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We demonstrate the effectiveness of using machine learning for model-free prediction of spa-
tiotemporally chaotic systems of arbitrarily large spatial extent and attractor dimension purely from
observations of the system’s past evolution. We present a parallel scheme with an example imple-
mentation based on the reservoir computing paradigm and demonstrate the scalability of our scheme
using the Kuramoto-Sivashinsky equation as an example of a spatiotemporally chaotic system.

Recently, machine learning techniques have proven
useful for a wide variety of tasks, from speech recogni-
tion [1] to playing Go [2]. In this paper we show that
machine learning can be used for model-free prediction
of the evolution of the state of a large spatiotemporally
chaotic system. The accomplishment of this task is of
great potential application, e.g., for prediction of geo-
physical dynamical systems. Specifically, we consider a
situation where a mechanistic description of the dynam-
ics is unavailable or insufficient for the desired purpose,
but reasonably accurate and complete observational data
for the evolution of the state of the system of interest can
be obtained. Assuming this situation, the goal of this
paper is to formulate an effective technique for predict-
ing the future evolution of very large spatiotemporally
chaotic systems from data, an especially difficult prob-
lem presently without a robust solution using existing
techniques. We note that model-free techniques for pre-
diction based on delay coordinate embedding are well
established [3]. These techniques are effective for low di-

mensional chaos, and extensions have been proposed for
large spatiotemporally chaotic systems [4]. Within the
machine learning community, there have been a num-
ber of rapid advances in prediction using the technique
known as reservoir computing [5–7]. In particular, Jaeger
and Haas [8] have applied reservoir computing to pre-
dict low dimensional chaotic systems with good results.
Although we focus on reservoir computing, we expect
that other machine learning techniques, e.g., deep learn-
ing [9, 10], might also be useful for the task we address.
On the other hand, we speculate that, because of their
essential dynamical character (see below), artificial neu-
ral networks with recurrent connections [11–13], such as
reservoir computers, may be inherently well-suited for
tasks which are themselves dynamical in character such
as prediction or inference of unmeasured state variables of
a deterministic system [14]. We find that our reservoir-
based spatiotemporal prediction technique yields excel-
lent prediction results of unprecedented quality at rea-

sonable expense.

We now briefly introduce the basic ideas of reservoir
computing. An input vector u(t) of dimension Din (Fig.
1(a)) is coupled through an I/R (input-to-reservoir) cou-
pler to a high dimensional dynamical system (labeled R
in Fig. 1(a)) called the “reservoir”, from which an out-
put vector v(t) of dimension Dout is coupled through
an R/O (reservoir-to-output) coupler. The R/O cou-
pler is assumed to depend on many (Dp) adjustable
parameters p, and to create outputs v(t) that depend
linearly upon the parameters p. Denoting the state
of the Dr dimensional reservoir by the vector r(t), the
I/R, reservoir, and R/O functions can be represented
in discrete time (t = 0,∆t, 2∆t, . . . ) by r(t + ∆t) =
G[r(t),Win(u(t))],v(t) = Wout[r(t),p], where Win (re-
spectively Wout) is a mapping from the Din (Dr) di-
mensional input state space (reservoir state space) to the
Dr (Dout) dimensional reservoir state space (output state
space). We note that while, in this paper, we consider
time to be discrete (and will subsequently take ∆t to be
small), the analogous continuous time reservoir is also
commonly employed. The goal is to train this system to
make v(t) closely approximate the desired outputs vd(t)
appropriate to the inputs u(t) (e.g., if the function of the
system is speech recognition [1], u(t) might be an elec-
tronic signal derived from a person speaking, while vd(t)
would represent the words being spoken). To accomplish
this, one uses training data consisting of pre-recorded
and stored measurements of u(t) and the resulting r(t)
in some time interval, −T ≤ t ≤ 0, and chooses the
output parameters p so as to minimize the least squares
difference between vd(t) and v(t) over the time interval
−T ≤ t ≤ 0. Since v = Wout[r,p] is assumed to be lin-
ear in the parameters p, the problem of determining p,
and hence Wout, is a simple linear regression [15]. With
p determined, if all goes well, the reservoir system can
be used to fulfill its intended task for t ≥ 0. Indeed, for
large enough Dp and Dr, this framework has proven to
be extremely successful for a variety of tasks [7].
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Here we are interested in the task of predicting the
future, t > 0, evolution of u(t) from training data in
−T ≤ t ≤ 0. The prediction task via reservoir comput-
ing has been previously addressed with excellent results
for a situation where u(t) comes from the state of a low
dimensional chaotic system [8]. In that reference, the
desired output condition was that v(t) be a good ap-
proximation to u(t) (i.e., vd(t) = u(t)). After “training”
v(t) to approximate u(t), the future evolution of u(t) for
t > 0 is predicted by replacing the input u(t) in Fig. 1(a)
by v(t), as shown in Fig. 1(b). As we will demonstrate,
prediction with a single reservoir becomes computation-
ally unfeasible as Din increases. We will propose and
illustrate a solution to this problem for spatiotemorally
chaotic systems using parallel reservoirs assigned to dif-
ferent spatial regions.
In this paper, we focus on the following specific im-

plementation choices, which are similar to those in Ref.
[8]. (We emphasize here that our choices are illustrative
and that many others are possible.) The I/R coupler is
Win(u) = Winu (whereWin is aDr×Din matrix whose
input elements are drawn from a uniform distribution in
[−σ, σ]). The reservoir is a large, low degree (κ), directed
Erdös-Rényi network with a Dr × Dr adjacency matrix
A, appropriately scaled so that its largest eigenvalue is
equal to ρ. The state of each network node j is a scalar
rj(t) which, in the set-up of Fig. 1(a), evolves according
to

r(t+∆t) = tanh [Ar(t) +Winu(t)] , (1)

where, for a vector q = [q1, q2, . . . ]
T , tanh(q) is the

vector [tanh(q1), tanh(q2), . . . ]
T
. The R/O coupler is

Wout(r) = P1r+P2r
2, where P1 and P2 are Dout ×Dr

matrices, p = (P1,P2), and r2 is the Dr dimensional
vector whose jth component is r2j . (We found that the
simpler choice Wout(r) = P1r typically did not work for
our illustrative example [16].) While, for illustration, we
use the specific reservoir dynamics of Eq. (1), we em-
phasize that there is great versatility in the scheme of
Fig. 1. E.g., for tasks other than prediction, very fast
processing has been achieved by using high dimensional
photonic systems as the reservoir [17–20] (see also Ref.
[21]).
In the prediction phase, t > 0, u(t) in Eq. (1) is re-

placed by v(t) = Wout(r(t)). Regardless of the short-
term quality of the predictions v(t), they will eventu-
ally diverge from the true state u(t) due to the expo-
nential separation of trajectories that is a characteristic
of chaotic systems. Consider now the situation where
at some future time θ > 0, one wants to predict u(t)
for t > θ based on measurements of u up to time θ. The
reservoir can then be reinitialized using Eq.(1) for a short
period of time preceding θ, i.e., (θ− ǫ ≤ t ≤ θ), to deter-
mine r(θ), and then used to predict for t > θ. (Once the
training is done, it need not be repeated for predictions
of subsequent time intervals.)

I/R R

(a)

u ( t) v ( t)
R/O I/R R

(b)

v ( t)
R/O

FIG. 1. I/R : (Input-Reservoir Coupler); R : (Reservoir);
R/O : (Reservoir-Output Coupler). (a) Training data gath-
ering phase. (b) Predicting phase. It is assumed that the
parameters of the reservoir are chosen such that the “echo
state property” is satisfied [7]: all of the conditional Lyapunov
exponents of the training reservoir dynamics conditioned on
u(t) are negative so that, for large t, the reservoir state r(t)
does not depend on initial conditions.

As an illustrative model for a spatiotemporally chaotic
system, we consider the Kuramoto-Sivashinsky (KS)
equation modified by the addition (last term in Eq. (2))
of a spatial inhomogeneity term,

yt = −yyx − yxx − yxxxx + µ cos

(

2πx

λ

)

. (2)

The scalar field y(x, t) is periodic in the interval [0, L)
and L is an integer multiple of λ. Note that the at-
tractor dimension depends directly on the dimensionless
parameter L and scales linearly with L for large L [22].
For later comparison, we note that for L ≥ 100, the RMS
value of yt is about 0.34, which can be compared to the
value of µ to roughly assess the strength of the inho-
mogeneity on the dynamics. This equation reduces to
the standard KS equation when µ = 0. The cosine per-
turbation breaks the translation symmetry when µ 6= 0.
In this paper, we will consider both µ = 0 and µ 6= 0
in order to probe the effect of spatial homogeneity on
our predictions. Equation (2) is integrated on a grid of
Q equally spaced points with ∆t = 0.25, giving a simu-
lated data set with Q time series, which we denote by the
vector u(t) and use as the reservoir input. Figure 2(a)
shows our numerical solution of Eq. (2) for a KS sys-
tem with L = 22, Q = 64, and µ = 0, while figure 2(b)
shows a reservoir performed prediction using the scheme
described above (Fig. 1). Figure 2(c) shows the differ-
ence between the prediction and the actual solution (we
remark that this error metric may overemphasize errors
due to spatial shifting of the patterns).
Although the results of Fig. 2 indicate the potential

for reservoir-computer-based prediction of spatiotempo-
ral chaos, we note that, as L increases, the size Dr of the
reservoir network required to predict the system using a
single reservoir (as described by Fig. 1) increases. We
find that this makes prediction with a single reservoir in-
tractable for much larger values of L. In order to treat
large systems, we take advantage of the local nature of in-
teractions in typical spatiotemporally chaotic systems, as
was done in Ref. [4] in the context of delay co-ordinates.
We propose a parallelized scheme consisting of a large
set of reservoirs of moderate size, each of which predicts
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FIG. 2. Prediction of a KS equation with L = 22, µ = 0
using a single reservoir of size Dr = 5000. (a) Actual data
from the KS model. (b) Reservoir prediction. (c) Error (panel
(b) minus panel (a)) in the reservoir prediction. We multiply
t by the largest Lyapunov exponent (Λmax) of the model, so
that each unit on the horizontal axis represents one Lyapunov
time, i.e., the average amount of time for errors to grow by a
factor of e.

a local region of the spatio-temporal system. We com-
ment that a somewhat similar structure is employed by
convolutional neural networks (CNN’s), e.g., see chapter
9 of Ref. [10]. CNN’s are widely used in deep learning
for image processing tasks, and employ a translationally
invariant structure (as we will later discuss for our KS
example with µ = 0).

Consider a spatiotemporal system on a one dimen-
sional grid of size Q with periodic boundary conditions,
giving us a multivariate data set with Q time series which
we denote by the vector u(t). The Q variables uj(t)
are split into g groups, each group consisting of q spa-
tially contiguous variables such that gq = Q. We denote
the states of the spatial points in each of the g groups
by the vectors gi(t): g1(t) = (u1(t), u2(t), · · ·uq(t))

T ,
g2(t) = (uq+1(t), uq+2(t), · · ·u2q(t))

T , and so on. Each
group of time series, gi, is predicted by a reservoir Ri

with adjacency matrix Ai, internal state ri(t) and in-
put weights Win,i. We denote the input to the ith net-
work by hi(t), where hi(t) is such that each reservoir
accepts inputs from all of the spatial points in the ith

group as well as from two contiguous buffer regions of l
spatial points on its left and right hand sides, hi(t) =
(u(i−1)q−l+1(t), u(i−1)q−l+2(t), · · · , uiq+l(t))

T (the sub-
script j in uj is taken modulo Q). Thus, adjacent reser-
voir networks have overlapping inputs with the size of
the overlap set by the locality parameter l (see Fig. 3).

The data from t = −T to t = 0 is used to train the
reservoir network, while the data from t > 0 is used to
evaluate the quality of the reservoir predictions. Sim-
ilar to Eq. (1), in the training phase, each of the g
reservoirs evolves in parallel according to ri(t + ∆t) =
tanh(Airi(t) + Win,ihi(t)), 1 ≤ i ≤ g, from t = −T
to t = 0. The g reservoirs are then trained by find-

ing a set of output weights pi = (P1,i,P2,i) for each
reservoir such that P1,iri(t) + P2,ir

2
i (t) ≃ gi(t). The

trained reservoirs with their output weights are now used
to predict the time series, g̃i(t) = P1,iri(t) + P2,ir

2
i (t),

ri(t + ∆t) = tanh(Airi(t) + Winh̃i(t)), where h̃i(t) is
determined from g̃i(t) and the output of the neighboring
reservoirs, and we use a superscribed tilde to denote a
predicted quantity.

FIG. 3. Illustration of the parallellized reservoir scheme (q =
2, l = 1). The pink shaded vector above Ri represents its
output g̃i. The green shaded vector below Ri represents its
input hi (during training) and h̃i (during prediction). The
dashed arrow shows the feedback connection applied during
the autonomous prediction phase (t ≥ 0).

We now present numerical results; unless otherwise
specified, the reservoir parameters used are Dr = 5000,
T = 70000 steps, ρ = 0.6, σ = 1.0, l = 6 and κ = 3.
Once the reservoir is trained and the output weights are
determined, the resulting autonomous reservoir is used
to make a series of predictions, which are then compared
with the evaluation data set. We perform predictions on
K = 30 non-overlapping time intervals, θk ≤ t < θk + τ ,
each of length τ = 1000 in the evaluation data set. Here
θk = (k − 1)τ denotes the start of each prediction in-
terval. Before the start of each prediction interval, all
reservoir states are reset to ri = 0 and the reservoirs
are then evolved with the true measurements u(t) for
ǫ = 10 time steps, i.e., from t = θk − ǫ to θk, according
to ri(t + ∆t) = tanh(Airi(t) + Win,ihi(t)), 1 ≤ i ≤ g.
This gives the reservoir appropriate initial conditions to
begin predicting autonomously for the next τ steps. The
RMS error between u(t) and ũ(t) = (g̃1(t), . . . , g̃g(t)) is
averaged over the K independent predictions to give an
estimate of the typical quality of prediction. We perform
the same prediction 10 times, for different random reser-
voir realizations, and calculate the average RMSE over
all the trials. Figure 4 shows the results for a KS equa-
tion (L = 200, µ = 0.01, Q = 512) where panel (a) is the
numerical solution of Eq. (2), panel (b) is the reservoir
prediction using g = 64 reservoirs of size Dr = 5000 each,
and panel (c) is the prediction error (panel (a) minus
panel (b)). We see that low prediction error is obtained
for about 8 Lyapunov times. As a performance bench-
mark, panel (d) shows the error of the prediction made
by integrating the KS equation (with the same solution
method as panel (a)) using the output of the reservoir
at t = 0 as its initial condition. Thus, panels (c) and
(d) have the exact same error at t = 0. We see that the
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FIG. 4. Prediction of KS equation (L = 200, Q = 512,
µ = 0.01, λ = 100) with the parallelized reservoir predic-
tion scheme using g = 64 reservoirs. (a) Actual KS equation
data. (b) Reservoir prediction (ũ(t)). (c) Error in the reser-
voir prediction. (d) Error in a prediction made by integrating
the KS equation when it uses the reservoir output at t = 0,
ũ(0), as its initial condition.
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FIG. 5. (a) RMS error in the predictions of the KS sys-
tem as function of time for different system sizes L =
200, 400, 800, 1600 with L/g held fixed at 200/64 for all four
curves. (b) Improvement of the prediction performance as
the number (g) of reservoirs employed is increased; L = 200,
Q = 512, µ = 0.01, λ = 100.

prediction time in panel (d) is only slightly longer than
that for panel (c), indicating good reproduction of the
true dynamics by the reservoir system.

Figure 5(a) shows that we can obtain predictions com-
parable to Fig. 4 independent of the system size L. Table
I indicates the largest Lyapunov exponent Λmax and es-
timated Kaplan-Yorke dimension [23] of the KS system
along with the number of reservoirs (g) and the total
number of nodes NT in the g reservoirs used for Fig.
5(a).

When the strength of the cosine perturbation term is
set to µ = 0, the KS equation (Eq. (2)) has trans-
lation symmetry which can be exploited to drastically
reduce the computational cost of training the output
weights. We find that it is then sufficient to train a
single reservoir (say R1) by evolving it according to
r1(t + ∆t) = tanh(A1r1(t) + Win,1h1(t)) and then cal-
culating (P1,1,P2,1). We then use g identical reser-
voir systems with Win,i = Win,1, Ai = A1, and
(P1,i,P2,i) = (P1,1,P2,1) for 1 ≤ i ≤ g in the prediction
phase equations. As shown by the agreement between

L Λmax DKY g NT (×105)

100 0.09 23 32 1.6

200 0.09 43 64 3.2

400 0.09 85 128 6.4

800 0.1 167 256 12.8

1600 0.1 338 512 25.6

TABLE I. Largest Lyapunov Exponent (Λmax) and Kaplan-
Yorke Dimension (DKY ) of the attractor (λ = 100, µ = 0.01)
along with the number of parallel reservoirs (g) and the total
number (NT ) of all nodes in the g reservoirs of the parallelized
reservoir scheme used.
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FIG. 6. Reservoir prediction performance for the KS equa-
tion with L = 200, λ = 100 (a): µ = 0 and (b) µ = 0.01.
The red curve shows the RMSE curve when all g = 64 reser-
voirs are identical and have the same output weights. The
blue curve shows the RMSE when the g parallel reservoirs
are independently trained.

the red (identical weights) and blue (individually trained
weights) curves in Fig 6(a), this works well. However,
when µ = 0.01, the method of identical weights fails as
expected (Fig. 6(b)). Note that the Lyapunov spectrum
for µ = 0.01 is very close to the spectrum for µ = 0 (see
supplement).

Further details on the specific reservoir computer pa-
rameters, implementation and methods are given in the
supplemental material at [URL will be inserted by the

publisher ] which includes Refs. [24, 25]. The additional
material illustrates that the performance shown above is
very robust, in that it changes little over wide ranges in
the various parameters.

In conclusion, our results suggests that machine learn-
ing, and in particular reservoir computing, offers an ef-
fective potential means for model-free prediction of large
spatiotemporally chaotic systems.

This work was supported by the U.S. Army Research
Office under grant W911NF1210101. We thank D. Gau-
thier, A. Hartemink, and R. Brockett for useful com-
ments.

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.



5

Sainath, et al., IEEE Signal Processing Magazine 29, 82
(2012).

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., Nature 529, 484
(2016).

[3] H. Kantz and T. Schreiber, Nonlinear time series analy-

sis, Vol. 7 (Cambridge university press, 2004).
[4] U. Parlitz and C. Merkwirth, Physical review letters 84,

1890 (2000).
[5] H. Jaeger, Bonn, Germany: German National Research

Center for Information Technology GMD Technical Re-
port 148, 13 (2001).
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