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Deep learning for universal linear embeddings
of nonlinear dynamics
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Identifying coordinate transformations that make strongly nonlinear dynamics approximately

linear has the potential to enable nonlinear prediction, estimation, and control using linear

theory. The Koopman operator is a leading data-driven embedding, and its eigenfunctions

provide intrinsic coordinates that globally linearize the dynamics. However, identifying and

representing these eigenfunctions has proven challenging. This work leverages deep learning

to discover representations of Koopman eigenfunctions from data. Our network is parsi-

monious and interpretable by construction, embedding the dynamics on a low-dimensional

manifold. We identify nonlinear coordinates on which the dynamics are globally linear using a

modified auto-encoder. We also generalize Koopman representations to include a ubiquitous

class of systems with continuous spectra. Our framework parametrizes the continuous fre-

quency using an auxiliary network, enabling a compact and efficient embedding, while con-

necting our models to decades of asymptotics. Thus, we benefit from the power of deep

learning, while retaining the physical interpretability of Koopman embeddings.
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Nonlinearity is a hallmark feature of complex systems,
giving rise to a rich diversity of observed dynamical
behaviors across the physical, biological, and engineering

sciences1,2. Although computationally tractable, there exists no
general mathematical framework for solving nonlinear dynamical
systems. Thus representing nonlinear dynamics in a linear fra-
mework is particularly appealing because of powerful and com-
prehensive techniques for the analysis and control of linear
systems3, which do not readily generalize to nonlinear systems.
Koopman operator theory, developed in 19314,5, has recently
emerged as a leading candidate for the systematic linear repre-
sentation of nonlinear systems6,7. This renewed interest in
Koopman analysis has been driven by a combination of theore-
tical advances6–10, improved numerical methods such as dynamic
mode decomposition (DMD)11–13, and an increasing abundance
of data. Eigenfunctions of the Koopman operator are now widely
sought, as they provide intrinsic coordinates that globally line-
arize nonlinear dynamics. Despite the immense promise of
Koopman embeddings, obtaining representations has proven
difficult in all but the simplest systems, and representations are
often intractably complex or are the output of uninterpretable
black-box optimizations. In this work, we utilize the power of
deep learning for flexible and general representations of the
Koopman operator, while enforcing a network structure that
promotes parsimony and interpretability of the resulting models.

Neural networks (NNs), which form the theoretical archi-
tecture of deep learning, were inspired by the primary visual
cortex of cats where neurons are organized in hierarchical layers
of cells to process visual stimulus14. The first mathematical model
of a NN was the neocognitron15 which has many of the features
of modern deep neural networks (DNNs), including a multi-layer
structure, convolution, max pooling, and nonlinear dynamical
nodes. Importantly, the universal approximation theorem16–18

guarantees that a NN with sufficiently many hidden units and a
linear output layer is capable of representing any arbitrary
function, including our desired Koopman eigenfunctions.
Although NNs have a four-decade history, the analysis of the
ImageNet data set19, containing over 15 million labeled images in
22,000 categories, provided a watershed moment20. Indeed,

powered by the rise of big data and increased computational
power, deep learning is resulting in transformative progress in
many data-driven classification and identification tasks19–21. A
strength of deep learning is that features of the data are built
hierarchically, which enables the representation of complex
functions. Thus, deep learning can accurately fit functions with-
out hand-designed features or the user choosing a good basis21.
However, a current challenge in deep learning research is the
identification of parsimonious, interpretable, and transferable
models22.

Deep learning has the potential to enable a scaleable and data-
driven architecture for the discovery and representation of
Koopman eigenfunctions, providing intrinsic linear representa-
tions of strongly nonlinear systems. This approach alleviates two
key challenges in modern dynamical systems: (1) equations are
often unknown for systems of interest23–25, as in climate, neu-
roscience, epidemiology, and finance; and, (2) low-dimensional
dynamics are typically embedded in a high-dimensional state
space, requiring scaleable architectures that discover dynamics on
latent variables. Although NNs have also been used to model
dynamical systems26 and other physical processes27 for decades,
great strides have been made recently in using DNNs to learn
Koopman embeddings, resulting in several excellent papers28–33.
For example, the VAMPnet architecture28,29 uses a time-lagged
auto-encoder and a custom variational score to identify Koopman
coordinates on an impressive protein folding example. In all of
these recent studies, DNN representations have been shown to be
more flexible and exhibit higher accuracy than other leading
methods on challenging problems.

The focus of this work is on developing DNN representations
of Koopman eigenfunctions that remain interpretable and par-
simonious, even for high-dimensional and strongly nonlinear
systems. Our approach (see Fig. 1) differs from previous studies,
as we are focused specifically on obtaining parsimonious models
that match the intrinsic low-rank dynamics while avoiding
overfitting and remaining interpretable, thus merging the best of
DNN architectures and Koopman theory. In particular, many
dynamical systems exhibit a continuous eigenvalue spectrum,
which confounds low-dimensional representation using existing
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Fig. 1 Diagram of our deep learning schema to identify Koopman eigenfunctions φ(x). a Our network is based on a deep auto-encoder, which is able to
identify intrinsic coordinates y= φ(x) and decode these coordinates to recover x= φ−1(y). b, c We add an additional loss function to identify a linear
Koopman model K that advances the intrinsic variables y forward in time. In practice, we enforce agreement with the trajectory data for several iterations
through the dynamics, i.e. Km. In b, the loss function is evaluated on the state variable x and in c it is evaluated on y
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DNN or Koopman representations. This work develops a gen-
eralized framework and enforces new constraints specifically
designed to extract the fewest meaningful eigenfunctions in an
interpretable manner. For systems with continuous spectra, we
utilize an augmented network to parameterize the linear
dynamics on the intrinsic coordinates, avoiding an infinite
asymptotic expansion in harmonic eigenfunctions. Thus, the
resulting networks remain parsimonious, and the few key
eigenfunctions are interpretable. We demonstrate our deep
learning approach to Koopman on several examples designed to
illustrate the strength of the method, while remaining intuitive in
terms of classic dynamical systems.

Results
Data-driven dynamical systems. To give context to our deep
learning approach to identify Koopman eigenfunctions, we first
summarize highlights and challenges in the data-driven discovery
of dynamics. Throughout this work, we will consider discrete-
time dynamical systems

xkþ1 ¼ FðxkÞ; ð1Þ

where x 2 R
n is the state of the system and F represents the

dynamics that map the state of the system forward in time.
Discrete-time dynamics often describe a continuous-time system
that is sampled discretely in time, so that xk= x(kΔt) with sam-
pling time Δt. The dynamics in F are generally nonlinear, and the
state x may be high dimensional, although we typically assume
that the dynamics evolve on a low-dimensional attractor gov-
erned by persistent coherent structures in the state space2. Note
that F is often unknown and only measurements of the dynamics
are available.

The dominant geometric perspective of dynamical systems, in
the tradition of Poincaré, concerns the organization of trajectories
of Eq. (1), including fixed points, periodic orbits, and attractors.
Formulating the dynamics as a system of differential equations in
x often admits compact and efficient representations for many
natural systems25; for example, Newton's second law is naturally
expressed by Eq. (1). However, the solution to these dynamics
may be arbitrarily complicated, and possibly even irrepresentable,
except for special classes of systems. Linear dynamics, where the
map F is a matrix that advances the state x, are among the few
systems that admit a universal solution, in terms of the
eigenvalues and eigenvectors of the matrix F, also known as the
spectral expansion.

Koopman operator theory. In 1931, B.O. Koopman provided an
alternative description of dynamical systems in terms of the
evolution of functions in the Hilbert space of possible measure-
ments y= g(x) of the state4. The so-called Koopman operator, K,
that advances measurement functions is an infinite-dimensional
linear operator:

Kg ¼Δ g � F ) KgðxkÞ ¼ gðxkþ1Þ: ð2Þ

Koopman analysis has gained significant attention recently with
the pioneering work of Mezic et al.6–10, and in response to the
growing wealth of measurement data and the lack of known
equations for many systems13,25. Representing nonlinear
dynamics in a linear framework, via the Koopman operator, has
the potential to enable advanced nonlinear prediction, estimation,
and control using the comprehensive theory developed for linear
systems. However, obtaining finite-dimensional approximations
of the infinite-dimensional Koopman operator has proven chal-
lenging in practical applications.

Finite-dimensional representations of the Koopman operator
are often approximated using the DMD12,13, introduced by
Schmid11. By construction, DMD identifies spatio-temporal
coherent structures from a high-dimensional dynamical system,
although it does not generally capture nonlinear transients since
it is based on linear measurements of the system, g(x)= x.
Extended DMD (eDMD) and the related variational approach of
conformation dynamics (VAC)34–36 enriches the model with
nonlinear measurements33,37. It has recently been shown that
eDMD is equivalent to the variational approach of conformation
dynamics (VAC)34–36, first derived by Noé and Nüske in 2013 to
simulate molecular dynamics with a broad separation of time-
scales. Further connections between eDMD and VAC and
between DMD and the time lagged independent component
analysis (TICA) are explored in a recent review38. A key
contribution of VAC is a variational score enabling the objective
assessment of Koopman models via cross-validation. Recently,
eDMD has been demonstrated to improve model predictive
control performance in nonlinear systems39.

Identifying regression models based on nonlinear measure-
ments will generally result in closure issues, as there is no
guarantee that these measurements form a Koopman invariant
subspace40. The resulting models are of exceedingly high
dimension, and when kernel methods are employed41, the models
may become uninterpretable. Instead, many approaches seek to
identify eigenfunctions of the Koopman operator directly,
satisfying:

φðxkþ1Þ ¼ KφðxkÞ ¼ λφðxkÞ: ð3Þ

Eigenfunctions are guaranteed to span an invariant subspace, and
the Koopman operator will yield a matrix when restricted to this
subspace40,42. In practice, Koopman eigenfunctions may be more
difficult to obtain than the solution of (1); however, this is a one-
time up-front cost that yields a compact linear description. The
challenge of identifying and representing Koopman eigenfunc-
tions provides strong motivation for the use of powerful emerging
deep learning methods28–33.

Koopman for systems with continuous spectra. The Koopman
operator provides a global linearization of the dynamics. The
concept of linearizing dynamics is not new, and locally linear
representations are commonly obtained by linearizing around
fixed points and periodic orbits1. Indeed, asymptotic and per-
turbation methods have been widely used since the time of
Newton to approximate solutions of nonlinear problems by
starting from the exact solution of a related, typically linear
problem. The classic pendulum, for instance, satisfies the differ-
ential equation €x ¼ �sinðωxÞ and has eluded an analytic solution
since its mathematical inception. The linear problem associated
with the pendulum involves the small angle approximation
whereby sin(ωx)= ωx− (ωx)3/3! + …; and only the first term is
retained in order to yield exact sinusoidal solutions. The next
correction involving the cubic term gives the Duffing equation,
which is one of the most commonly studied nonlinear oscillators
in physics1. Importantly, the cubic contribution is known to shift
the linear oscillation frequency of the pendulum, ω → ω+ Δω, as
well as generate harmonics such as exp(±3iω)43,44. An exact
representation of the solution can be derived in terms of Jacobi
elliptic functions, which have a Taylor series representation in
terms of an infinite sum of sinusoids with frequencies (2n− 1)ω,
where n= 1,2,…,∞. Thus, the simple pendulum oscillates at the
(linear) natural frequency ω for small deflections, and as the
pendulum energy is increased, the frequency decreases con-
tinuously, resulting in a so-called continuous spectrum.
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The importance of accounting for the continuous spectrum
was discussed in 1932 in an extension by Koopman and von
Neumann5. A continuous spectrum, as described for the simple
pendulum, is characterized by a continuous range of observed
frequencies, as opposed to the discrete spectrum consisting of
isolated, fixed frequencies. This phenomena is observed in a wide
range of physical systems that exhibit broadband frequency
content, such as turbulence and nonlinear optics. The continuous
spectrum thus confounds simple Koopman descriptions, as there
is not a straightforward finite approximation in terms of a small
number of eigenfunctions10. Indeed, away from the linear regime,
an infinite Fourier sum is required to approximate the shift in
frequency and eigenfunctions. In fact, in some cases, eigenfunc-
tions may not exist at all.

Recently, there have been several algorithmic advances to
approximate systems with continuous spectra, including non-
linear Laplacian spectral analysis45 and the use of delay
coordinates46,47. A critically enabling innovation of the present
work is explicitly accounting for the parametric dependence of
the Koopman operator K(λ) on the continuously varying λ,
related to the classic perturbation results above. By constructing
an auxiliary network (see Fig. 2) to first determine the parametric
dependency of the Koopman operator on the frequency λ±= ±iω,
an interpretable low-rank model of the intrinsic dynamics can
then be constructed. In particular, a nonlinear oscillator with
continuous spectrum may now be represented as a single pair of
conjugate eigenfunctions, mapping trajectories into perfect sines
and cosines, with a continuous eigenvalue parameterizing the
frequency. If this explicit frequency dependence is unaccounted
for, then a high-dimensional network is necessary to account for
the shifting frequency and eigenvalues. We conjecture that
previous Koopman models using high-dimensional DNNs
represent the harmonic series expansion required to approximate
the continuous spectrum for systems such as the Duffing
oscillator.

Deep learning to identify Koopman eigenfunctions. The over-
arching goal of this work is to leverage the power of deep learning
to discover and represent eigenfunctions of the Koopman
operator. Our perspective is driven by the need for parsimonious
representations that are efficient, avoid overfitting, and provide
minimal descriptions of the dynamics on interpretable intrinsic
coordinates. Unlike previous deep learning approaches to
Koopman28–31, our network architecture is designed specifically

to handle a ubiquitous class of nonlinear systems characterized by
a continuous frequency spectrum generated by the nonlinearity.
A continuous spectrum presents unique challenges for compact
and interpretable representation, and our approach is inspired by
the classical asymptotic and perturbation approaches in dyna-
mical systems.

Our core network architecture is shown in Fig. 1, and it is
modified in Fig. 2 to handle the continuous spectrum. The
objective of this network is to identify a few key intrinsic
coordinates y= φ(x) spanned by a set of Koopman eigenfunc-
tions φ : Rn ! R

p, along with a dynamical system yk+1=Kyk.
There are three high-level requirements for the network,
corresponding to three types of loss functions used in training:

1. Intrinsic coordinates that are useful for reconstruction. We
seek to identify a few intrinsic coordinates y= φ(x) where the
dynamics evolve, along with an inverse x= φ−1(y) so that the
state x may be recovered. This is achieved using an auto-
encoder (see Fig. 1a), where φ is the encoder and φ−1 is the
decoder. The dimension p of the auto-encoder subspace is a
hyperparameter of the network, and this choice may be
guided by knowledge of the system. Reconstruction accuracy
of the auto-encoder is achieved using the following loss:
x � φ�1ðφðxÞÞk k.

2. Linear dynamics. To discover Koopman eigenfunctions, we
learn the linear dynamics K on the intrinsic coordinates, i.e.,
yk+1=Kyk. Linear dynamics are achieved using the following
loss: φðxkþ1Þ � KφðxkÞ

�� ��. More generally, we enforce linear
prediction over m time steps with the loss:
φðxkþmÞ � KmφðxkÞ

�� ��. (see Fig. 1c).
3. Future state prediction. Finally, the intrinsic coordinates

must enable future state prediction. Specifically, we identify
linear dynamics in the matrix K. This corresponds to the loss
xkþ1 � φ�1ðKφðxkÞÞ

�� ��, and more generally
xkþm � φ�1ðKmφðxkÞÞ

�� ��. (see Fig. 1b).

Our norm �k k is mean-squared error, averaging over dimen-
sion then number of examples, and we add ‘2 regularization.

To address the continuous spectrum, we allow the eigenvalues
of the matrix K to vary, parametrized by the function λ=Λ(y),
which is learned by an auxiliary network (see Fig. 2). The
eigenvalues λ±= μ ± iω are then used to parametrize block-
diagonal K(μ,ω). For each pair of complex eigenvalues, the
discrete-time K has a Jordan block of the form:

Bðμ;ωÞ ¼ expðμΔtÞ cosðωΔtÞ �sinðωΔtÞ
sinðωΔtÞ cosðωΔtÞ

� �
: ð4Þ

This network structure allows the eigenvalues to vary across
phase space, facilitating a small number of eigenfunctions. To
enforce circular symmetry in the eigenfunction coordinates, we
often parameterize the eigenvalues by the radius λ yk k22

� �
. The

second and third prediction loss function must also be modified
for systems with continuous spectrum, as discussed in the
Methods section.

To train our network, we generate trajectories from random
initial conditions, which are split into training, validation, and
test sets. Models are trained on the training set and compared on
the validation set, which is also used for early stopping to prevent
overfitting. We report accuracy on the test set.

Demonstration on examples. We demonstrate our deep learning
approach to identify Koopman eigenfunctions on several example
systems, including a simple model with a discrete spectrum and
two examples that exhibit a continuous spectrum: the nonlinear

xk yk yk+1
xk+1

� �–1

K (�)

�
Λ

Fig. 2 Schematic of modified schema with auxiliary network to identify
(parametrize) the continuous eigenvalue spectrum λ. This facilitates an
aggressive dimensionality reduction in the auto-encoder, avoiding the need
for higher harmonics of the fundamental frequency that are generated by
the nonlinearity43, 44. For purely oscillatory motion, as in the pendulum, we
identify the continuous frequency λ±= ±iω
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pendulum and the high-dimensional unsteady fluid flow past a
cylinder. The training, validation, and test errors for all examples
are reported in Table 1. Additional details for each example are
provided in Supplementary Note 1.

Example 1: Simple model with discrete spectrum. Before ana-
lyzing systems with the additional challenges of a continuous
spectrum and high-dimensionality, we consider a simple non-
linear system with a single fixed point and a discrete eigenvalue
spectrum:

_x1 ¼ μx1 ð5Þ

_x2 ¼ λðx2 � x21Þ: ð6Þ

This dynamical system has been well-studied in the literature40,48,
and for stable eigenvalues λ < μ < 0, the system exhibits a slow
manifold given by x2 ¼ x21; we use μ=−0.05 and λ=−1. As
shown in Fig. 3, the Koopman embedding identifies nonlinear
coordinates that flatten this inertial manifold, providing a globally
linear representation of the dynamics; moreover, the correct
Koopman eigenvalues are identified. Specific details about the
network and training procedure are provided in the Methods.

In this example, we include the auxiliary network even though
it is not required for examples with discrete eigenvalues. As
shown in Supplementary Fig. 3, although the eigenvalues have the
freedom to vary, they stay in a narrow range around the correct
values. This numerically demonstrates that it is possible to
identify a discrete spectrum without a priori knowledge about
whether the spectrum is continuous or discrete.

Example 2: Nonlinear pendulum with continuous spectrum. As
a second example, we consider the nonlinear pendulum, which
exhibits a continuous eigenvalue spectrum with increasing
energy:

€x ¼ �sinðxÞ ) _x1 ¼ x2
_x2 ¼ �sinðx1Þ:

�
ð7Þ

Although this is a simple mechanical system, it has eluded

parsimonious representation in the Koopman framework. The
deep Koopman embedding is shown in Fig. 4, where it is clear
that the dynamics are linear in the eigenfunction coordinates,
given by y= φ(x). As the Hamiltonian energy of the system
increases, corresponding to an elongation of the oscillation per-
iod, the parameterized Koopman network accounts for this
continuous frequency shift and provides a compact representa-
tion in terms of two conjugate eigenfunctions. Alternative net-
work architectures that are not specifically designed to account
for continuous spectra with an auxiliary network would be forced
to approximate this frequency shift with the classical asymptotic
expansion in terms of harmonics. The resulting network would be
overly bulky and would limit interpretability.

Recall that we have three types of losses on the network:
reconstruction, prediction, and linearity. Figure 4b shows that the
network is able to function as an auto-encoder, accurately
reconstructing the 10 example trajectories. Next, we show that the
network is able to predict the evolution of the system. Figure 4c
shows the prediction horizon for 10 initial conditions that are
simulated forward with the network, stopping the prediction
when the relative error reaches 10%. As expected, the prediction
horizon deteriorates as the energy of the initial condition
increases, although the prediction is still quite accurate. The
nearly concentric circles in Fig. 4d demonstrate that the dynamics
in the intrinsic coordinates y are truly linear.

In this example, both the eigenfunctions and the eigenvalues
are spatially varying. When originally designing the Koopman
network, we did not impose any constraints on how these
eigenfunctions and eigenvalues vary in space, and the resulting
network did not converge to a unique and interpretable solution.
This led us to decide on an important design constraint, that a
nonlinear oscillator, like the pendulum, should map to coordi-
nates that have radial symmetry, so that the spatial variation of
the eigenfunctions and eigenvalues depends on the radius of the
intrinsic coordinates.

The eigenfunctions φ1(x) and φ2(x) are shown in Fig. 4e. It is
possible to map these eigenfunctions into magnitude and phase
coordinates, as shown in Fig. 5, where it can be seen that that
magnitude essentially traces level sets of the Hamiltonian energy.
This is consistent with previous theoretical derivations of Mezić49

that represent Koopman eigenfunctions in action–angle coordi-
nates, and we thank him for communicating this connection to
us.

Example 3: High-dimensional nonlinear fluid flow. As our final
example, we consider the nonlinear fluid flow past a circular
cylinder at Reynolds number 100 based on diameter, which is
characterized by vortex shedding. This model has been a
benchmark in fluid dynamics for decades50, and has been
extensively analyzed in the context of data-driven
modeling25,51 and Koopman analysis52. In 2003, Noack
et al.50 showed that the high-dimensional dynamics evolve on
a low-dimensional attractor, given by a slow-manifold in the
following model:

_x1 ¼ μx1 � ωx2 þ Ax1x3 ð8Þ

_x2 ¼ ωx1 þ μx2 þ Ax2x3 ð9Þ

_x3 ¼ �λ x3 � x21 � x22
� �

: ð10Þ

This mean-field model exhibits a stable limit cycle correspond-
ing to von Karman vortex shedding, and an unstable equilibrium
corresponding to a low-drag condition. Starting near this

Table 1 Errors for each problem

Discrete
spectrum

Pendulum Fluid flow 1 Fluid flow 2

Training 1.4 × 10−7 8.5 × 10−8 5.4 × 10−7 2.8 × 10−6

Validation 1.4 × 10−7 9.4 × 10−8 5.4 × 10−7 2.9 × 10−6

Test 1.5 × 10−7 1.1 × 10−7 5.5 × 10−7 2.9 × 10−6

x2

x1

y2

y1

Fig. 3 Demonstration of neural network embedding of Koopman
eigenfunctions for simple system with a discrete eigenvalue spectrum
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equilibrium, the flow unwinds up the slow manifold toward the
limit cycle. In51, Loiseau and Brunton showed that this flow may
be modeled by a nonlinear oscillator with state-dependent
damping, making it amenable to the continuous spectrum
analysis. We use trajectories from this model where μ= 0.1, ω
= 1, A=−0.1, and λ= 10 to train a Koopman network. The
resulting eigenfunctions are shown in Fig. 6.

In this example, the damping rate μ and frequency ω are
allowed to vary along level sets of the radius in eigenfunction
coordinates, so that μ(R) and ω(R), where R2 ¼ y21 þ y22; this is
accomplished with an auxiliary network as in Fig. 2. These
continuously varying eigenvalues are shown in Supplementary
Fig. 5, where it can be seen that the frequency ω is extremely close
to the true constant −1, while the damping μ varies significantly,
and in fact switches stability for trajectories outside the natural
limit cycle. This is consistent with the data-driven model of
Loiseau and Brunton51.

Although we only show the ability of the model to predict the
future state in Fig. 6, corresponding to the second and third loss
functions, the network also functions as an autoencoder.
Figure 6c shows the prediction performance of the Koopman
network for trajectories that start away from the attractor; in
both cases, the dynamics are faithfully captured and the
dynamics attract onto the limit cycle. Thus, it is possible to

capture nonlinear transients, as long as these are sufficiently
represented in the training data.

Discussion
In summary, we have employed powerful deep learning approa-
ches to identify and represent coordinate transformations that
recast strongly nonlinear dynamics into a globally linear frame-
work. Our approach is designed to discover eigenfunctions of the
Koopman operator, which provide an intrinsic coordinate system
to linearize nonlinear systems, and have been notoriously difficult
to identify and represent using alternative methods. Building on a
deep auto-encoder framework, we enforce additional constraints
and loss functions to identify Koopman eigenfunctions where the
dynamics evolve linearly. Moreover, we generalize this framework
to include a broad class of nonlinear systems that exhibit a
continuous eigenvalue spectrum, where a continuous range of
frequencies is observed. Continuous-spectrum systems are
notoriously difficult to analyze, especially with Koopman theory,
and naive learning approaches require asymptotic expansions in
terms of higher order harmonics of the fundamental frequency,
leading to unwieldy models. In contrast, we utilize an auxiliary
network to parametrize and identify the continuous frequency,
which then parameterizes a compact Koopman model on the
auto-encoder coordinates. Thus, our deep neural network models
remain both parsimonious and interpretable, merging the best of
neural network representations and Koopman embeddings. In
most deep learning applications, although the basic architecture is
extremely general, considerable expert knowledge and intuition is
typically used in the training process and in designing loss
functions and constraints. Throughout this paper, we have also
used physical insight and intuition from asymptotic theory and
continuous spectrum dynamical systems to guide the design of
parsimonious Koopman embeddings.

There are many ongoing challenges and promising directions
that motivate future work. First, there are still several limitations
associated with deep learning, including the need for vast and
diverse data and extensive computation to train models53. This
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Fig. 5 Magnitude and phase of the pendulum eigenfunctions
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training may be considered a one-time upfront cost, and deep
learning frameworks, such as TensorFlow parallelize the training
on GPUs and across GPUs54; further, there is ongoing work to
improve the scalability53. Even more concerning is the dubious
generalizability and interpretability of the resulting models, as
deep learning architectures may be viewed as sophisticated
interpolation engines with limited ability to extrapolate beyond
the training data55. This work attempts to promote interpret-
ability by forcing the network to have physical meaning in the
context of Koopman theory, although the issue with general-
izability still requires sufficient volumes and diversity of training
data. There are also more specific limitations to the current
proposed architecture, foremost, choosing the dimension of the
autoencoder coordinates, y. Continued effort will be required to
automatically detect the dimension of the intrinsic coordinates
and to classify spectra (e.g., discrete and continuous, and real and

complex eigenvalues). It will be important to extend these
methods to higher-dimensional examples with more complex
energy spectra, as the examples considered here are relatively low-
dimensional. Fortunately, with sufficient data, deep learning
architectures are able to learn incredibly complex representations,
so the prospects for scaling these methods to larger systems is
promising.

The use of deep learning in physics and engineering is increasing
at an incredible rate, and this trend is only expected to accelerate.
Nearly every field of science is revisiting challenging problems of
central importance from the perspective of big data and deep
learning. With this explosion of interest, it is imperative that we as a
community seek machine learning models that favor interpretability
and promote physical insight and intuition. In this challenge, there
is a tremendous opportunity to gain new understanding and insight
by applying increasingly powerful techniques to data. For example,

a

b

x3

ux3

ux1

ux2

x1

y2

y1

x2

–0.3 0 0.3

x3

x2

x3

x1

x2

x1

c

Fig. 6 Learned Koopman eigenfunctions for the mean-field model of fluid flow past a circular cylinder at Reynolds number 100. a Reconstruction of
trajectory from linear Koopman model with two states; modes for each of the state space variables x are shown along the coordinate axes. b Koopman
reconstruction in eigenfunction coordinates y, along with eigenfunctions y ¼ φðxÞ. c Two examples of trajectories that begin off the attractor. The Koopman
model is able to reconstruct both given only the initial condition
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discovering Koopman eigenfunctions will result in new symmetries
and conservation laws, as conserved eigenfunctions are related to
conservation laws via a generalized Noether's theorem. It will also
be important to apply these techniques to increasingly challenging
problems, such as turbulence, epidemiology, and neuroscience,
where data is abundant and models are needed. The goal is to
model these systems with a small number of coupled nonlinear
oscillators using similar parameterized Koopman embeddings.
Finally, the use of deep learning to discover Koopman eigenfunc-
tions may enable transformative advances in the nonlinear control
of complex systems. All of these future directions will be facilitated
by more powerful network representations.

Methods
Creating the datasets. We create our datasets by solving the systems of differ-
ential equations in MATLAB using the ode45 solver.

For each dynamical system, we choose 5000 initial conditions for the test set,
5000 for the validation set, and 5000–20,000 for the training set (see Table 2). For
each initial condition, we solve the differential equations for some time span. That
time span is t= 0,.02,…,1 for the discrete spectrum and pendulum datasets. Since
the dynamics on the slow manifold for the fluid flow example are slower and more
complicated, we increase the time span for that dataset to t= 0,.05,…,6. However,
when we include data off the slow manifold, we want to capture the fast dynamics
as the trajectories are attracted to the slow manifold, so we change the time span to
t= 0,.01,…,1. Note that for the network to capture transient behavior as in the first
and last example, it is important to include enough samples of transients in the
training data.

The discrete spectrum dataset is created from random initial conditions x where
x1, x2∈[−0.5, 0.5], since this portion of phase space is sufficient to capture the
dynamics.

The pendulum dataset is created from random initial conditions x, where
x1∈[−3.1,3.1] (just under [−π,π]), x2∈[−2,2], and the potential function is under
0.99. The potential function for the pendulum is 1

2 x
2
2 � cosðx1Þ. These ranges are

chosen to sample the pendulum in the full phase space where the pendulum
approaches having an infinite period.

The fluid flow problem limited to the slow manifold is created from random
initial conditions x on the bowl where r∈[0, 1.1], θ∈[0, 2π], x1= rcos(θ), x2= rsin
(θ), and x3 ¼ x21 þ x22 . This captures all of the dynamics on the slow manifold,
which consists of trajectories that spiral toward the limit cycle at r= 1.

The fluid flow problem beyond the slow manifold is created from random initial
conditions x where x1∈[−1.1,1.1], x2∈[−1.1,1.1], and x3∈[0,2.42]. These limits are
chosen to include the dynamics on the slow manifold covered by the previous
dataset, as well as trajectories that begin off the slow manifold. Any trajectory that
grows to x3 > 2.5 is eliminated so that the domain is reasonably compact and well-
sampled.

Code. We use the Python API for the TensorFlow framework54 and the Adam
optimizer56 for training. All of our code is available online at github.com/Betha-
nyL/DeepKoopman.

Network architecture. Each hidden layer has the form of Wx+ b followed by an
activation with the rectified linear unit (ReLU): f(x)=max{0,x}. In our

experiments, training was significantly faster with ReLU as the activation function
than with sigmoid. See Table 3 for the number of hidden layers in the encoder,
decoder, and auxiliary network, as well as their widths. The output layers of the
encoder, decoder, and auxiliary network are linear (simply Wx+ b).

The input to the auxiliary network is y, and it outputs the parameters for the
eigenvalues of K. For each complex conjugate pair of eigenvalues λ±= μ ± iω, the
network defines a function Λ mapping y2j þ y2jþ1 to μ and ω, where yj and yj+1 are
the corresponding eigenfunctions. Similarly, for each real eigenvalue λ, the network
defines a function mapping yj to λ. For example, for the fluid flow problem off the
attractor, we have three eigenfunctions. The auxiliary network learns a map from
y21 þ y22 to μ and ω and another map from y3 to λ. This could be implemented as
one network defining a mapping Λ : R2 ! R

3 where the layers are not fully
connected (y21 þ y22 should not influence λ and y3 should not influence μ and ω).
However, for simplicity, we implement this as two separate auxiliary networks, one
for the complex conjugate pair of eigenvalues and one for the the real eigenvalue.

Explicit loss function. Our loss function has three weighted mean-squared error
components: reconstruction accuracy Lrecon, future state prediction Lpred, and
linearity of dynamics Llin. Since we know that there are no outliers in our data, we
also use an L1 term to penalize the data point with the largest loss. Finally, we add
‘2 regularization on the weights W to avoid overfitting. More specifically:

L ¼ α1ðLrecon þ LpredÞ þ Llin þ α2L1 þ α3 Wk k22 ð11Þ

Lrecon ¼ x1 � φ�1ðφðx1ÞÞ
�� ��

MSE ð12Þ

Lpred ¼ 1
Sp

XSp
m¼1

xmþ1 � φ�1ðKmφðx1ÞÞ
�� ��

MSE
ð13Þ

Llin ¼ 1
T � 1

XT�1

m¼1

φðxmþ1Þ � Kmφðx1Þ
�� ��

MSE
ð14Þ

L1 ¼ x1 � φ�1ðφðx1ÞÞ
�� ��

1þ x2 � φ�1ðKφðx1ÞÞ
�� ��

1; ð15Þ

where MSE refers to mean squared error and T is the number of time steps in each
trajectory. The weights α1, α2, and α3 are hyperparameters. The integer Sp is a
hyperparameter for how many steps to check in the prediction loss. The hyper-
parameters α1, α2, α3, and Sp are listed in Table 4.

The matrix K is parametrized by the function λ=Λ(y), which is learned by an
auxiliary network. The eigenvalues can vary along a trajectory, so in Lpred and Llin,
Km=K(λ1) ⋅K(λ2)…K(λm). However, on Hamiltonian systems, such as the
pendulum, the eigenvalues are constant along each trajectory. If a system is known
to be Hamiltonian, the network training could be sped up by encoding the
constraint that Km=K(λ)m. In order to demonstrate that this specialized
knowledge is not necessary, we use the more general case for all of our datasets,
including the pendulum.

Training. We initialize each weight matrix W randomly from a uniform dis-
tribution in the range [−s, s] for s ¼ 1=

ffiffiffi
a

p
, where a is the dimension of the input

of the layer. This distribution was suggested in ref. 21. Each bias vector b is initi-
alized to 0. The model for the discrete spectrum example is trained for 2 h on an
NVIDIA K80 GPU. The other models are each trained for 6 h. The learning rate for
the Adam optimizer is 0.001. On the pendulum and fluid flow datasets, for 5 min,
we pretrain the network to be a simple autoencoder, using the autoencoder loss but
not the linearity or prediction losses, as this speeds up the training. We also use
early stopping; for each model, at the end of training, we resume the step with the
lowest validation error.

Hyperparameter tuning. There are many design choices in deep learning, so we
use hyperparameter tuning, as described in ref. 21. For each dynamical system, we
train multiple models in a random search of hyperparameter space and choose the
one with the lowest validation error. Each model is also initialized with different

Table 2 Dataset sizes

Discrete
spectrum

Pendulum Fluid
flow 1

Fluid
flow 2

Length of traj. 51 51 121 101
# Training traj. 5000 15,000 15,000 20,000
Batch size 256 128 256 128

Table 3 Network architecture

Discrete
spectrum

Pendulum Fluid
flow 1

Fluid
flow 2

# hidden layers (HL) 2 2 1 1
Width HL 30 80 105 130
# HL aux. net. 3 1 1 2
Width HL aux. net. 10 170 300 20

Table 4 Loss hyperparameters

Discrete
spectrum

Pendulum Fluid
flow 1

Fluid
flow 2

α1 0.1 0.001 0.1 0.1
α2 10−7 10−9 10−7 10−9

α3 10−15 10−14 10−13 10−13

Sp 30 30 30 30
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random weights. We find that α1, which defines a trade-off between the two
objectives that include the decoder and the one that does not, has a significant
effect on the training speed.

Code availability. All code used in this study is available at github.com/BethanyL/
DeepKoopman.

Data availability
All data generated during this study can be reconstructed using the code available
at github.com/BethanyL/DeepKoopman.
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