dimensional dynamical system in parallel and compare it with that of RC. Finally, we
discuss the advantages, implementation aspects (such as RAM requirements and training time) and limitations of each
model. We remark that the comparison in terms of time and RAM memory consumption, does not aim to quantify
advantages/drawback among models but rather provide information for the end users of the software.

We hope that the present study may open to the ML community a new arena with highly structured and complex
environments for developing and testing advanced new algorithms (Hassabis et al., 2017). At the same time it may offer
a bridge to the physics community to appreciate and explore the importance of advanced ML algorithms for solving
challenging physical problems (Brunton et al., 2020).

The structure of the paper is as follows. Section 2 provides an introduction to the tasks and an outline of the
architectures and training methods used in this work. Section 3 introduces the measures used to compare the efficiency
of the models. In Section 4 the networks are compared in forecasting reduced order dynamics in the Lorenz-96 system.
In Section 5, a parallel architecture leveraging local interactions in the state space is introduced and utilized to forecast
the dynamics of the Lorenz-96 system (Lorenz, 1995) and the Kuramoto-Sivashinsky equation (Kuramoto, 1978). In
Section 6 the GRU and RC networks are utilized to reproduce the Lyapunov spectrum of the Kuramoto-Sivashinsky
equation, while Section 7 concludes the paper.

2. Methods - Sequence Modeling
We consider machine learning algorithms for time-series forecasting. The models are trained on time-series of an

observable o ∈ ℝdo sampled at a fixed rate 1∕Δt, {o1,… ,oT }, where we eliminate Δt from the notation for simplicity.
The models possess an internal high-dimensional hidden state denoted by ht ∈ ℝdℎ that enables the encoding of
temporal dependencies on past state history. Given the current observable ot, the output of each model is a forecast
ôt+1 for the observable at the next time instant ot+1. This forecast is a function of the hidden state. As a consequence,the general functional form of the models is given by

ht = fℎℎ (ot,ht−1), ôt+1 = f oℎ(ht), (1)
where fℎℎ is the hidden-to-hidden mapping and f oℎ is the hidden-to-output mapping. All recurrent models analyzed in
this work share this common architecture. They differ in the realizations of fℎℎ and f oℎ and in the way the parameters or
weights of these functions are learned from data, i.e., trained, to forecast the dynamics.
2.1. Long Short-Term Memory

In Elman RNNs (Elman, 1990), the vanishing or exploding gradients problem stems from the fact that the gradient
is multiplied repeatedly during back-propagation through time (Werbos, 1988) with a recurrent weight matrix. As a
consequence, when the spectral radius of the weight matrix is positive (negative), the gradients are prone to explode
(shrink). The LSTM (Hochreiter and Schmidhuber, 1997) was introduced in order to alleviate the vanishing gradient
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Figure 1: The information flow for a Reservoir Computing (RC) cell, a complex Unitary cell (Unit), a Long Short-Term
Memory (LSTM) cell and a Gated Recurrent Unit (GRU) cell. The cells were conceptualized to tackle the vanishing
gradients problem of Elman-RNNs. The cell used in RC is the standard architecture of the Elman-RNN. However, the
weights of the recurrent connections are randomly picked to satisfy the echo state property and create a large reservoir
of rich dynamics. Only the output weights are trained (e.g., with ridge regression). The Unitary RNN utilizes a complex
unitary matrix to ensure that the gradients are not vanishing. LSTM and GRU cells employ gating mechanisms that allow
forgetting and storing of information in the processing of the hidden state. Ellipses and circles denote entry-wise operations,
while rectangles denote layer operations. The information flow of the complex hidden state in the Unitary RNN is illustrated
with dashed red color, while the untrained randomly picked weights of the RC with orange.

problem of Elman RNNs (Hochreiter, 1998) by leveraging gating mechanisms that allow information to be forgotten.
The equations that implicitly define the recurrent mapping fℎℎ of the LSTM are given by

gft = �f
(

Wf [ht−1,ot] + bf
)

git = �i
(

Wi[ht−1,ot] + bi
)

c̃t = tanh
(

Wc[ht−1,ot] + bc
)

ct = g
f
t ⊙ ct−1 + g

i
t ⊙ c̃t

got = �ℎ
(

Wℎ[ht−1,ot] + bℎ
)

ht = got ⊙ tanh(ct),

(2)

where gft , git, got ∈ ℝdℎ , are the gate vector signals (forget, input and output gates), ot ∈ ℝdo is the observable input
at time t, ht ∈ ℝdℎ is the hidden state, ct ∈ ℝdℎ is the cell state, while Wf , Wi, Wc ,Wℎ ∈ ℝdℎ×(dℎ+do), are weight
matrices and bf , bi, bc , bℎ ∈ ℝdℎ biases. The symbol ⊙ denotes the element-wise product. The activation functions
�f , �i and �ℎ are sigmoids. For a more detailed explanation of the LSTM cell architecture refer to (Hochreiter and
Schmidhuber, 1997). The dimension of the hidden state dℎ (number of hidden units) controls the capacity of the cell to
encode history information. The hidden-to-output functional form f oℎ is given by a linear layer

ôt+1 = Wo ht, (3)
where Wo ∈ ℝdo×dℎ . The forget gate bias is initialized to one according to (Jozefowicz et al., 2015) to accelerate
training. An illustration of the information flow in a LSTM cell is given in Figure 1c.
2.2. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) (Cho et al., 2014) was proposed as a variation of LSTM utilizing a similar gating
mechanism. Even though GRU lacks an output gate and thus has fewer parameters, it achieves comparable performance
with LSTM in polyphonic music and speech signal datasets (Chung et al., 2014). The GRU equations are given by

zt = �g
(

Wz[ht−1,ot] + bz
)

rt = �g
(

Wr[ht−1,ot] + br
)

h̃t = tanh
(

Wℎ
[

rt ⊙ ht−1,ot
]

+ bℎ
)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t,

(4)

where ot ∈ ℝdo is the observable at the input at time t, zt ∈ ℝdℎ is the update gate vector, rt ∈ ℝdℎ is the reset gate
vector, h̃t ∈ ℝdℎ , ht ∈ ℝdℎ is the hidden state,Wz,Wr,Wℎ ∈ ℝdℎ×(dℎ+do) are weight matrices and bz, br, bℎ ∈ ℝdℎ
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biases. The gating activation �g is a sigmoid. The output ôt+1 is given by the linear layer:
ôt+1 = Wo ht, (5)

whereWo ∈ ℝdo×dℎ . An illustration of the information flow in a GRU cell is given in Figure 1d.
2.3. Unitary Evolution

Unitary RNNs (Arjovsky et al., 2016; Jing et al., 2017), similar to LSTMs and GRUs, aim to alleviate the vanishing
gradients problem of plain RNNs. Here, instead of employing sophisticated gating mechanisms, the effort is focused on
the identification of a re-parametrization of the recurrent weight matrix, such that its spectral radius is a-priori set to
one. This is achieved by optimizing the weights on the subspace of complex unitary matrices. The architecture of the
Unitary RNN is given by

ht = modReLU
(

Wℎht−1 + Woot
)

ôt+1 = Woℜ
(

ht
)

,
(6)

whereWℎ ∈ ℂdℎ×dℎ is the complex unitary recurrent weight matrix,Wo ∈ ℂdℎ×do is the complex input weight matrix,
ht ∈ ℂdℎ is the complex state vector,ℜ(⋅) denotes the real part of a complex number,Wo ∈ ℝdℎ×dℎ is the real output
matrix, and the modified ReLU non-linearity modReLU is given by

(

modReLU(z)
)

i
=

zi
|zi|

⊙ ReLU(|zi| + bi), (7)

where |zi| is the norm of the complex number zi. The complex unitary matrixWℎ is parametrized as a product of a
diagonal matrix and multiple rotational matrices. The reparametrization used in this work is the one proposed in (Jing
et al., 2017). The complex input weight matrixWo ∈ ℂdℎ×do is initialized withW re

o + jW im
o , with real matricesW re

o ,
W im
o ∈ ℝdℎ×do whose values are drawn from a random uniform distribution  [−0.01, 0.01] according to (Jing et al.,

2017). An illustration of the information flow in a Unitary RNN cell is given in Figure 1b.
In the original paper of (Jing et al., 2017) the architecture was evaluated on a speech spectrum prediction task, a

copying memory task and a pixel permuted MNIST task demonstrating superior performance to LSTM either in terms
of final testing accuracy or wall-clock training speed.
2.4. Back-Propagation Through Time

Backpropagation dates back to the works of (Dreyfus, 1962; Linnainmaa, 1976; Rumelhart et al., 1986), while its
extension to RNNs termed Backpropagation through time (BPTT) was presented in (Werbos, 1988, 1990). A forward
pass of the network is required to compute its output and compare it against the label (or target) from the training
data based on an error metric (e.g. mean squared loss). Backpropagation amounts to the computation of the partial
derivatives of this loss with respect to the network parameters by iteratively applying the chain rule, transversing
backwards the network. These derivatives are computed analytically with automatic differentiation. Based on these
partial derivatives the network parameters are updated using a first-order optimization method, e.g. stochastic gradient
descent.

The power of BBTT lies in the fact that it can be deployed to learn the partial derivatives of the weights of any
network architecture with differentiable activation functions, utilizing state-of-the-art automatic differentiation software,
while (as the data are processed in small fragments called batches) it scales to large datasets and networks, and can be
accelerated by employing Graphics Processing Units (GPUs). These factors made backpropagation the workhorse of
state-of-the-art deep learning methods (Goodfellow et al., 2016).

In our study, we utilize BBTT to train the LSTM (Section 2.1), GRU (Section 2.2) and Unitary (Section 2.3) RNNs.
There are three key parameters of this training method that can be tuned. The first hyperparameter �1 is the number of
forward-pass timesteps performed to accumulate the error for back-propagation. The second parameter is the number of
previous time steps for the back-propagation of the gradient �2. This is also denoted as truncation length, or sequence
length. This parameter has to be large enough to capture the temporal dependencies in the data. However, as �2 becomes
larger, training becomes much slower, and may lead to vanishing gradients. In the following, we characterize as stateless,
models whose hidden state before �2 is hard-coded to zero, i.e., h−�2 = 0. Stateless models cannot learn dependencies
that expand in a time horizon larger that �2. However, in many practical cases stateless models are widely employed
PR Vlachas et al.: Preprint submitted to Elsevier Page 5 of 40
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Figure 2: Illustration of an unfolded RNN. Time-series data o are provided at the input of the RNN. The RNN is forecasting
the evolution of the observable at its outputs ô. The average difference (mean square error) between �1 iterative predictions
(outputs) of the RNN ô and the targets o from the time-series data is computed every �3 steps. The gradient of this quantity,
illustrated with red arrows, is back-propagated through time (BPTT) for �2 previous temporal time-steps, computing the
gradients of the network parameters that are shared at each time layer. The output of intermediate steps illustrated with
dashed lines is ignored. Stateless models initialize the hidden state before training at a specific fragment of the sequence of
size �2 with zero (in this case h6=̂0) and cannot capture dependencies longer than �2. In this way, consecutive training
batches (sequence fragments) do not have to be temporally adjacent. In stateful models, the hidden state is never set to
zero and in order to train at a specific fragment of the sequence, the initial hidden state has to be computed from the
previously processed fragment. In order to eliminate the overlap between fragments, we teacher force the network with
ground-truth data for �3 ≥ �2 time-steps. In our study we pick �3 = �2 + �1 − 1 as illustrated in the figure.

assuming that only short-term temporal dependencies exist. In contrast, stateful models propagate the hidden state
h−�2 ≠ 0 between temporally consecutive batches. In our study, we consider only stateful networks.

Training stateful networks is challenging because the hidden state h−�2 has to be available from a previous batch
and the network has to be trained to learn temporal dependencies that may span many time-steps in the past. In order
to avoid overlap between two subsequent data fragments and compute h−�2 for the next batch update, the network isteacher-forced for �3 time-steps between two consecutive weight updates. That implies providing ground-truth values
at the input and performing forward passing without any back-propagation. This parameter, has an influence on the
training speed, as it determines how often the weights are updated. We pick �3 = �2 + �1 − 1 as illustrated in Figure 2,
and optimize �1 as a hyperparameter.

The weights of the networks are initialized using the method of Xavier proposed in (Glorot and Bengio, 2010). We
utilize a stochastic optimization method with adaptive learning rate called Adam (Kingma and Ba, 2015) to update
the weights and biases. We add Zoneout (Krueger et al., 2017) regularization in the recurrent weights and variational
dropout (Gal and Ghahramani, 2016) regularization at the output weights (with the same keep probability) to both GRU
and LSTM networks to alleviate over-fitting. Furthermore, following (Vlachas et al., 2018) we add Gaussian noise
sampled from  (0, �n�) to the training data, where � is the standard deviation of the data. The noise level �n is tuned.Moreover, we also vary the number of RNN layers by stacking residual layers (He et al., 2016) on top of each other.
These deeper architectures may improve forecasting efficiency by learning more informative embedding at the cost of
higher computing times.

In order to train the network on a data sequence of T time-steps, we pass the whole dataset in pieces (batches) for
many iterations (epochs). An epoch is finished when the network has been trained on the whole dataset once. At the
beginning of every epoch we sample uniformly B = 32 integers from the set  = {1,… , T }, and remove them from it.
Starting from these indexes we iteratively pass the data through the network till we reach the last (maximum) index in
, training it with BBTT. Next, we remove all the intermediate indexes we trained on from . We repeat this process,
until  = ∅, proclaiming the end of the epoch. The batch-size is thus B = 32. We experimented with other batch-sizes
B ∈ {8, 16, 64} without significant improvement in performance of the methods used in this work.

As an additional over-fitting counter-measure we use validation-based early stopping, where 90% of the data is
used for training and the rest 10% for validation. When the validation error stops decreasing for Npatience = 20
consecutive epochs, the training round is over. We train the network forNrounds = 10 rounds decreasing the learning
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rate geometrically by dividing with a factor of ten at each round to avoid tuning the learning rate of the Adam optimizer.
When all rounds are finished, we pick the model with the lowest validation error among all epochs and rounds.

Preliminary work on tuning the hyperparameters of the Adam optimization algorithm apart from the learning rate,
i.e. �1 and �2 in the original paper (Kingma and Ba, 2015), did not lead to important differences on the results. For this
reason and due to our limited computational budget, we use the default values proposed in the paper (Kingma and Ba,
2015) (�1 = 0.9 and �2 = 0.999).
2.5. Reservoir Computing

Reservoir Computing (RC) aims to alleviate the difficulty in learning the recurrent connections of RNNs and
reduce their training time (Lukoševičius and Jaeger, 2009; Lukoševičius, 2012). RC relies on randomly selecting
the recurrent weights such that the hidden state captures the history of the evolution of the observable ot and train
the hidden-to-output weights. The evolution of the hidden state depends on the random initialization of the recurrent
matrix and is driven by the input signal. The hidden state is termed reservoir state to denote the fact that it captures
temporal features of the observed state history. This technique has been proposed in the context of Echo-State-Networks
(ESNs) (Jaeger and Haas, 2004) and Liquid State Machines with spiking neurons (LSM) (Maass et al., 2002).

In this work, we consider reservoir computers with fℎℎ given by the functional form
ht = tanh

(

Wℎ,iot +Wℎ,ℎht−1
)

, (8)
whereWℎ,i ∈ ℝdℎ×do , andWℎ,ℎ ∈ ℝdℎ×dℎ . Other choices of RC architectures are possible, including (Larger et al.,
2012, 2017; Haynes et al., 2015; Antonik et al., 2017) Following (Jaeger and Haas, 2004), the entries of Wℎ,i areuniformly sampled from [−!,!], where ! is a hyperparameter. The reservoir matrix Wℎ,ℎ has to be selected in a
way such that the network satisfies the “echo state property”. This property requires all of the conditional Lyapunov
exponents of the evolution of ht conditioned on the input (observations ot) to be negative so that, for large t, the
reservoir state ht does not depend on initial conditions. For this purpose,Wℎ,ℎ is set to a large low-degree matrix, scaled
appropriately to possess a spectral radius (absolute value of the largest eigenvalue) � whose value is a hyperparameter
adjusted so that the echo state property holds1. The effect of the spectral radius on the predictive performance of RC is
analyzed in (Jiang and Lai, 2019). Following (Pathak et al., 2018a) the output coupling f oℎ is set to

ôt+1 = Wo,ℎh̃t, (9)
where the augmented hidden state h̃t is a dℎ dimensional vector such that the ith component of h̃t is ℎ̃it = ℎit for half
of the reservoir nodes and ℎ̃it = (ℎit)2 for the other half, enriching the dynamics with the square of the hidden state in
half of the nodes. This was empirically shown to improve forecasting efficiency of RCs in the context of dynamical
systems (Pathak et al., 2018a). The matrixWo,ℎ ∈ ℝdo×dℎ is trained with regularized least-squares regression with
Tikhonov regularization to alleviate overfitting (Tikhonov and Arsenin, 1977; Yan and Su, 2009) following the same
recipe as in (Pathak et al., 2018a). The Tikhonov regularization � is optimized as a hyperparameter. Moreover, we
further regularize the training procedure of RC by adding Gaussian noise in the training data. This was shown to be
beneficial for both short-term performance and stabilizing the RC in long-term forecasting. For this reason, we add
noise sampled from  (0, �n�) to the training data, where � is the standard deviation of the data and the noise level �na tuned hyperparameter.

3. Comparison Metrics
The predictive performance of the models depends on the selection of model hyperparameters. For each model we

perform an extensive grid search of optimal hyperparameters, reported in the Appendix. All model evaluations are
mapped to a single Nvidia Tesla P100 GPU and are executed on the XC50 compute nodes of the Piz Daint supercomputer
at the Swiss national supercomputing centre (CSCS). In the following we quantify the prediction accuracy of the
methods in terms of the normalized root mean square error, given by

NRMSE(ô) =
√

⟨ (ô − o)2

�2
⟩

, (10)
1Because of the nonlinearity of the tanh function, � < 1 is not necessarily required for the echo state property to hold true.
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where ô ∈ ℝdo is the forecast at a single time-step, o ∈ ℝdo is the target value, and � ∈ ℝdo is the standard deviation in
time of each state component. In Equation (10), the notation ⟨⋅⟩ denotes the state space average (average of all elements
of a vector). To alleviate the dependency on the initial condition, we report the evolution of the NRMSE over time
averaged over 100 initial conditions randomly sampled from the attractor.

Perhaps the most basic characterization of chaotic motion is through the concept of Lyapunov exponents (Ott, 2002):
Considering two infinitesimally close initial conditions U (t = 0) and U (t = 0) + �U (t = 0), their separation |�U (t)| on
average diverges exponentially in time, |�U (t)|∕|�U (t = 0)| ∼ exp(Λt), as t → ∞. Note that the dimensionality of the
vector displacement �U (t) is that of the state space. In general, the Lyapunov exponent Λ depends on the orientation
(�U (t)∕|�U (t)|) of the vector displacement �U (t). In the t → ∞ limit, the number of possible values of Λ is typically
equal to the state space dimensionality. We denote these values Λ1 ≥ Λ2 ≥ Λ3 ≥ … and collectively call them the
Lyapunov exponent spectrum (LS) of the particular chaotic system. The Lyapunov exponent spectrum will be evaluated
in Section 6.

However, we note that a special role is played by Λ1, and only Λ1, the largest Lyapunov exponent. We refer to
the largest Lyapunov exponent as the Maximal Lyapunov exponent (MLE). Chaotic motion of a bounded trajectory
is defined by the condition Λ1 > 0. Importantly, if the orientation of �U (t = 0) is chosen randomly, the exponential
rate at which the orbits separate is Λ1 with probability one. This is because in order for any of the other exponents
(Λ2,Λ3,… ) to be realized, �U (t = 0) must be chosen to lie on a subspace of lower dimensionality than that of the state
space; i.e., the orientation of �U (t = 0) must be chosen in an absolutely precise way never realized by random choice.
Hence, the rate at which typical pairs of nearby orbits separate is Λ1, and T Λ1 = Λ−11 , the “Lyapunov time”, provides a
characteristic time scale for judging the quality of predictions based on the observed prediction error growth.

In order to obtain a single metric of the predictive performance of the models we compute the valid prediction time
(VPT) in terms of the MLE of the system Λ1 as

VPT = 1
Λ1
argmax

tf
{tf | NRMSE(ot) < �,∀t ≤ tf} (11)

which is the largest time tf the model forecasts the dynamics with a NRMSE error smaller than � normalized with
respect to Λ1. In the following, we set � = 0.5.In order to evaluate the efficiency of the methods in capturing the long-term statistics of the dynamical system, we
evaluate the mean power spectral density (power spectrum) of the state evolution over all i ∈ {1,… , do} elements
oit of the state (since the state ot is a vector). The power spectrum of the evolution of oit is given by PSD(f ) =
20 log10

(

2 |U (f )|
)

dB, where U (f ) = FFT (oit) is the complex Fourier spectrum of the state evolution.

4. Forecasting Reduced Order Observable Dynamics in the Lorenz-96
The accurate long-term forecasting of the state of a deterministic chaotic dynamical system is challenging as even a

minor initial error can be propagated exponentially in time due to the system dynamics even if the model predictions
are perfect. A characteristic time-scale of this propagation is the Maximal Lyapunov Exponent (MLE) of the system
as elaborated in Section 3. In practice, we are often interested in forecasting the evolution of an observable (that we
can measure and obtain data from), which does not contain the full state information of the system. The observable
dynamics are more irregular and challenging to model and forecast because of the additional loss of information.

Classical approaches to forecast the observable dynamics based on Takens seminal work (Takens, 1981), rely
on reconstructing the full dynamics in a high-dimensional phase space. The state of the phase space is constructed
by stacking delayed versions of the observed state. Assume that the state of the dynamical system is xt, but weonly have access to the less informative observable ot. The phase space state, i.e., the embedding state, is given by
zt = [ot,ot−� ,… ,ot−(d−1)� ], where the time-lag � and the embedding dimension d are the embedding parameters. For
d large enough, and in the case of deterministic nonlinear dynamical chaotic systems, there is generally a one-to-one
mapping between a point in the phase space and the full state of the system and vice versa. This implies that the dynamics
of the system are deterministically reconstructed in the phase space (Kantz and Schreiber, 1997) and that there exists a
phase space forecasting rule zt+1 = z(zt), and thus an observable forecasting rule ôt+1 = o(ot,ot−� ,… ,ot−(d−1)� ).The recurrent architectures presented in Section 2 fit to this framework, as the embedding state information can be
captured in the high-dimensional hidden state ht of the networks by processing the observable time series ot, withouthaving to tune the embedding parameters � and d.
PR Vlachas et al.: Preprint submitted to Elsevier Page 8 of 40
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In the following, we introduce a high-dimensional dynamical system, the Lorenz-96 model and evaluate the efficiency
of the methods to forecast the evolution of a reduced order observable of the state of this system. Here the observable
is not the full state of the system, and the networks need to capture temporal dependencies to efficiently forecast the
dynamics.
4.1. Lorenz-96 Model

The Lorenz-96 model was introduced by Edward Lorenz (Lorenz, 1995) to model the large-scale behavior of the
mid-latitude atmosphere. The model describes the time evolution of an atmospheric variable that is discretized spatially
over a single latitude circle modelled in the high-dimensional state x = [x0,… ,xJ−1], and is defined by the equations

dxj
dt

= (xj+1 − xj−2)xj−1 − xj + F , (12)

for j ∈ {0, 1,… , J − 1}, where we assume periodic boundary conditions x−1 = xJ−1, x−2 = xJ−2. In the followingwe consider a grid-size J = 40 and two different forcing regimes, F = 8 and F = 10.
We solve Equation (12) starting from a random initial condition with a Fourth Order Runge-Kutta scheme and a time-

step of �t = 0.01. We run the solver up to T = 2000 after ensuring that transient effects are discarded (Ttrans = 1000).The first half 105 samples are used for training and the rest for testing. For the forecasting test in the reduced order
space, we construct observables of dimension do ∈ {35, 40} by performing Singular Value Decomposition (SVD)
and keeping the most energetic do components. The complete procedure is described in the Appendix. The 35 most
energetic modes taken into account in the reduced order observable, explain approximately 98% of the total energy of
the system in both F ∈ {8, 10}.

As a reference timescale that characterizes the chaoticity of the system we use the Lyapunov time, which is the
inverse of the MLE, i.e., T Λ1 = 1∕Λ1. The Lyapunov spectrum of the Lorenz-96 system is calculated using a standard
technique based on QR decomposition (Abarbanel, 2012). This leads to Λ1 ≈ 1.68 for F = 8 and Λ1 ≈ 2.27 for
F = 10.
4.2. Results on the Lorenz-96 Model

The evolution of the NRMSE of the model with the largest VPT of each architecture for F ∈ {8, 10} is plotted
in Figure 3 for two values of the dimension of the observable do ∈ {35, 40}, where do = 40 corresponds to full stateinformation. Note that the observable is given by first transforming the state to its SVD modes and then keeping the domost energetic ones. As indicated by the slopes of the curves, models predicting the observable containing full state
information (do = 40) exhibit a slightly slower NRMSE increase compared to models predicting in the reduced order
state, as expected.

When the full state of the system is observed, the predictive performance of RC is superior to that of all other
models. Unitary networks diverge from the attractor in both reduced order and full space in both forcing regimes
F ∈ {8, 10}. This divergence (inability to reproduce the long-term climate of the dynamics) stems from the iterative
propagation of the forecasting error. The issue has been also demonstrated in previous studies in both RC (Pathak et al.,
2018b; Lu et al., 2018) and RNNs (Vlachas et al., 2018). This is because the accuracy of the network for long-term
climate modeling, depends not only on how well it approximates the dynamics on the attractor locally, but also on how
it behaves near the attractor, where we do not have data. As noted in Ref. (Lu et al., 2018), assuming that the network
has a full Lyapunov spectrum near the attractor, if any of the Lyapunov exponents that correspond to infinitesimal
perturbations transverse to the attractor phase space is positive, then the predictions of the network will eventually
diverge from the attractor. Empirically, the divergence effect can also be attributed to insufficient network size (model
expressiveness) and training, or attractor regions in the state space that are underrepresented in the training data (poor
sampling). Even with a densely sampled attractor, during iterative forecasting in the test data, the model is propagating
its own predictions, which might lead to a region near (but not on) the attractor where any positive Lyapunov exponent
corresponding to infinitesimal perturbations transverse to the attractor will cause divergence.

In this work, we use 105 samples to densely capture the attractor. Still, RC suffers from the iterative propagation of
errors leading to divergence especially in the reduced order forecasting scenario. In order to alleviate the problem, a
parallel scheme for RC is proposed in (Pathak et al., 2018b) that enables training of many reservoirs locally forecasting
the state. However, this method is limited to systems with local interactions in their state space. In the case we discuss
here the observable obtained by singular value decomposition does not fulfill this assumption. In many systems the
assumption of local interaction may not hold. GRU and LSTM show superior forecasting performance in the reduced
PR Vlachas et al.: Preprint submitted to Elsevier Page 9 of 40
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(a) Reduced order observable (do = 35), F = 8
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(b) Full state (do = 40), F = 8
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(c) Reduced order observable (do = 35), F = 10
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(d) Full state (do = 40), F = 10

Figure 3: The evolution of the NRMSE error (average over 100 initial conditions) of the model with the highest VPT for
each architecture in the Lorenz-96 with F ∈ {8, 10} and do ∈ {35, 40}. Reservoir computers show remarkable predictive
capabilities when the full state is observed, surpassing all other models (plots (b) and (d)). Predictions of Unitary networks
diverge from the attractor in all scenarios, while iterative forecasts of RC suffer from instabilities when only partial information
of a reduced order observable is available. In contrast, GRU and LSTM show stable behavior and superior performance in
the reduced order scenario (plots (a) and (c)).
RC ; GRU ; LSTM ; Unit ;

order scenario setting in Lorenz-96 as depicted in Figure 3a-Figure 3c. Especially in the case of F = 10, the LSTM
and GRU models are able to predict up to 2 Lyapunov times ahead before reaching an NRMSE of � = 1, compared
to RC and Unitary RNNs that reach this error threshold in 1 Lyapunov time. However, it should be noted that the
predictive utility of all models (considering an error threshold of � = 0.5) is limited to one Lyapunov time when applied
to reduced order data and up to two Lyapunov times in the full state.

In order to analyze the sensitivity of the VPT to the hyperparameter selection, we present violin plots in Figure 4,
showing a smoothed kernel density estimate of the VPT values of all tested hyperparameter sets for do = 35 and do = 45and F = 8 and F = 10. The horizontal markers denote the maximum, average and minimum value. Quantitative results
for both F ∈ {8, 10} are provided on Table 1.

In the full state scenario (do = 40) and forcing regime F = 8, RC shows a remarkable performance with a maximum
VPT ≈ 2.31, while GRU exhibits a max VPT of ≈ 1.34. The LSTM has a max VPT of ≈ 0.97, while Unitary RNNs
show the lowest forecasting ability with a max VPT of ≈ 0.58. From the violin plots in Figure 4 we notice that densities
are wider at the lower part, corresponding to many models (hyperparameter sets) having much lower VPT than the
maximum, emphasizing the importance of tuning the hyperparameters. Similar results are obtained for the forcing
regime F = 10. One noticeable difference is that the LSTM exhibits a max VPT of ≈ 1.73 which is higher than that of
GRU which is ≈ 1.59. Still, the VPT of RC in the full state scenario is ≈ 2.35 which is the highest among all models.

In contrast, in the case of do = 35 where the models are forecasting on the reduced order space in the forcing regime
F = 8, GRU is superior to all other models with a maximum VPT ≈ 0.98 compared to LSTM showing a max VPT
≈ 0.74. LSTM shows inferior performance to GRU which we speculate may be due to insufficient hyperparameter
optimization. Observing the results on F = 10 justifies our claim, as indeed both the GRU and the LSTM show the
PR Vlachas et al.: Preprint submitted to Elsevier Page 10 of 40
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Table 1
Maximum and average Valid Prediction Time (VPT) over all hyperparameter sets averaged
over 100 initial conditions sampled from the testing data for each model.

Model

Scenario
F = 8 F = 10

do = 35 do = 40 do = 35 do = 40

MAX AVG MAX AVG MAX AVG MAX AVG

Unit 0.43 0.34 0.58 0.34 0.49 0.39 0.63 0.41

LSTM 0.74 0.37 0.97 0.45 1.17 0.47 1.73 0.66

GRU 0.98 0.37 1.34 0.55 1.22 0.43 1.59 0.71

RC 0.55 0.32 2.31 0.79 0.60 0.36 2.35 0.83

35 40
Reduced order dimension

0.0

0.5

1.0

1.5

2.0

V
PT

(a) Forcing regime F = 8
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(b) Forcing regime F = 10

Figure 4: Violin plot showing the probability density of the VPT of all hyperparameter sets for each model for observable
dimension do = 35 and do = 40 and forcing regimes (a) F = 8 and (b) F = 10 in the Lorenz-96.
RC ; GRU ; LSTM ; Unit ;

highest VPT values of ≈ 1.22 and ≈ 1.17 respectively. In both scenarios F = 8 and F = 10, when forecasting the
reduced order space do = 35, RC shows inferior performance compared to both GRU and LSTM networks with max
VPT≈ 0.55 for F = 8 and ≈ 0.60 for F = 10. Last but not least, we observe that Unitary RNNs show the lowest
forecasting ability among all models. This may not be attributed to the expressiveness of Unitary networks, but rather
to the difficulty on identifying the right hyperparameters (Greff et al., 2016). In Figure 4 we observe that the violin
plots in the reduced order state are much thinner at the top compared to the ones in the full state. This implies that the
identification of hyperparameter sets that achieve a high VPT in the reduced order space is more challenging. This
emphasizes that forecasting on the reduced order state is a more difficult task compared to the full state scenario.

In the following, we evaluate the ability of the trained networks to forecast the long-term statistics of the dynamical
system. In almost all scenarios and all cases considered in this work, forecasts of Unitary RNN networks fail to remain
close to the attractor and diverge. For this reason, we omit the results on these networks.

We quantify the long-term behavior in terms of the power spectrum of the predicted dynamics and its difference with
the true spectrum of the testing data. In Figure 5, we plot the power spectrum of the predicted dynamics from the model
(hyperparameter set) with the lowest power spectrum error for each architecture for do ∈ {35, 40} and F ∈ {8, 10}
against the ground-truth spectrum computed from the testing data (dashed black line). In the full state scenario in
both forcing regimes (Figure 5b, Figure 5d), all models match the true statistics in the test dataset, as the predicted
power spectra match the ground-truth. These results imply that RC is a powerful predictive tool in the full order state
scenario, as RC models both capture the long-term statistics and have the highest VPT among all other models analyzed
in this work. However, in the case of a reduced order observable, the RC cannot match the statistics. In contrast, GRU
and LSTM networks achieve superior forecasting performance while matching the long-term statistics, even at this
challenging setting of a chaotic system with reduced order information.

An important aspect of machine learning models is their scalability to high-dimensional systems and their re-

PR Vlachas et al.: Preprint submitted to Elsevier Page 11 of 40



Forecasting of Complex Dynamics with RNNs

0 10 20 30 40 50
Frequency [Hz]

60

50

40

30

20

10

0

10

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(a) do = 35, F = 8.
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(b) do = 40, F = 8.
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(c) do = 35, F = 10.
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(d) do = 40, F = 10.
Figure 5: Predicted power spectrum of the RC, GRU, and LSTM networks with the lowest spectrum error forecasting the
dynamics of an observable consisting of the SVD modes of the Lorenz-96 system with forcing F ∈ {8, 10}. The observable
consists of the do = 35 most energetic modes or full state information do = 40. (a) Reduced order observable at forcing
F = 8. (b) Full state observable at forcing F = 8. (c) Reduced order observable at forcing F = 10. (d) Full state observable
at forcing F = 10.
RC ; GRU ; LSTM ; Groundtruth ;

quirements in terms of training time and memory utilization. Large memory requirements and/or high training times
might hinder the application of the models in challenging scenarios, like high-performance applications in climate
forecasting (Kurth et al., 2018). In Figure 6a and Figure 6d, we present a Pareto front of the VPT with respect to the
CPU RAM memory utilized to train the models with the highest VPT for each architecture for an input dimensions of
do = 35 (reduced order) and do = 40 (full dimension) respectively. Figure 6b and Figure 6e, show the corresponding
Pareto fronts of the VPT with respect to the training time. In case of the full state space (do = 40), the RC is able to
achieve superior VPT with smaller memory usage and vastly smaller training time than the other methods. However, in
the case of reduced order information (do = 35), the BPTT algorithms (GRU and LSTM) are superior to the RC even
when the latter is provided with one order of magnitude more memory.

Due to the fact that the RNN models are learning the recurrent connections, they are able to reach higher VPT when
forecasting in the reduced order space without the need for large models. In contrast, in RC the maximum reservoir size
(imposed by computer memory limitations) may not be sufficient to capture the dynamics of high-dimensional systems
with reduced order information and non-local interactions. We argue that this is the reason why the RC models do not
reach the performance of GRU/LSTM trained with Back-propagation (see Figure 6a).

At the same time, letting memory limitations aside, training of RC models requires the solution of a linear system
of equationsHW T

out = Y , withH ∈ ℝdN×dℎ ,W T
out ∈ ℝdℎ×do and Y ∈ ℝdN×do (see Appendix A). The Moore-Penrose

method of solving this system, scales cubically with the reservoir size as it requires the inversion of a matrix with
dimensions dℎ × dℎ. We also tried an approximate iterative method termed LSQR based on diagonalization, without
any significant influence on the training time. In contrast, the training time of an RNN is very difficult to estimate a
priori, as convergence of the training method depends on initialization and various other hyperparameters and are not
necessarily dependent on the size. That is why we observe a greater variation of the training time of RNN models.
Similar results are obtained for F = 10, the interested reader is referred to the appendix.

In the following, we evaluate to which extend the trained models overfit to the training data. For this reason, we
measure the VPT in the training dataset and plot it against the VPT in the test dataset for every model we trained. This
plot provides insight on the generalization error of the models. The results are shown in Figure 6c, and Figure 6f
for do = 35 and do = 40. Ideally a model architecture that guards effectively against overfitting, exhibits a low
generalization error, and should be represented by a point in this plot that is close to the identity line (zero generalization
error). As the expressive power of a model increases, the model may fit better to the training data, but bigger models
are more prone to memorizing the training dataset and overfitting (high generalization error). Such models would be
represented by points on the right side of the plot. In the reduced order scenario, GRU and LSTM models lie closer
to the identity line than RC models, exhibiting lower generalization errors. This is due to the validation-based early
stopping routine utilized in the RNNs that guards effectively against overfitting.

We may alleviate the overfitting in RC by tuning the Tikhonov regularization parameter (�). However, this requires
to rerun the training for every other combination of hyperparameters. For the four tested values � ∈ {10−3, 10−4, 10−5,
10−6} of the Tikhonov regularization parameter the RC models tend to exhibit higher generalization error compared
to the RNNs trained with BBTT. We also tested more values � ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8},
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(a) VPT w.r.t. RAM memory for do = 35.
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(b) VPT w.r.t. the total training time for
do = 35.
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(c) VPT in test data w.r.t. VPT in the train
data for do = 35.
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(d) VPT w.r.t. RAM memory for do = 40.
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(e) VPT w.r.t. the total training time for
do = 40.
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(f) VPT in test data w.r.t. VPT in the train
data for do = 40.

Figure 6: Forecasting results on the dynamics of an observable consisting of the SVD modes of the Lorenz-96 system with
F = 8 and state dimension 40. The observable consists of the do ∈ {35, 40} most energetic modes. (a), (d) Valid prediction
time (VPT) plotted w.r.t. the required RAM memory for dimension do ∈ {35, 40}. (b), (e) VPT plotted w.r.t. total
training time for dimension do ∈ {35, 40}. (c), (f) VPT measured from 100 initial conditions sampled from the test data
plotted against the VPT from 100 initial conditions sampled from the training data for each model for do ∈ {35, 40}. In
the reduced order space (do = 35) RCs tend to overfit easier compared to GRUs/LSTMs that utilize validation-based early
stopping. In the full order space (do = 40) , RCs demonstrate excellent generalization ability and high forecasting accuracy.
RC (or ) ; GRU (or ) ; LSTM (or ) ; Unit (or ) ; Ideal ;

while keeping fixed the other hyperparameters, without any observable differences in the results.
However, in the full-order scenario, the RC models achieve superior forecasting accuracy and generalization ability

as clearly depicted in Figure 6f. Especially the additional regularization of the training procedure introduced by adding
Gaussian noise in the data was decisive to achieve this result.

An example of an iterative forecast in the test dataset, is illustrated in Figure 7 for F = 8 and do ∈ {35, 40}.
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(a) Input dimension (dimension of the observable in the reduced order space) do = 35

(b) Input dimension (dimension of the observable in the reduced order space) do = 40 (full state)
Figure 7: Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 8 in the testing
dataset with GRU, LSTM, RC and a Unitary network along with the true (target) evolution and the associated NRSE
contours for the reduced order observable (a) do = 35 and the full state (b) do = 40. The evolution of the component
average NRSE (NMRSE) is plotted to facilitate comparison. Unitary networks suffer from propagation of forecasting error
and eventually their forecasts diverge from the attractor. Forecasts in the case of an observable dimension do = 40 diverge
slower as the dynamics are deterministic. In contrast, forecasting the observable with do = 35 is challenging due to both (1)
sensitivity to initial condition and (2) incomplete state information that requires the capturing of temporal dependencies. In
the full-state setting, RC models achieve superior forecasting accuracy compared to all other models. In the challenging
reduced order scenario, LSTM and GRU networks demonstrate a stable behavior in iterative prediction and reproduce the
long-term statistics of the attractor. In contrast, in the reduced order scenario RC suffer from frequent divergence (refer to
the appendix).
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;
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Figure 8: Illustration of the parallel architecture for a group size of G = 2 and an interaction length of I = 1. The network
consists of multiple RNNs with different parameters. Each RNN is trained to forecast the evolution of G elements of the
observable. Additional information of I elements from each neighboring network (left and right) are provided as additional
input to capture local correlations.

5. Parallel Forecasting Leveraging Local Interactions
In spatially extended dynamical systems the state space (e.g., vorticity, velocity field, etc.) is high-dimensional

(or even infinite dimensional), since an adequately fine grid is needed to resolve the relevant spatio-temporal scales
of the dynamics. Even though RC and RNNs can be utilized for modeling and forecasting of these systems in the
short-term, the RC and RNN methods described in Section 2 do not scale efficiently with the input dimension, i.e., as the
dimensionality of the observable ot ∈ ℝdo increases. Two limiting factors are the required time and RAM memory to
train the model. As do increases, the size dℎ of the reservoir network required to predict the system using only a single
reservoir rises. This implies higher training times and more computational resources (RAM memory), which render the
problem intractable for large values of do. The same applies for RNNs. More limiting factors arise by taking the process
of identification of optimal model hyperparameters into account, since loading, storing and processing a very large
number of large models can be computationally infeasible. However, these scaling problems for large systems can be
alleviated in case the system is characterized by local state interactions or translationally invariant dynamics. In the first
case, as shown in Figure 8 the modeling and forecasting task can be parallelized by employing multiple individually
trained networks forecasting locally in parallel exploiting the local interactions, while, if translation invariance also
applies, the individual parallel networks can be identical and training of only one will be sufficient. This parallelization
concept is utilized in RC in (Pathak et al., 2018a; Parlitz and Merkwirth, 2000). The idea dates back to local delay
coordinates (Parlitz and Merkwirth, 2000). The model shares ideas from convolutional RNN architectures (Sainath et al.,
2015; Shi et al., 2015) designed to capture local features that are translationally invariant in image and video processing
tasks. In this section, we extend this parallelization scheme to RNNs and compare the efficiency of parallel RNNs and
RCs in forecasting the state dynamics of the Lorenz-96 model and Kuramoto-Sivashinsky equation discretized in a fine
grid.
5.1. Parallel Architecture

Assume that the observable is ot ∈ ℝdo and each element of the observable is denoted by oit ∈ ℝ,∀i ∈ {1,… , do}.In case of local interactions, the evolution of each element is affected by its spatially neighboring grid points. The
elements oi are split intoNg groups, each of which consisting of G spatially neighboring elements such that do = GNg .The parallel model employs Ng RNNs, each of which is utilized to predict a spatially local region of the system
observable indicated by the G group elements oi. Each of theNg RNNs receives G inputs oi from the elements i it
forecasts in addition to I inputs from neighboring elements on the left and on the right, where I is the interaction length.
An example with G = 2 and I = 1 is illustrated in Figure 8.

During the training process, the networks can be trained independently. However, for long-term forecasting, a
communication protocol has to be utilized as each network requires the predictions of neighboring networks to infer. In
PR Vlachas et al.: Preprint submitted to Elsevier Page 15 of 40



Forecasting of Complex Dynamics with RNNs

the case of a homogeneous system, where the dynamics are translation invariant, the training process can be drastically
reduced by utilizing one single RNN and training it on data from all groups. The weights of this RNN are then copied
to all other members of the network. In the following we assume that we have no knowledge of the underlying data
generating mechanism and its properties, so we assume the data is not homogeneous.

The elements of the parallel architecture are trained independently, while the MPI (Dalcín et al., 2011, 2008; Walker
and Dongarra, 1996) communication protocol is utilized to communicate the elements of the interaction for long-term
forecasting.
5.2. Results on the Lorenz-96

In this section, we employ the parallel architecture to forecast the state dynamics of the Lorenz-96 system explained
in Section 4.1 with a state dimension of do = 40. Note that in contrast to Section 4.2, we do not construct an observableand then forecast the reduced order dynamics. Instead, we leverage the local interactions in the state space and employ
an ensemble of networks forecasting the local dynamics.

Instead of a single RNN model forecasting the do = 40 dimensional global state (composed of the values of the
state in the 40 grid nodes), we consider Ng = 20 separate RNN models, each forecasting the evolution of a G = 2
dimensional local state (composed of the values of the state in 2 grid nodes). In order to forecast the evolution of the
local state, we take into account its interaction with I = 4 grid nodes on its left and on its right. The group size of
the parallel models is thus G = 2, while the interaction length is I = 4. As a consequence, each model receives at its
input an 2I +G = 10 dimensional state and forecasts the evolution of a local state composed from 2 grid nodes. The
size of the hidden state in RC is dℎ ∈ {1000, 3000, 6000, 12000}. Smaller networks of size dℎ ∈ {100, 250, 500} areselected for GRU and LSTM. The rest of the hyperparameters are given in the appendix. Results for Unitary networks
are omitted, as the identification of hyperparameters leading to stable iterative forecasting was computationally heavy
and all trained models led to unstable systems that diverged after a few iterations.

In Figure 9a, we plot the VPT time of the RC and the BPTT networks. We find that RNN trained by BPTT achieve
comparable predictions with RC, albeit using much smaller number hidden nodes (between 100 and 500 for BPTT vs
6000 to 12000 for RC). We remark that RC with 3000 and 6000 nodes have slightly lower VPT than GRU and LSTM
but require significantly lower training times as shown in Figure 9c. At the same time, using 12000 nodes for RC
implies high RAM requirements, more than 3 GB per rank, as depicted in Figure 9b.

As elaborated in Section 4.2 and depicted in Figure 3a, the VPT reached by large nonparallelized models that are
forecasting the 40 SVD modes of the system is approximately 1.4. We also verified that the nonparallelized models of
Section 4.1 when forecasting the 40 dimensional state containing local interactions instead of the 40 modes of SVD,
reach the same predictive performance. Consequently, as expected the VPT remains the same whether we are forecasting
the state or the SVD modes as the system is deterministic. By exploiting the local interactions and employing the
parallel networks, the VPT is increased from ≈ 1.4 to ≈ 3.9 as shown in Figure 9a. The NRMSE error of the best
performing hyperparameters is given in Figure 10a. All models are able to reproduce the climate as the reconstructed
power spectrum plotted in Figure 10b matches the true one. An example of an iterative prediction with LSTM, GRU
and RC models starting from an initial condition in the test dataset is provided in Figure 11.
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Figure 9: (a) Valid prediction time (VPT), (b) CPU memory utilization and (c) total training time of RNN parallel
architectures with group size G = 2 and an interaction length I = 4 forecasting the dynamics of Lorenz-96 with state
dimension do = 40 (full state). GRU and LSTM results do not depend significantly on network size. RC with 3000 or 6000
nodes have slightly lower VPT, but require much less training time. Increasing RC size to more than 12000 nodes was not
feasible due to memory requirements.
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Figure 10: (a) The evolution of the NRMSE error (averaged over 100 initial conditions) of different parallel models in the
Lorenz-96 with state dimension do = 40. (b) The reconstructed power spectrum. All models accurately capture the power
spectrum. RCs with dℎ ∈ {6000, 12000} nodes are needed to match the predictive performance of an LSTM with 100 nodes.
RC-1000 ; RC-6000 ; RC-12000 ; GRU-500 ; LSTM-100 ; Groundtruth ;

5.3. Kuramoto-Sivashinsky
The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial differential equation of fourth order that is used as

a turbulence model for various phenomena. It was derived by Kuramoto in (Kuramoto, 1978) to model the chaotic
behavior of the phase gradient of a slowly varying amplitude in a reaction-diffusion type medium with negative viscosity
coefficient. Moreover, Sivashinsky (Sivashinsky, 1977) derived the same equations when studying the instantaneous
instabilities in a laminar flame front. For our study, we restrict ourselves to the one dimensional K-S equation

)u
)t
= −� )

4u
)x4

− )2u
)x2

− u )u
)x
, (13)

on the domain Ω = [0, L] with periodic boundary conditions u(0, t) = u(L, t). The dimensionless boundary size L
directly affects the dimensionality of the attractor. For large values of L, the attractor dimension scales linearly with
L (Manneville, 1984).

In order to spatially discretize Equation (13) we select a grid size Δx with D = L∕Δx + 1 the number of nodes.
Further, we denote with ui = u(iΔx) the value of u at node i ∈ {0,… , D−1}. In the following, we select � = 1, L = 200,
�t = 0.25 and a grid of do = 512 nodes. We discretize Equation (13) and solve it using the fourth-order method for stiff
PDEs introduced in (Kassam and Trefethen, 2005) up to T = 6 ⋅ 104. This corresponds to 24 ⋅ 104 samples. The first
4 ⋅ 104 samples are truncated to avoid initial transients. The remaining data are divided to a training and a testing dataset
of 105 samples each. The observable is considered to be the do = 512 dimensional state. The Lyapunov time T Λ1 of
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Figure 11: Contour plots of a spatio-temporal forecast in the testing dataset with parallel GRU, LSTM, and RC networks
along with the true (target) evolution and the associated NRSE contours in the Lorenz-96 system with the full state as an
observable do = 40. The evolution of the component average NRSE (NMRSE) is plotted to facilitate comparison.
RC-1000 ; RC-12000 ; GRU-500 ; LSTM-100 ;

the system (see Section 3) is utilized as a reference timescale. We approximate it with the method of Pathak (Pathak
et al., 2018a) for L = 200 and it is found to be T Λ1 ≈ 0.094.
5.4. Results on the Kuramoto-Sivashinsky Equation

In this section, we present the results of the parallel models in the Kuramoto-Sivashinsky equation. The full system
state is used as an observable, i.e., do = 512. The group-size of the parallel models is set to G = 8, while the interaction
length is I = 8. The total number of groups isNg = 64. Each member forecasts the evolution of 8 state components,
receiving at the input 24 components in total. The size of the reservoir in RC is dℎ ∈ {500, 1000, 3000}. For GRU and
LSTM networks we vary dℎ ∈ {100, 250, 500}. The rest of the hyperparameters are given in the appendix. Results
on Unitary networks are omitted, as the configurations tried in this work led to unstable models diverging after a few
time-steps in the iterative forecasting procedure.

The results are summed up in the bar-plots in Figure 12. In Figure 12a, we plot the VPT time of the models. LSTM
models reach VPTs of ≈ 4, while GRU show an inferior predictive performance with VPTs of ≈ 3.5. An RC with
dℎ = 500 reaches a VPT of ≈ 3.2, and an RC with 1000 modes reaches the VPT of LSTM models with a VPT of ≈ 3.9.
Increasing the reservoir capacity of the RC to dℎ = 3000 leads to a model exhibiting a VPT of ≈ 4.8. In this case, the
large RC model shows slightly superior performance to GRU/LSTM. The low performance of GRU models can be
attributed to the fact that in the parallel setting the probability that any RNN may converge to bad local minima rises,
with a detrimental effect on the total predictive performance of the parallel ensemble. In case of spatially translational
invariant systems, we could alleviate this problem by using one single network. Still, training the single network to data
from all spatial locations would be expensive.

As depicted in Figure 12, the reservoir size of 3000 is enough for RC to reach and surpass the predictive performance

PR Vlachas et al.: Preprint submitted to Elsevier Page 18 of 40



Forecasting of Complex Dynamics with RNNs

0 1 2 3 4
VPT

LSTM-120
LSTM-100
LSTM-80
GRU-120
GRU-100
GRU-80
RC-3000
RC-1000
RC-500

(a) Valid prediction time in the test
dataset

0.0 0.5 1.0 1.5 2.0 2.5
Training time [s] ×104

LSTM-120

LSTM-100

LSTM-80

GRU-120

GRU-100

GRU-80

RC-3000

RC-1000

RC-500

(b) Training time

0.0 0.5 1.0 1.5
Average RAM memory consumption [MB]1e3

LSTM-120
LSTM-100

LSTM-80
GRU-120
GRU-100

GRU-80
RC-3000
RC-1000

RC-500

(c) Average RAM memory requirement

Figure 12: (a) Valid prediction time (VPT), (b) total training time, and (c) CPU memory utilization of parallel RNN
architectures with group size G = 8 and an interaction length I = 8 forecasting the dynamics of Kuramoto-Sivashinsky
equation with state dimension do = 512.
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(a) NRMSE error evolution
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(b) Power spectrum
Figure 13: (a) The evolution of the NRMSE error (averaged over 100 initial conditions) of different parallel models in the
Kuramoto-Sivashinsky equation with state dimension do = 512. (b) The power spectrum. All models capture the statistics
of the system.
RC-500 ; RC-1000 ; RC-3000 ; GRU-80 ; LSTM-80 ; Groundtruth ;

of RNNs utilizing a similar amount of RAM memory and a much lower amount of training time as illustrated in
Figure 12b.

The evolution of the NRMSE is given in Figure 13a. The predictive performance of a small LSTM network with 80
hidden units, matches that of a large RC with 1000 hidden units. In Figure 13b, the power spectrum of the predicted
state dynamics of each model is plotted along with the true spectrum of the equations. The three models captured
successfully the statistics of the system, as we observe a very good match. An example of an iterative prediction with
LSTM, GRU and RC models starting from an initial condition in the test dataset is provided in Figure 14.
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Figure 14: Contour plots of a spatio-temporal forecast starting from an initial condition in the testing dataset with
parallel GRU, LSTM, and RC networks along with the true (target) evolution and the associated NRSE contours in the
Kuramoto-Sivashinsky equation with the full state as an observable do = 512. The evolution of the component average
NRSE (NMRSE) is plotted to facilitate comparison.
RC-1000 ; RC-3000 ; GRU-80 ; LSTM-80 ; Groundtruth ;
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6. Calculation of Lyapunov Exponents in the Kuramoto-Sivashinsky Equation
The recurrent models utilized in this study can be used as surrogate models to calculate the Lyapunov exponents

(LEs) of a dynamical system relying only on experimental time-series data. The LEs characterize the rate of separation
if positive (or convergence if negative) of trajectories that are initialized infinitesimally close in the phase space. They
can provide an estimate of the attractor dimension according to the Kaplan-Yorke formula (Kaplan and Yorke, 1979).
Early efforts to solve the challenging problem of data-driven LE identification led to local approaches (Wolf et al., 1985;
Sano and Sawada, 1985) that are computationally inexpensive at the cost of requiring a large amount of data. Other
approaches fit a global model to the data (Maus and Sprott, 2013) and calculate the LE spectrum using the Jacobian
algorithm. These approaches were applied to low-order systems.

A recent machine learning approach utilizes deep convolutional neural networks for LE and chaos identification,
without estimation of the dynamics (Makarenko, 2018). An RC-RNN approach capable of uncovering the whole LE
spetrum in high-dimensional dynamical systems is proposed in (Pathak et al., 2018a). The method is based on the
training of a surrogate RC model to forecast the evolution of the state dynamics, and the calculation of the Lyapunov
spectrum of the hidden state of this surrogate model. The RC method demonstrates excellent agreement for all positive
Lyapunov exponents and many of the negative exponents for the KS equation with L = 60 (Pathak et al., 2018a),
alleviating the problem of spurious Lyapunov exponents of delay coordinate embeddings (Dechert and Gençay, 1996).
We build on top of this work and demonstrate that a GRU trained with BPTT can reconstruct the Lyapunov spectrum
accurately with lower error for all positive Lyapunov exponents at the cost of higher training times.

The Lyapunov spectrum of the KS equation is computed by solving the KS equations in the Fourier space with a
fourth order time-stepping method called ETDRK4 (Kassam and Trefethen, 2005) and utilizing a QR decomposition
approach as in (Pathak et al., 2018a). The Lyapunov spectrum of the RNN and RC surrogate models is computed based
on the Jacobian of the hidden state dynamics along a reference trajectory, while Gram-Schmidt orthonormalization is
utilized to alleviate numerical divergence. We employ a GRU-RNN over LSTM-RNN, due to the fact that the latter
has two coupled hidden states, rendering the computation of the Lyapunov spectrum mathematically more involved
and computationally more expensive. The interested reader can refer to the Appendix for the details of the method.
The identified maximum LE is Λ1 ≈ 0.08844. In this work, a large RC with dℎ = 9000 nodes is employed for LS
calculation in the Kuramoto-Sivashinsky equation with parameter L = 60 and D = 128 grid points as in (Pathak et al.,
2018a). The largest LE identified in this case is Λ1 ≈ 0.08378 leading to a relative error of 5.3%. In order to evaluatethe efficiency of RNNs, we utilize a large GRU with dℎ = 2000 hidden units. An iterative RNN roll-out ofN = 104
total time-steps was needed to achieve convergence of the spectrum. The largest Lyapunov exponent identified by the
GRU is Λ1 ≈ 0.0849 reducing the error to ≈ 4%. Both surrogate models identify the correct Kaplan-Yorke dimension
KY ≈ 15, which is the largest LE such that∑i Λi > 0.The first 26 Lyapunov exponents computed the GRU, RC as well as using the true equations of the Kuramoto-
Sivashinsky are plotted in Figure 15. We observe a good match between the positive Lyapunov exponents by both
GRU and RC surrogates. The positive Lyapunov exponents are characteristic of chaotic behavior. However, the zero
Lyapunov exponents Λ7 and Λ8 cannot be captured either with RC or with RNN surrogates. This is also observed in
RC in (Pathak et al., 2018a), and apparently the GRU surrogate employed in this work does not alleviate the problem.
In Figure 15b, we augment the RC and the GRU spectrum with these two additional exponents to illustrate that there is
an excellent agreement between the true LE and the augmented LS identified by the surrogate models. The relative and
absolute errors in the spectrum calculation are illustrated in Figure 16. After augmenting with the two zero LE, we get
a mean absolute error of 0.012 for RC and 0.008 for GRU. The mean relative error is 0.23 for RC, and 0.22 for GRU.
As a conclusion, GRU in par with RC networks can be used to replicate the chaotic behavior of a reference system and
calculate the Lyapunov spectrum accurately.
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Figure 15: (a) Estimated Lyapunov exponents Λk of the KS equation with L = 60. The true Lyapunov exponents are
illustrated with green crosses, red circles are calculated with the RC surrogate, while the blue rectangles with GRU. In (b)
we augment the computed spectrums with the two zero Lyapunov exponents Λ7,Λ8. Inset plots zoom in the zero crossing
regions.
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Figure 16: (a) Absolute and (b) Relative error of the LE spectrum of the KS equation with L = 60. The LE spectrum
identified using the GRU shows a better agreement with the spectrum identified by the Kuramoto-Sivashinsky equations.
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7. Conclusions
In this work, we employed several variants of recurrent neural networks and reservoir computing to forecast

the dynamics of chaotic systems. We present a comparative study based on their efficiency in capturing temporal
dependencies, evaluate how they scale to systems with high-dimensional state space, and how to guard against
overfitting. We highlight the advantages and limitations of these methods and elucidate their applicability to forecasting
spatiotemporal dynamics.

We considered three different types of RNN cells that alleviate the well-known vanishing and exploding gradient
problem in Back-propagation through time training (BPTT), namely LSTM, GRU and Unitary cells. We benchmarked
these networks against reservoir computers with random hidden to hidden connection weights, whose training procedure
amounts to least square regression on the output weights.

The efficiency of the models in capturing temporal dependencies in the reduced order state space is evaluated
on the Lorenz-96 system in two different forcing regimes F = {8, 10}, by constructing a reduced order observable
using Singular Value Decomposition (SVD) and keeping the most energetic modes. Even though this forecasting
task is challenging due to (1) chaotic dynamics and (2) reduced order information, LSTM and GRU show superior
forecasting ability to RC utilizing similar amounts of memory at the cost of higher training times. GRU and LSTM
models demonstrate stable behavior in the iterative forecasting procedure in the sense that the forecasting error usually
does not diverge, in stark contrast to RC and Unitary forecasts. Large RC models tend to overfit easier than LSTM/GRU
models, as the latter are utilizing validation-based early stopping and regularization techniques (e.g., Zoneout, Dropout)
that guard against overfitting which are not directly applicable to RC. Validation in RC amounts to tuning an additional
hyperparameter, the Tikhonov regularization. However, RC shows excellent forecasting efficiency when the full state
of the system is observed, outperforming all other models by a wide margin, while also reproducing the frequency
spectrum of the underlying dynamics.

RNNs and RC both suffer from scalability problems in high-dimensional systems, as the required hidden state size dℎto capture the high-dimensional dynamics can become prohibitively large especially with respect to the computational
expense of training. In order to scale the models to high-dimensional systems we employ a parallelization scheme that
exploits the local interactions in the state of a dynamical system. As a reference, we consider the Lorenz-96 system
and the Kuramoto-Sivashinsky equation, and we train parallel RC, GRU, and LSTM models of various sizes. Iterative
forecasting with parallel Unitary models diverged after a few timesteps in both systems. Parallel GRU, LSTM and RC
networks reproduced the long-term attractor climate, as well as the power spectrum of the state of the Lorenz-96 and
the Kuramoto-Sivashinsky equation matched with the predicted ones.

In the Lorenz-96 and the Kuramoto-Sivashinsky equation, the parallel LSTM and GRU models exhibited similar
predictive performance compared to the parallel RC. The memory requirements of the models are comparable. RC
networks require large reservoirs with 1000 − 6000 nodes per member to reach the predictive performance of parallel
GRU/LSTM with a few hundred nodes, but their training time is significantly lower.

Last but not least, we evaluated and compared the efficiency of GRU and RC networks in capturing the Lyapunov
spectrum of the KS equation. The positive Lyapunov exponents are captured accurately by both RC and GRU. Both
networks cannot reproduce two zero LEs Λ7 and Λ8. When these two are discarded from the spectrum, GRU and RC
networks show comparable accuracy in terms of relative and absolute error of the Lyapunov spectrum.

Further investigation on the underlying reasons why the RNNs and RC cannot capture the zero Lyapunov exponents
is a matter of ongoing work. Another interesting direction could include studying the memory capacity of the networks.
This could offer more insight into which architecture and training method is appropriate for tasks with long-term
dependencies. Moreover, we plan to investigate a coupling of the two training approaches to further improve their
predictive performance, for example a network can utilize both RC and LSTM computers to identify the input to output
mapping. While the weights of the RC are initialized randomly to satisfy the echo state property, the output weights
alongside with the LSTM weights can be optimized by back-propagation. This approach, although more costly, might
achieve higher efficiency, as the LSTM is used as a residual model correcting the error that a plain RC would have.

Although we considered a batched version of RC training to reduce the memory requirements, further research is
needed to alleviate the memory burden associated with the matrix inversion (see Appendix A, Equation (15)) and the
numerical problems associated with the eigenvalue decomposition of the sparse weight matrix.

Further directions could be the initialization of RNN weights with RC based heuristics based on the echo state
property and fine-tuning with BPTT. This is possible for the plain cell RNN, where the heuristics are directly applicable.
However, in more complex architectures like the LSTM or the GRU, more sophisticated initialization schemes that

PR Vlachas et al.: Preprint submitted to Elsevier Page 23 of 40



Forecasting of Complex Dynamics with RNNs

ensure some form of echo state property have to be investigated. The computational cost of training networks of the size
of RC with back-propagation is also challenging. Another interesting topic, is to analyze the influence of the amount of
training data, and system size on the predictive efficiency of the methods, under the lens of the recently discovered
“double descent” curve Belkin et al. (2019), supporting that over-parametrized networks (increasing model capacity
beyond the point of interpolation) results in improved generalization.

One topic not covered in this work, is invertibility of the models, when forecasting the full state dynamics. Non-
invertible models like the RNNs trained in this work, may suffer from spurious dynamics not present the training data
and the underlying governing equations (Gicquel et al., 1998; Frouzakis et al., 1997). Invertible RNNs may constitute a
promising alternative to further improve accurate short-term prediction and capturing of the long-term dynamics.

In conclusion, recurrent neural networks for data-driven surrogate modeling and forecasting of chaotic systems can
efficiently be used to model high-dimensional dynamical systems, can be parallelized alleviating scaling problems and
constitute a promising research subject that requires further analysis.

8. Data and Code
The code and data will be available upon publication in the following link https://github.com/pvlachas/RNN-RC-

Chaos to assist reproducibility of the results. The software was written in Python utilizing Tensorflow (Abadi et al.,
2016) and Pytorch (Paszke et al., 2017) for automatic differentiation and the design of the neural network architectures.
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(c) do = 40, F = 8
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(d) do = 40, F = 10

Figure 17: VPT in the testing data plotted against VPT in the training data for RC and GRU models trained with added
noise of different levels in the data. Noise only slightly varies the forecasting efficiency in GRU networks. In contrast, the
effectiveness of RC in forecasting the full-order system is increased as depicted in plots (b) and (d).

A. Memory Efficient Implementation of RC Training
In order to alleviate the RAM requirement for the computation of the RC weights we resort to a batched approach. Assuming the hidden reservoir

size is given by h ∈ ℝdℎ , by teacher forcing the RC network with true data from the system for dN time-steps and stacking the evolution of the
hidden state in a single matrix we end up with matrix H ∈ ℝdN×dℎ . Moreover, by stacking the target values, which are the input data shifted by one
time-step, we end up in the target matrix Y ∈ ℝdN×do , where do is the dimension of the observable we are predicting. In order to identify the output
weightsWout ∈ ℝdo×dℎ , we need to solve the linear system of dN ⋅ do equations

HW T
out = Y. (14)

A classical way to solve this system of equations is based on the Moore-Penrose inverse (pseudo-inverse) computed using

Wout = YTH
⏟⏟⏟

Y

(

HTH
⏟⏟⏟

H

+�I
)−1 (15)

where � is the Tikhonov regularization parameter and I the unit matrix. In our case dN is of the order of 105 and dN >> dℎ. To reduce the memory
requirements of the training method, we compute the matrices H = HTH ∈ ℝdℎ×dℎ and Y = YTH ∈ ℝdo×dℎ in a time-batched schedule.

Specifically, we initialize Y = 0 and H = 0. Then every dn time-steps with dn << dN , we compute the batch matrix Hb = HTb Hb ∈ ℝdℎ×dℎ ,
where Hb ∈ ℝdn×dℎ is formed by the stacking the hidden state only for the last dn time-steps. In the same way, we compute Yb = YTb Hb ∈ ℝdo×dℎ ,
where Yb ∈ ℝdn×do is formed by the stacking of the target data for the last dn time-steps. After every batch computation we update our beliefs with
H← H +Hb and Y ← Y + Yb.

In addition, we also experimented with two alternative solvers for the linear system Equation (14) in the Lorenz-96. We tried a dedicated
regularized least-squares routine utilizing an iterative procedure (scipy.sparse.linalg.lsqr) and a method based on stochastic gradient descent.
We considered the solver as an additional hyperparameter of the RC models. After testing the solvers in Lorenz-96 systems, we found out that the
method of pseudo-inverse provides the most accurate results. For this reason, and to spare computational resources, we used this method for the
Kuramoto-Sivashinsky system.

B. Regularizing Training with Noise
In our study, we investigate the effect of noise to the training data. In Figure 17, we plot the Valid Prediction Time (VPT) in the testing data

with respect to the VPT that each model achieves in the training data. We find out that RC models trained with additional noise of 5 − 10 ‰not
only achieve better generalization, but their forecasting efficiency improves in both training and testing dataset. Moreover, the effect of divergent
predictions by iterative forecasts is alleviated significantly. In contrast, adding noise does not seem to have an important impact on the performance
of GRU models.
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(a) State evolution F = 8 (b) Energy spectrum F = 8 (c) SVD mode evolution F = 8

(d) State evolution F = 10 (e) Energy spectrum F = 10 (f) SVD mode evolution F = 10

Figure 18: Energy spectrum of Lorenz-96

C. Dimensionality Reduction with Singular Value Decomposition
Singular Value Decomposition (SVD) can be utilized to perform dimensionality reduction in a dataset by identifying the modes that capture the

highest variance in the data and then performing a projection on these modes. Assuming that a data matrix is given by stacking the time-evolution of
a state u ∈ D as U = [u1,u2,… ,uN ], where the indexN is the number of data samples. By subtracting the temporal mean u and stacking the data,
we end up with the data matrix U ∈ ℝT×D. Performing SVD on U leads to

U =M�VT , M ∈ ℝN×N , � ∈ ℝN×D, V ∈ ℝD×D, (16)

with Σ diagonal, with descending diagonal elements. The columns of matrix V are considered the modes of the SVD, while the square D singular
values of � correspond to the data variance explained by these modes. This variance is also referred to as energy. In order to calculate the percentage
of the total energy the square of the singular value of each mode has to be divided by the sum of squares of the singular values of all modes. In order
to reduce the dimensionality of the dataset, we first have to decide on the reduced order dimension rdim < D. Then we identify the eigenvectors
corresponding to the most high-energetic eigenmodes. These are given by the first columnsVr ofV, i.e., V = [Vr ,V−r ]. We discard the low-energetic
modes V−r . The dimension of the truncated eigenvector matrix is Vr ∈ ℝD×rdim . In order to reduce the dimensionality of the dataset, each vector
u ∈ D is projected to ur ∈ rdim by

c = VrT u, c ∈ ℝrdim . (17)

In the Lorenz-96 system, we construct a reduced order observable with do = 35 modes of the system. The cumulative energy distribution along
with a contour plot of the state and the mode evolution is illustrated in Figure 18.
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D. Calculation of Lyapunov Spectrum
The true Lyapunov exponents of the KS equation are computed as in (Pathak et al., 2018a) by solving the KS equations in the Fourier space with

a fourth order time-stepping method called ETDRK4 (Kassam and Trefethen, 2005) and utilizing a QR decomposition approach. The trained RNN
model with GRU cell is used as a surrogate to compute the full Lyapunov spectrum of the Kuramoto-Sivashinsky system. Recall that the RNN
dynamics are given by

ht = fℎℎ (ot,ht−1)

ot+1 = f oℎ(ht),
(18)

where fℎℎ is the hidden-to-hidden and f oℎ is the hidden-to-output mapping, o ∈ ℝdo is an observable of the state, and ht ∈ ℝdℎ is the hidden state of
the RNN. All models utilized in this work share this common architecture. They only differ in the forms of f oℎ and fℎℎ . More importantly, the output
mapping is linear, i.e.,

ot+1 = f oℎ(ht) = Wo ht. (19)

The LEs are calculated based on the Jacobian J = dℎt
dℎt−1

of the hidden state dynamics along the trajectory. In the following we compute the Jacobian
using Equation (18). By writing down the equations for two consecutive time-steps, we get

Timestep t − 1 : ℎt−1 = fℎℎ (ot−1, ℎt−2) (20)
ot = f oℎ(ℎt−1) = Woℎt−1 (21)

Timestep t : ℎt = fℎℎ (ot, ℎt−1). (22)

The partial Jacobians needed to compute the total Jacobian are:
)fℎℎ
)o

= Jℎℎo ∈ ℝdℎ×do (23)
)fℎℎ
)ℎ

= Jℎℎℎ ∈ ℝdℎ×dℎ (24)
)f oℎ
)ℎ

= J oℎℎ ∈ ℝdo×dℎ . (25)

In total we can write:
dℎt
dℎt−1

=
dfℎℎ (ot, ℎt−1)

dℎt−1
=
)fℎℎ (ot, ℎt−1)

)ot

)ot
)ℎt−1

+
)fℎℎ (ot, ℎt−1)

)ℎt−1
⟹ (26)

dℎt
dℎt−1

=
)fℎℎ (ot, ℎt−1)

)ot

)f oℎ(ℎt−1)
)ℎt−1

+
)fℎℎ (ot, ℎt−1)

)ℎt−1
⟹ (27)

dℎt
dℎt−1

= Jℎℎo
|

|

|

|(ot ,ℎt−1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
evaluated at t

⋅ J oℎℎ
|

|

|

|ℎt−1
+

⏟⏞⏞⏟⏞⏞⏟
evaluated at t-1

Jℎℎℎ
|

|

|

|(ot ,ℎt−1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
evaluated at t

(28)

A product of this Jacobian along the orbit � is developed and iteratively orthonormalized every Tn steps using the Gram-Schmidt method to avoid
numerical divergence and keep the columns of the matrix R independent. We check the convergence criterion by tracking the estimated LE values
every Tc time-steps. The input provided to the algorithm is a short time-series of length Tw to initialize the RNN and warm-up the hidden state
õ1∶Tw+1 (where the tilde denotes experimental or simulation data), the length of this warm-up time-series Tw, the number of the LE to calculateN ,
the maximum time to unroll the RNN T , a normalization time Tn and an additional threshold � used as an additional termination criterion. The
function ColumnSum(⋅) computes the sum of each column of a matrix, i.e., sum(⋅, axis = 1). This method can be applied directly to RNNs with one
hidden state like RC or GRUs. An adaptation to the LSTM is left for future research. The pseudocode of the algorithm to calculate the Lyapunov
exponents of the RNN is given in Algorithm 1.
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Algorithm 1 Algorithm to calculate Lyapunov Exponents of a trained surrogate RNN model
procedure LE_RNN(õ1∶Tw+1, Tw, N, T , Tn, �)Initialize h0 ← 0.

for t = 1 ∶ Tw do ⊳Warming-up the hidden state of the RNN based on true data
ht ← fℎℎ (õt,ht−1)

end for
h0 ← hTw
o1 ← õTw+1Pick a random orthonormal matrix � ∈ ℝdℎ×NLE . ⊳ InitializingNLE deviation vectors
T̃ ← T ∕Tn
Initialize R̃ ← 0 ∈ ℝN×T̃ .
lprev, l ← 0 ∈ ℝN ⊳ Initializing theN LE to zero.
J0 ← ∇hf oℎ(h0).
for t = 1 ∶ T do ⊳ Evolve the RNN dynamics

ht ← fℎℎ (ot,ht−1)
ot+1 ← f oℎ(ht)
J1 ← ∇hfℎℎ (ot+1,ht). ⊳ Calculating the partial Jacobians
J2 ← ∇ofℎℎ (ot+1,ht).
J ← J1 + J2 ⋅ J0. ⊳ Calculating the total Jacobian
� ← J ⋅ � ⊳ Evolving the deviation vectors �
if mod (t, Tnorm) = 0 then ⊳ Re-orthonormalizing with QR-decomposition

Q,R← QR(�)
� ← Q[∶, ∶ N] ⊳ Replacing the deviation vectors with the columns of Q
R̃[∶, t∕Tnorm]← log(diag(R[∶ N, ∶ N]))
if mod (t, Tc) = 0 then ⊳ Checking the convergence criterion

l ← Real(ColumnSum(R̃))∕(t ∗ �t) ⊳ Divide with the total timespan
l ← sort(l)
d ← |l − lprev|2
if d < � then

break
end if

end if
end if
J0 ← ∇hf oℎ(ht).

end for
return l ⊳ Returning the estimated Lyapunov Exponents

end procedure
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Table 2
Hyperparameters of RC for Lorenz-96

Hyperparameter Explanation Values
Dr reservoir size {6000, 9000, 12000, 18000}
N training data samples 105

Solver Pseudoinverse/LSQR/Gradient descent
d degree of Wℎ,ℎ {3, 8}
� radius of Wℎ,ℎ {0.4, 0.8, 0.9, 0.99}
! input scaling {0.1, 0.5, 1.0, 1.5, 2.0}
� regularization {10−3, 10−4, 10−5, 10−6}
do observed state dimension {35, 40}
nw warm-up steps (testing) 2000
�n noise level in data {0, 0.5%, 1%}

Table 3
Hyperparameters of GRU/LSTM for Lorenz-96

Hyperparameter Explanation Values
dℎ hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N training data samples 105
B batch-size 32
�1 BPTT forward time steps {1, 8}
�2 BPTT truncated backprop. length {8, 16}
�3 BPTT skip gradient parameter = �2 + �1 − 1
� initial learning rate 10−3
p zoneout probability {0.99, 0.995 1.0}
do observed state dimension {35, 40}
nw warm-up steps (testing) 2000
�n noise level in data {0, 0.2%}

Table 4
Hyperparameters of Unitary Evolution networks for Lorenz-96

Hyperparameter Explanation Values
dℎ hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N training data samples 105
B batch-size 32
�1 BPTT forward time steps {1, 8}
�2 BPTT truncated backprop. length {8, 16}
�3 BPTT skip gradient parameter = �2 + �1 − 1
� initial learning rate 10−3
p zoneout probability 1.0
do observed state dimension {35, 40}
nw warm-up steps (testing) 2000
�n noise level in data {0, 0.2%}

E. Model Hyperparameters
For the Lorenz-96 system space with do ∈ {35, 40} (in the PCA mode), we used the hyperparameters reported on Table 2 for RC and Table 3 for

GRU/LSTM models. For the parallel architectures in the state space of Lorenz-96 the hyperparameters are reported on Table 5 and Table 6 for the
parallel RC and GRU/LSTM models respectively. For the parallel architectures in the state space of the Kuramoto-Sivashinsky architecture the
hyperparameters are reported on Table 7 and Table 8 for the parallel RC and GRU/LSTM models respectively. We note here that in all RNN methods,
the optimizer used to update the network can also be optimized. To alleviate the computational burden we stick to Adam.
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Table 5
Hyperparameters of Parallel RC for Lorenz-96

Hyperparameter Explanation Values
Dr reservoir size {1000, 3000, 6000, 12000}
Ng number of groups 20
G group size 2
I interaction length 4
N training data samples 105

Solver Pseudoinverse/LSQR/Gradient descent
d degree of Wℎ,ℎ 10
� radius of Wℎ,ℎ 0.6
! input scaling 0.5
� regularization 10−6
do observed state dimension 40
nw warm-up steps (testing) 2000

Table 6
Hyperparameters of Parallel GRU/LSTM for Lorenz-96

Hyperparameter Explanation Values
dℎ hidden state size {100, 250, 500}
Ng number of groups 20
G group size 2
I interaction length 4
N training data samples 105
B batch-size 32
�1 BPTT forward time steps 4
�2 BPTT truncated backprop. length 4
�3 BPTT skip gradient parameter 4
� initial learning rate 10−3
p zoneout probability {0.998, 1.0}
do observed state dimension 40
nw warm-up steps (testing) 2000

Table 7
Hyperparameters of Parallel RC for Kuramoto-Sivashinsky

Hyperparameter Explanation Values
Dr reservoir size {500, 1000, 3000, 6000, 12000}
Ng number of groups 64
G group size 8
I interaction length 8
N training data samples 105

Solver Pseudoinverse
d degree of Wℎ,ℎ 10
� radius of Wℎ,ℎ 0.6
! input scaling 1.0
� regularization 10−5
do observed state dimension 512
nw warm-up steps (testing) 2000
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Table 8
Hyperparameters of Parallel GRU/LSTM for Kuramoto-Sivashinsky

Hyperparameter Explanation Values
dℎ hidden state size {80, 100, 120}
Ng number of groups 64
G group size 8
I interaction length 8
N training data samples 105
B batch-size 32
�1 BPTT forward time steps 4
�2 BPTT truncated backprop. length 4
�3 BPTT skip gradient parameter 4
� initial learning rate 10−3
p zoneout probability {0.998, 1.0}
do observed state dimension 512
nw warm-up steps (testing) 2000

Table 9
Hyperparameters of Parallel Unitary Evolution networks for Kuramoto-Sivashinsky

Hyperparameter Explanation Values
dℎ hidden state size {100, 200, 400}
Ng number of groups 64
G group size 8
I interaction length 8
N training data samples 105
B batch-size 32
�1 BPTT forward time steps 4
�2 BPTT truncated backprop. length 4
�3 BPTT skip gradient parameter 4
� initial learning rate 10−2
p zoneout probability 1.0
do observed state dimension 512
nw warm-up steps (testing) 2000
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Figure 19: Violin plots with kernel density estimates of the number of divergent predictions over the 100 initial conditions
from the test data, over all hyperparameter sets for RC, GRU, LSTM, and Unitary networks, for reduced order state do = 35
and full order state do = 40 in two forcing regimes (a) F = 8 and (b) F = 10 in the Lorenz-96 system. Most hyperparameter
sets of Unitary networks, lead to models that diverge in iterative forecasting in both reduced order and full order scenario
for both F ∈ {8, 10}. Although the divergence effect is a non-issue in RC in the full state scenario do = 40, indicated by the
wide part in the lower end of the density plot, the effect is more prominent in the reduced order scenario compared to GRU
and LSTM. Identification of hyperparameters for LSTM and GRU networks that show stable iterative forecasting behavior
in the reduced order space is significantly easier compared to RC and Unitary networks, as indicated by the wide/thin lines
in the lower part of the density plots of the first/latter.
RC ; GRU ; LSTM ; Unit ;

F. Additional Results - Lorenz-96 - Divergence of Unitary and RC RNNs
In this section, we try to quantify the divergence effect due to the accumulation of the forecasting error in the iterative prediction. In Figure 19

we present violin plots with fitted kernel density estimates for the number of divergent predictions of each hyperparameter set, computed based on all
tested hyperparameter sets for forcing regimes F ∈ {8, 10} and observable dimensions do ∈ {35, 40}. The annotated lines denote the minimum,
mean and maximum number of divergent predictions over the 100 initial conditions of all hyperparameter sets. In the fully observable systems
do = 40, in both forcing regimes F ∈ {8, 10}, there are many models (hyperparameter sets) with zero divergent predictions for RC, GRU and LSTM,
as illustrated by the wide lower part of the violin plot. In contrast, most hyperparameter sets in Unitary networks lead to models whose iterative
predictions diverge from the attractor, as illustrated by the wide upper part in the violin plot. In the reduced order scenario, this divergence effect
seems to be more prominent in RC and Unitary networks, as indicated by the very thin lower part of their violin plots, for both forcing regimes. In
contrast, many hyperparameter sets of GRU and LSTM models lead to stable iterative prediction. This indicates that hyperparameter tuning in RC
and Unitary networks when the system state is not fully observed, is cumbersome compared to LSTM and GRU networks. One example of this
divergence effect in an initial condition from the test dataset is illustrated in Figure 20. The RC and the Unitary networks diverge in the reduced order
state predictions after approximately two Lyapunov times.
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(a) Reduced order state ( do = 35), F = 8

(b) Full order state ( do = 40), F = 8

Figure 20: Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 8 in the
testing dataset with GRU, LSTM, RC and a Unitary network along with the true (target) evolution and the associated
NRSE contours for the reduced order observable (a) do = 35 and the full state (b) do = 40. The evolution of the component
average NRSE (NMRSE) is plotted to facilitate comparison. Unitary networks suffer from propagation of forecasting error
and eventually their forecasts diverge from the attractor. Forecasts in the case of an observable dimension do = 40 diverge
slower as the dynamics are deterministic. In contrast, forecasting the observable with do = 35 is challenging due to both (1)
sensitivity to initial condition and (2) incomplete state information that requires the capturing of temporal dependencies. In
the full-state setting, RC models achieve superior forecasting accuracy compared to all other models. In the challenging
reduced order scenario, LSTM and GRU networks demonstrate a stable behavior in iterative prediction and reproduce the
long-term statistics of the attractor. In contrast, in the reduced order scenario RC suffer from frequent divergence. The
divergence effect is illustrated in this chosen initial condition.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;
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(c) VPT in test data w.r.t. VPT in the
training data for do = 35.
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(d) VPT w.r.t. RAM memory for do = 40.
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(e) VPT w.r.t. the training time for
do = 40.
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(f) VPT in test data w.r.t. VPT in the
training data for do = 40.

Figure 21: Forecasting results on the dynamics of an observable consisting of the SVD modes of the Lorenz-96 system
with F = 10 and state dimension 40. The observable consists of the do ∈ {35, 40} most energetic modes. (a), (d) Valid
prediction time (VPT) plotted w.r.t. the required RAM memory for dimension do ∈ {35, 40}. (b), (e) VPT plotted w.r.t.
training time for dimension do ∈ {35, 40}. (c), (f) VPT measured from 100 initial conditions sampled from the test data
plotted w.r.t. VPT from 100 initial conditions sampled from the training data for each model for do ∈ {35, 40}. In the
reduced order scenario, RCs tend to overfit easier compared to GRUs/LSTMs that utilize validation-based early stopping.
RC ; GRU ; LSTM ; Unit ; Ideal ;

G. Additional Results - Lorenz-96 - F = 10
In Figure 21, we provide additional results for the forcing regime F = 10 that are in agreement with the main conclusions drawn in the main

manuscript for the forcing regime F = 8. An example of a single forecast of the models starting from an initial condition in the test dataset is given
in Figure 22
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(a) Reduced order state (do = 35), F = 10

(b) Full state (do = 40), F = 10

Figure 22: Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 10 in the
testing dataset with GRU, LSTM, RC and a Unitary network along with the true (target) evolution and the associated
NRSE contours for the reduced order observable (a) do = 35 and the full state (b) do = 40. The evolution of the component
average NRSE (NMRSE) is plotted to facilitate comparison. Forecasting the observable with do = 35 is more challenging
compared to the full state scenario (do = 40) due to both (1) sensitivity to initial condition and (2) incomplete state
information that requires the capturing of temporal dependencies. For this reason, the iterative prediction error increases
slower in do = 40. Even in the challenging scenario of do = 35, LSTM and GRU networks demonstrate a stable behavior in
iterative prediction and reproduce the long-term statistics of the attractor. In the reduced order setting do = 35, accurate
short-term predictions can be achieved with very large RC networks (dℎ = 9000) at the cost of high memory requirements.
However, even in this case, RC models may diverge from the attractor and do not reproduce the attractor climate.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;
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Figure 23: Violin plots of the VPT in the testing data for stateful LSTM and GRU models trained with different truncated
Backpropagation through time parameters �1 and �2 in the (reduced) SVD mode observable of the Lorenz-96 system. The
legend of each plot reports the models along with their �1 − �2 parameters used to train them. The three markers report the
minimum, mean and maximum VPT. We observe that especially in the reduced order observable scenario (d0 = 35), having
a large truncated back-propagation parameter �1 (also referred to as sequence length) is vital to capture the temporal
dependencies in the data and achieve high forecasting efficiency. In contrast in the full-state scenario (d0 = 40) a model
with a small back-propagation horizon suffices.

H. Temporal Dependencies and Backpropagation
In our study, in order to train the GRU and LSTM models with back-propagation through time (BPTT), we need to tune the parameters �1 and �2.

The first one denotes the truncated back-propagation length (also referred to as sequence length) and the second the number of future time-steps used
to compute the loss and backpropagate the gradient during training at each batch. In the hyperparameter study considered in this work, we varied
�1 ∈ {8, 16} and �2 ∈ {1, 8}. For each of these hyperparameter sets, we varied all other hyperparameters according to the grid search reported
in Appendix E.

In Figure 23 we present a violin plot, that illustrates the forecasting efficiency of LSTM and GRU models trained with the listed �1 and �2
(legend of the plot), while varying all other hyperparameters. The forecasting efficiency is quantified in terms of the Valid Prediction Time (VPT)
in the test dataset (averaged over 100 initial conditions) on the Lorenz-96 system for F ∈ {8, 10}. The three bars in each violin plot, denote the
minimum, average and maximum performance.

In the reduced order scenario case, we observe that models with a large sequence length �1 and a large prediction length �2 are pivotal in order to
achieve a high forecasting efficiency. This implies that there are temporal correlations in the data that cannot be easily captured by other models with
smaller horizons. In contrast, in the full order scenario, models with smaller �1 perform reasonably well, demonstrating that the need of capturing
temporal correlations in the data in order to forecast the evolution is less prominent, since the full information of the state of the system is available.
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(a) VPT in test w.r.t. VPT in train
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(b) VPT in test w.r.t. VPT in train
Figure 24: The average VPT measured from 100 initial conditions sampled from the test dataset is plotted against the
average VPT measured from 100 initial conditions sampled from the training dataset for parallel models forecasting the
dynamics of (a) the Lorenz-96 system with state dimension do = 40 and (b) the Kuramoto Sivashinsky equation with state
dimension do = 512.
RC ; GRU ; LSTM ;

I. Over-fitting of Parallel Models
In this section, we provide results on the overfitting of the models in the parallel setting in the Lorenz-96 model in Figure 24a and the Kuramoto-

Sivashinsky equation in Figure 24b. In both cases we do not observe overfitting issues as the predictive performance in terms of the VPT of the
models in the test dataset is very close to that in the training dataset, emphasizing that the generalization ability of the models is good.

PR Vlachas et al.: Preprint submitted to Elsevier Page 40 of 40


