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Abstract

Neural ordinary differential equations (NODEs)
have recently attracted increasing attention; how-
ever, their empirical performance on benchmark
tasks (e.g. image classification) are significantly
inferior to discrete-layer models. We demonstrate
an explanation for their poorer performance is the
inaccuracy of existing gradient estimation meth-
ods: the adjoint method has numerical errors
in reverse-mode integration; the naive method
directly back-propagates through ODE solvers,
but suffers from a redundantly deep computa-
tion graph when searching for the optimal step-
size. We propose the Adaptive Checkpoint Ad-
joint (ACA) method: in automatic differentia-
tion, ACA applies a trajectory checkpoint strat-
egy which records the forward-mode trajectory
as the reverse-mode trajectory to guarantee ac-
curacy; ACA deletes redundant components for
shallow computation graphs; and ACA supports
adaptive solvers. On image classification tasks,
compared with the adjoint and naive method,
ACA achieves half the error rate in half the train-
ing time; NODE trained with ACA outperforms
ResNet in both accuracy and test-retest reliabil-
ity. On time-series modeling, ACA outperforms
competing methods. Finally, in an example of the
three-body problem, we show NODE with ACA
can incorporate physical knowledge to achieve
better accuracy. We provide the PyTorch imple-
mentation of ACA: https://github.com/
juntang-zhuang/torch-ACA.
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1. Introduction
Conventional neural networks with discrete layers have
achieved great success in various tasks, such as image clas-
sification (He et al., 2016), segmentation (Long et al., 2015)
and machine translation (Sutskever et al., 2014). However,
it’s difficult for these discrete-layer networks to model con-
tinuous processes. The recently proposed neural ordinary
differential equation (NODE) (Chen et al., 2018) views the
model as an ordinary differential equation (ODE), whose
derivative is parameterized by the network. NODE can
be viewed as an initial value problem (IVP), whose initial
condition is input to the model. NODE achieves great suc-
cess in free-form reversible generative models (Grathwohl
et al., 2018), time series analysis (Rubanova et al., 2019)
and system identification (Quaglino et al., 2019; Ayed et al.,
2019). However, the empirical performance of NODE is
significantly inferior to discrete-layer models on benchmark
classification tasks (error rate: 19% (NODE) vs 5% (ResNet)
on CIFAR10) (Dupont et al., 2019; Gholami et al., 2019).

We demonstrate that performance is adversely affected by
inaccurate gradient estimation for NODEs using existing
methods. NODEs are typically trained with the adjoint
method (Pontryagin, 1962; Chen et al., 2018), which is
memory-efficient but sensitive to numerical errors; because
the forward-mode and reverse-mode trajectories are treated
as two separate IVPs, they are not accurately equal, caus-
ing error in gradient estimation (Gholami et al., 2019).
The naive method directly back-propagates through ODE
solvers; however, it has a redundantly deep computation
graph when adaptive solvers search for optimal stepsize
(Wanner & Hairer, 1996).

We propose the adaptive checkpoint adjoint (ACA) method
to accurately estimate the gradient for NODEs. ACA sup-
ports adaptive ODE solvers. In automatic differentiation,
ACA applies a trajectory checkpoint strategy, which stores
the forward-mode trajectory with minimal memory; the
forward-mode trajectory is used as the reverse-mode trajec-
tory to guarantee numerical accuracy. ACA deletes redun-
dant components during the backward-pass for a shallow
computation graph and accurate gradient estimation.

Our contributions can be summarized as:
(1) We theoretically analyze the numerical error with the

https://github.com/juntang-zhuang/torch-ACA
https://github.com/juntang-zhuang/torch-ACA
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Figure 1. From discrete-depth model to continuous depth model.

adjoint and naive methods, and propose ACA to accurately
estimate gradients of NODEs.
(2) On image classification tasks, compared with the adjoint
and naive methods, ACA achieves twice the speed and half
the error rate; furthermore, to our knowledge, ACA is the
first to enable NODE with adaptive solvers to outperform
ResNet in both accuracy and test-retest reliability. On time
series modeling, ACA outperforms other methods.
(3) We show that NODE can incorporate physical knowl-
edge and improve accuracy when trained with ACA.
Furthermore, ACA can be applied to general ODEs.

2. Preliminaries
2.1. Neural Ordinary Differential Equations

NODE views the model as an ordinary differential equa-
tion, whose derivative is parameterized by a neural network.
NODE can be represented as:

dz(t)

dt
= f(z(t), t, θ), s.t. z(0) = x, t ∈ [0, T ] (1)

where z(t) is the hidden state, T is the end time, and f is
the network with parameters θ. z(0) is the initial condition,
which equals input x. Output of the model is z(T ).

We draw the connection between NODE and conventional
networks in Fig. 1, where a discrete-depth model takes
integer depths, and a continuous-depth model has values at
all real-number depths. Compared to discrete-layer models,
the feature map evolves smoothly with depth in NODE.

2.2. Analytical Form of Gradient for NODE

We formulate the training process of NODE as an optimiza-
tion problem:

argminθ
1

N

N∑
i=1

J(ŷi, yi) (2)

s.t.
dzi(t)

dt
= f(zi(t), t, θ), zi(0) = xi, (3)

ŷi = zi(T ), t ∈ [0, T ], i = 1, 2, ..N (4)

where J is the loss function (e.g. cross-entropy, L2 loss).

We use the Lagrangian Multiplier Method to solve the prob-
lem defined in Eq. 4. For simplicity, considering only one

example (can be easily extended to the multiple examples
case), the Lagrangian is

L = J(z(T ), y)+

∫ T

0

λ(t)>[
dz(t)

dt
−f(z(t), t, θ)]dt (5)

Theorem 2.1 The gradient derived from Karush-Kuhn-
Tucker (KKT) conditions for Eq. 5 is:

∂J

∂z(T )
+ λ(T ) = 0 (6)

dλ(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)>
λ(t) = 0 ∀t ∈ (0, T ) (7)

dL

dθ
=

∫ 0

T

λ(t)>
∂f(z(t), t, θ)

∂θ
dt (8)

Detailed proofs are in Appendix C. λ(t) also corresponds to
the negative adjoint variable in optimal control (Pontryagin,
1962; Chen et al., 2018).

Summary The analytical solution can be summarized as:
(1) Solve z(t) in time 0→ T .
(2) Determine λ(T ) with Eq. 6.
(3) Solve λ(t) in time T → 0, following Eq. 7 and boundary
condition λ(T ).
(4) Calculate parameter gradient by Eq. 8.

Note that in order to calculate Eq. 8, λ(t) and z(t) are
required for every t. Since λ(t) and z(t) are solved in
opposite directions, we need to either memorize z(t), or find
a method to recover z(t). Note that Eq. 8 is the analytical
form, and needs to be numerically calculated in practice.

2.3. Numerical Integration

ODE solvers aim to numerically calculate

z(T ) = z(0) +

∫ T

0

f(z(t), t, θ)dt (9)

We mainly consider adaptive stepsize solvers. Compared
to constant-stepsize solvers, adaptive solvers can estimate
error and adaptively control stepsize (Press et al., 1988).

Notations We summarize notations here, which are also
demonstrated in Fig. 2 and Fig. 3:

• zi(ti)/z(τi): hidden state in forward/reverse time tra-
jectory at time ti/τi.

• Φtti(zi): the oracle solution of the ODE at time t, start-
ing from (ti, zi). Black dashed curve in Fig. 2 and
Fig. 3. Φ is called the flow map.

• ψhi(ti, zi): the numerical solution at time ti + hi,
starting from (ti, zi). Blue solid line in Fig. 2.
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Figure 2. Forward-time integration. The global error is the sum
of local error Lh(ti, zi) propagated to end time. This picture is
called Lady Windermere’s Fan (Wanner & Hairer, 1996). Details
of notations summarized in Sec. 2.3

Adjoint

Naive/ACA

Figure 3. Reverse-time integration. Blue curve is the same trajectory
as in forward-time integration. Both naive method and ours accurately
recover the forward-time trajectory, while adjoint method forgets the
forward-time trajectory.

• Lhi
(ti, zi): local truncation error between numerical

approximation and oracle solution, where

Lhi
(ti, zi) = ψhi

(ti, zi)− Φti+hi
ti (zi) (10)

• Ri: the local error Lhi
(ti, zi) propagated to end time.

Ri = ΦTti+1
(zi+1)− ΦTti(zi) (11)

• Nf : number of layers in f in Eq. 1.

• Nt/Nr: number of discretized points (outer iterations
in Algo. 1) in forward / reverse integration. It varies
with input and error tolerance for adaptive solvers.

• m: average number of inner iterations in Algo. 1 to
find an acceptable stepsize.

Algorithm 1 Numerical Integration

Input: data x, end time T , error tolerance etol, initial
stepsize h
Initialize: z = x, t = 0, error estimate ê =∞
while t < T do

while ê > etol do
h← h× decay factor(ê)
ê, ẑ = ψh(t, z)

end while
t← t+ h, z ← ẑ

end while

The numerical integration algorithm is summarized in
Algo. 1 and Fig. 2. The ODE solver progressively advances
in time, and adapts the stepsize according to the error es-
timate. Note that for a given start point (ti, zi), the solver
might need to execute the inner while loop in Algo. 1 many
times until the stepsize is small enough, such that the error
estimate is below a certain threshold. This process will gen-
erate a very redundant deep computation graph, where only
the final h is needed.

3. Methods
In this section we describe different methods to compute
the gradient. A summary comparing the methods is given
in Table 1 and Fig. 3. We refer readers to the summary
part of Sec. 2.2 for the analytical solution; the following
methods are different numerical implementations. Note that
forward-time integration is the same for these methods.

3.1. Summary of Different Methods

Naive Method: direct back-prop through solver The
simplest way is to treat the numerical ODE solver as a very
deep discrete-layer network, and directly back-propagate.
We call it the “naive” method. Because all computa-
tion graphs (including searching for optimal stepsize) are
recorded in the memory for back-prop, the memory cost
and depth are O(Nf ×Nt ×m). The computation cost is
doubled considering both forward and reverse integration.
The memory cost of the naive method can quickly explode,
because an accurate solution requires a very small stepsize,
and hence a very large Nt.

Adjoint Method: forget forward-time trajectory To
solve the memory issue with the naive method, Chen et al.
(2018) proposed the adjoint method, originally illustrated
by Pontryagin (1962). The adjoint method forgets the
forward-time trajectory z(t); instead, it remembers bound-
ary condition z(T ) and λ(T ), then solves z(t) and λ(t)
in reverse-time T → 0. We use z to denote reverse-time
solution. Because λ(t) and z(t) are solved in the same di-
rection, the integration in Eq. 8 only records current val-
ues, achieving O(Nf ) memory cost. Since the adjoint
method needs to solve z(t) in reverse-time, it requires extra
O(Nf × Nr ×m) computation, so the total computation
cost is O(Nf × (Nt +Nr)×m). Note that z(t) is not the
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same as z(t) (as in Fig. 3) due to numerical errors, which
will cause error in gradient estimation. We will explain in
detail in Sec. 3.2.

Adaptive Checkpoint Adjoint (ACA): record z(t) with
minimal memory ACA tries to record z(t) to avoid nu-
merical errors, while also controlling memory cost. ACA
supports both adaptive and constant stepsize ODE solvers.
It is summarized in Algo. 2, with a detailed version in Ap-
pendix A. Note that the forward-pass computation is the
same as Algo. 1 for all three methods, so we omit common
parts and focus on the unique part.

Algorithm 2 ACA: Record z(t) with Minimal Memory

Forward-pass:
(1) Keep accepted discretization points {t0, ...tNt

}
(2) Keep z values {z0, z1, ...zNt

} (Not ψhi
(ti, zi))

(3) Delete local computation graphs to search for
optimal stepsize
Backward-pass:

Initialize λ(T ), dLdθ = 0
For Nt to 1:

(1) local forward: zi+1 = ψ(ti, zi) with stepsize
hi = ti+1 − ti

(2) local backward, update λ and dL
θ according

to discretization of Eq. 7 and Eq. 8.
(3) Delete local computation graphs.

During the forward-pass, to save memory, ACA deletes
redundant computation graphs to search for the optimal
stepsize. Instead, ACA applies the “trajectory checkpoint”
strategy, recording the discretization points ti (equivalently,
the accepted stepsize hi = ti+1 − ti) and values zi (not
computation graph ψhi

(ti, zi)) at a memory cost O(Nt).
Considering O(Nf ) memory cost for one evaluation of ψ,
the total memory cost is O(Nf +Nt).

During the backward-pass, going reverse-time, ACA per-
forms the forward-pass and backward-pass locally from ti
to ti+1, and updates λ and dL

dθ . Computations are evaluated
at saved discretization points {t0, ...tNt}, using saved val-
ues {z0, ..., zNt}, to guarantee accuracy between forward-
time and reverse-time trajectory. We only need to search
for optimal stepsize during the forward-pass, with m in-
ner iterations in Algo. 1; during the backward-pass we
reuse saved stepsizes, so the total computation cost is
O(Nf ×Nt × (m+ 1)).

3.2. Adjoint Method has Numerical Errors

Numerical Experiments Due to memory consideration,
the adjoint method forgets forward-time trajectory z(t), and
instead solves reverse-time trajectory z(τ) with initial con-
dition z(T ) = z(T ). Thus, z(t) and z(τ) could mismatch

Figure 4. Forward time and re-
verse time trajectory for numeri-
cal solution to van der Pol equa-
tion.

Figure 5. Input (left) and reverse-
time reconstruction (right) for an
ODE defined by a convolution
function.

due to numerical errors, as demonstrated in Fig. 3. We
performed numerical experiments with ode45 solver under
default settings in MATLAB. We experimented with the van
der Pol equation (Van der Pol, 1960), and a convolutional
function with a random 3× 3 kernel. Results are shown in
Fig. 4 and 5. These examples validate our argument about
the numerical error of the adjoint method.

Analysis of Numerical Errors We analyze the numerical
errors of the adjoint method. Our results are extensions of
Niesen & Hall (2004). We start from the following theorem:

Theorem 3.1 (Picard-Lindelöf Theorem) (Lindelöf,
1894) Consider the initial value problem (IVP):

dz

dt
= f(t, z), z(t = 0) = z0

Suppose in a region R = [t0 − a, t0 + a]× [z0 − b, z0 + b],
f is bounded (||f || ≤ M ), uniformly continuous in z with
Lipschitz constant L, and continuous in t; then there exists
a unique solution for the IVP, valid on the region where
a < min{ bM , 1

L}.

The Picard-Lindelöf Theorem states a sufficient condition
for existence and uniqueness for an IVP. Okamura (1942)
stated a necessary and sufficient condition. Without going
deeper, we emphasize that Theorem 3.1 has a validity region,
outside this region the theorem may not hold.

It is trivial to check NODE satisfies the above conditions;
see the proof in Appendix B. For simplicity, we assume
Theorem 3.1 always holds on t ∈ [0, T ]. (If [0, T ] is outside
the region of validity, the adjoint method cannot recover the
forward-time trajectory, while the naive method and ACA
record the trajectory in memory with “checkpoint”.)

Recall Φtti(zi) is the flow map, which is the oracle solution
starting from (ti, zi). Define the variational flow as:

DΦtt0 =
dΦtt0(z0)

dz0
(12)

Consider an ODE solver of order p. The local truncation
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error Lh(ti, zi) is of order O(hp+1) and can be written as

Lh(ti, zi) = ψh(ti, zi)−Φti+hti (zi) = hp+1l(ti, zi)+O(hp+2)
(13)

where l is some function of O(1). Denote the global error
as G(T ) at time T , then it satisfies:

G(T ) = zNt
− ΦTt0(z0) =

Nt−1∑
k=0

Rk (14)

Eq. 14 is explained by Fig. 2: global error is the sum of all
local errors propagated to the end time. Rk is the propagated
local error defined by Eq. 11. For simplicity of analysis,
we consider constant stepsize solvers with sufficiently small
stepsize h, and let Nt = Nr = N .

Theorem 3.2 If the conditions of the Picard-Lindelöf the-
orem are satisfied, then for an ODE solver of order p, the
global error at time T is:

G(t0 → T ) =

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+O(hp+1)

(15)
and the error of the reconstructed initial value by the adjoint
method is:

G(t0 → T → t0) = G(t0 → T ) +G(T → t0)

=

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)+

(−hk)p+1DΦtkT (zk)l(tk, zk)
]

+O(hp+1) (16)

where G(t0 → T → t0) represents the global error of
integration from t0 to T , then from T to t0. Terms for
reverse-time trajectory are overlined (l, z) to differentiate
from forward-time trajectory.

Proofs are in Appendix B. Eq. 16 can be divided into two
parts. G(t0 → T ) corresponds to forward-time error, as
shown in Fig. 2; G(T → t0) corresponds to reverse-time
error, as shown in Fig. 3. When h is small, assume:

zk = zk +O(hp) (17)

l(tk, zk) = l(tk, zk) +O(hp) (18)

DΦtkT (zk) = DΦtkT (zk) +O(hp) (19)

Note that when existence and uniqueness are satisfied, Φ
defines a bijective mapping between z(tk) and z(T ), hence

DΦtkT = (DΦTtk)−1 (20)

Plugging Eq. 17-20 into Eq. 16,

G(t0 → T → t0) =
∑N−1
k=0 h

p+1l(tk, zk)ek +O(hp+1)
(21)

Figure 6. Absolute value of error in gradient estimation for differ-
ent methods. Problem defined by Eq. 27 to Eq. 29.

ek = DΦTtk(zk) + (−1)p+1(DΦTtk(zk))−1 (22)

Reverse accuracy for all t0 requires ek = 0 for all k. If p is
odd, the two terms in Eq. 22 are of the same sign; thus, ek
cannot be 0. If p is even, ek = 0 requires DΦTtk(zk) = I ,
which requires NODE to be an identity function; in this case
the model learns nothing. Hence, the adjoint method has
numerical errors caused by truncation errors of numerical
ODE solvers.

3.3. Naive Method has Deep Computation Graph

Note that for each step advance in time, there are on average
m steps to find an acceptable stepsize, as in Algo. 1. We
give an example below:

out1, h1, error1 = ψ(t, h0, z) (23)
out2, h2, error2 = ψ(t, h1, z) (24)

... (25)
outm, hm, errorm = ψ(t, hm, z) (26)

Suppose it takesm steps for find an acceptable stepsize such
that errorm < tolerance. The naive method treats hm as
a recursive function of h0, and back-propagates through all
m steps in the computation graph; while ACA takes hm
as a constant, and back-propagates only through the final
accepted step (Eq. 26); therefore, the depth of computation
graph is O(Nf ×Nt) for ACA, and O(Nf ×Nt ×m) for
the naive method. Note that the output of the forward pass
is the same for both methods; the backward pass is different.

The very deep computation graph in naive method takes
more memory. More importantly, it might cause vanishing
or exploding gradient (Pascanu et al., 2013), since there’s
no special structure such as residual connection to deal
with the deep structure: specifically, in Eq. 23 to Eq. 26,
only hi is passed to the next step, and typically in the form
hi+1 = hi/error

p
i .

3.4. ACA Guarantees Reverse-accuracy and has
Shallow Computation Graph

Table 1 compares the gradient estimation methods. Adjoint
method suffers from numerical error in reverse-mode trajec-
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Naive Adjoint ACA (Ours)
Computation Cost O(Nf ×Nt ×m× 2) O(Nf × (Nt +Nr)×m) O(Nf ×Nt × (m+ 1))

Memory Consumption O(Nf ×Nt ×m) O(Nf ) O(Nf +Nt)
Depth of computation graph O(Nf ×Nt ×m) O(Nf ×Nr) O(Nf ×Nt)

Reverse accuracy 3 7 3

Table 1. Comparison between different methods to derive parameter gradient. NoteNr is only meaningful for adjoint method. Our method
achieves the lowest computation cost, accuracy in reverse-time trajectory, and a shallow computation graph, with medium memory cost.

tory; naive method suffers from vanishing or exploding gra-
dient caused by deep computation graph (O(Nf×Nt×m)).

Compared with the adjoint method, ACA guarantees accu-
racy of reverse-mode trajectory by recording the forward-
mode trajectory. Compared with the naive method, ACA
deletes redundant components, hence has a shallower com-
putation graph (ACA v.s. naive: O(Nf ×Nt) v.s. O(Nf ×
Nt ×m)) and smaller memory cost. Finally, ACA has the
lowest computation cost at a medium memory cost.

4. Experiments
4.1. Toy Example

Consider the following toy problem:

dz(t)

dt
= kz(t), z(0) = z0 (27)

L(z(T )) = z(T )2 = z20exp(2kT ) (28)

dL

dz0
= 2z0exp(2kT ) (29)

We plot the absolute value of error between the analytical
solution in Eq. 29 and numerical results from various meth-
ods as a function of T in Fig. 6. All numerical methods
use the Dopri5 (Dormand & Prince, 1980) solver with error
tolerance 10−5. ACA consistently outperforms the naive
method and adjoint method, which agrees with our analysis
in Table 1.

4.2. Supervised Learning on Image Classification

Network Structure For a fair comparison with state-of-
the-art discrete-layer models, we modify a ResNet18 into a
NODE18 with the same number of parameters. A residual
block is defined as:

y = x+ f(x, θ) (30)

The corresponding ODE-Block is:

z(T ) = z(0) +

∫ 1

0

f(z(t), θ)dt (31)

where a residual-block and ODE-Block have the same struc-
ture of f (e.g. a sequence of conv-bn-relu layers).

Comparison of gradient estimation methods for NODE
We trained the same NODE structure to perform image
classification on the CIFAR10 dataset using different gra-
dient estimation methods. The relative and absolute error
tolerance are set as 1e-5 for the adjoint and naive method,
with Dopri5 solver implemented by Chen et al. (2018). All
methods are trained with SGD optimizer. For each method,
we perform 3 runs and record the mean and variance of
test accuracy varying with training process. All models are
trained for 90 epochs, with initial learning rate of 0.01, and
decayed by a factor of 0.1 at epoch 30 and 60. The adjoint
method and ACA use a batchsize of 128, while the naive
method uses a batchsize of 32 due to its large memory cost.

Test accuracy varying with training epoch is plotted in
Fig. 7(a). For the same number of training epochs, ACA
(∼ 5% error rate) outperforms the adjoint and naive method
(∼ 10% error rate) by a large margin.

Test accuracy varying with training time is shown in
Fig. 7(b). To train for 90 epochs on a single GTX 1080Ti
GPU, ACA takes about 9 hours, while the adjoint method
takes about 18 hours, and the naive method takes more
than 30 hours. The running time validates our analysis on
computation cost in Table 1.

Overall, for the same NODE model, ACA significantly out-
performs the adjoint and naive method, with twice the speed
and half the error rate.

Accuracy comparison between NODE and ResNet We
also compare the performance between ResNet and NODE.
Note that both models have the same number of parameters.

We trained both models for 10 runs with random initializa-
tion using the SGD optimizer. All models are trained for 90
epochs. Results are summarized in Fig. 7(c) and (d). On
both CIFAR10 and CIFAR100 datasets, NODE significantly
outperforms ResNet when trained with ACA.

We then re-initialized and re-trained for 350 epochs for a
fair comparison with ResNet reported by Liu (2017), and
summarize the results in Table 2. On image classification
tasks, compared to the adjoint method, ACA reduces the
error rate of NODE18 from 10% (30%) to 5% (23%) on
CIFAR10 (CIFAR100). Furthermore, NODE18 has the
same number of parameters as ResNet18, but outperforms
deeper networks such as ResNet101 on both datasets.
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(a) (b) (c) (d)

Figure 7. From left to right: (a) Test accuracy vs epoch curve on CIFAR10, for NODE18 trained with different methods. (b) Test accuracy
vs running time curve on CIFAR10, for NODE18 trained for 90 epochs. (c) Distribution of test accuracy of 10 runs on CIFAR10. NODE18
is trained with ACA. (d) Distribution of test accuracy of 10 runs on CIFAR100. NODE18 is trained with ACA.

Dataset
NODE18-ACA NODE18

-
adjoint

NODE18
-
naive

ANODE18
ResNet

Adaptive Stepsize Solvers Fixed Stepsize Solvers ResNet18 ResNet50 ResNet101HeunEuler RK23 RK45 Euler RK2 RK4
CIFAR10 4.85 4.92 5.29 5.52 5.27 5.24 9.8 (*19) 9.3 6.8 *6.98 *6.38 *6.25
CIFAR100 22.66 24.13 23.56 24.44 24.44 24.43 30.6 (*37) 29.4 22.7 *27.08 *25.73 *24.84

Table 2. Error rate on test set. NODE18-ACA is trained with HeunEuler solver, and tested with different solvers (including fixed-stepsize
and adaptive stepsize solvers of various orders) without re-training. Other models are trained and tested with the same method. “*”
represents results from the literature (Gholami et al., 2019; He et al., 2016; Liu, 2017), note that our reproduced baseline (adjoint) is better
than the literature.

Dataset Model Whole Test Set Misclassified Test Data
ICC1 ICC1k ICC1 ICC1k

CIFAR10 ResNet18 0.932-0.935 0.992-0.993 0.581-0.608 0.933-0.939
NODE18 0.943-0.945 0.993-0.994 0.650-0.675 0.949-0.954

CIFAR100 ResNet18 0.759-0.768 0.969-0.971 0.553-0.571 0.925-0.930
NODE18 0.767-0.776 0.971-0.972 0.570-0.587 0.930-0.934

Table 3. ICC (95% confidence region, [µ−2σ, µ+2σ]) for ResNet
and NODE-ACA among 10 runs with random initialization, tested
on CIFAR10 (top) and CIFAR100 (bottom). Higher is better.

Percentage
of Training Data RNN RNN-GRU Latent-ODE

adjoint naive ACA
10% *2.45 *1.97 0.47 *0.36 0.31
20% *1.71 *1.42 0.44 *0.30 0.27
50% *0.79 *0.75 0.40 *0.29 0.26

Table 4. Test MSE (×10−2) for irregularly sampled time series
data on Mujoco dataset. * are reported by Rubanova et al. (2019).

Robustness to ODE solvers We implemented adaptive
ODE solvers of different orders, as shown in Table 2. He-
unEuler, RK23, RK45 are of order 1, 2, 4 respectively, i.e.,
for each step of ψ, f is evaluated 1, 2, 4 times respectively.
During inference, using different solvers is equivalent to
changing model depth (without re-training the network).
For discrete-layer models, it would generally cause huge er-
rors (see results in Appendix D); for continuous models, we
observe only ∼1% increase in error rate. Thus, our method
is robust to different solvers.

Test-retest reliability Test-retest reliability measures the
agreement between multiple raters, and is crucial for clinical
practices (Bland & Altman, 1986; Williams et al., 1992).

For machine learning, test-retest reliability quantifies the
stability of a model under random initialization and re-
training. Intraclass correlation coefficient (ICC) (Weir,
2005) is widely used to quantify test-retest reliability. ICC
is between 0 and 1, with higher values for better agreement.

We take the results of 10 runs with independent initialization,
as in Fig. 7(c) and (d), and measure ICC with the psych
package (Revelle, 2017). We report two types of coefficient
in Table 3: ICC1 (randomly selected judges) and ICC1k
(average of raters).

As Table 3 shows, NODE consistently generates higher
ICC than ResNet on both datasets. To remove the effect
caused by different accuracy, we also measure ICC only
on misclassified data points, and NODE produces a signifi-
cantly higher ICC.

Summary NODE trained with ACA generates superior
performance on benchmark classification tasks. Compared
with the adjoint and naive method, ACA is faster and more
accurate. Compared with ResNet, to our knowledge, ACA
is the first to enable NODE with adaptive solvers to achieve
higher accuracy and better test-retest reliability. The better
performance comes from two reasons: (1) accurate gradient
estimation with ACA, (2) feature maps evolve smoothly
with depth (Fig. 1); this property of NODE might be helpful
for better generalization (Jin et al., 2019) and optimization
(Nesterov, 2005).
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Figure 8. Fitted trajectory (orange dashed curve) and ground truth (blue solid curve) for one planet in 3D space. Two trajectories almost
overlap in the rightmost figure. Display is adaptively determined in Python for each figure, but ground truth is the same. Time range is
[0,1] year for training, and [0,2] years for visualization. Figures are in the same order as Table. 5.

LSTM LSTM-aug-input NODE ODE
adjoint naive ACA adjoint naive ACA

Test MSE 0.59+-0.12 0.49+-0.06 3.47+-0.67 0.21+-0.11 0.16+-0.06 0.0025+-0.0012 0.0025+-0.0013 0.0007+-0.0005

Table 5. Results of 3 runs for three-body problem. Training data time range is [0,1] year, MSE is measured on range [0,2] years.

4.3. Time-series Model for Irregularly-sampled Data

Standard recurrent neural networks (RNN) have difficulties
modelling time series data with non-uniform intervals. The
recently proposed latent-ODE model (Rubanova et al., 2019)
is a generalization of NODE to time-series models, and can
handle arbitrary time gaps.

We validate our method on the Mujoco dataset (Tassa
et al., 2018) under the same setting as in Rubanova et al.
(2019), with the only difference being the gradient esti-
mation method. We report the mean squared error (MSE)
of interpolation. As shown in Table 4, ACA consistently
outperforms other methods.

4.4. Incorporate Physical Knowledge into Models

Differential equations are important tools for modern
physics (Sommerfeld, 1949), chemistry (Strogatz, 2018),
quantitative biology (Jones et al., 2009), system control
(Lee & Markus, 1967) and engineering (Lyapunov, 1992).
In practice, for many problems a large training set is un-
available, but some physical knowledge is known. It is
straightforward to incorporate such knowledge into NODE:
set f in the form of physical knowledge.

Problem definition We give an example with the three-
body problem (Barrow-Green, 1997). Consider three planets
(simplified as ideal mass points) interacting with each other,
according to Newton’s law of motion and Newton’s law
of universal gravitation (Newton, 1833). The underlying
dynamics governing their motion is:

r̈i = −
∑
j 6=i

Gmj
ri − rj
|ri − rj|3

(32)

where G is the gravitation constant; ri is the location for
planet i, each is of dimension 3; r̈i is the 2nd derivative
w.r.t time; mi is the mass of planet i.

We consider the following problem: given observations
of trajectory ri(t), t ∈ [0, T ], predict future trajectories
ri(t), t ∈ [T, 2T ], when mass mi is unknown.

Models We consider different models:
(1) LSTM with trajectory ri(t) as input;
(2) LSTM-aug-input, with augmented input defined as:

Aug = {ri, ri − rj,
ri − rj
|ri − rj|1

,
ri − rj
|ri − rj|2

,
ri − rj
|ri − rj|3

}, j 6= i

(33)
(3) NODE, where f is parameterized as a fully-connected
layer using augmented input:

r̈ = FC(Aug) (34)

(4) ODE, with f in the form of Eq. 32. In this case, only 3
parameters, the mass of planets, are unknown.

With augmented input, the model knows partial information:
the trajectory is related to the distance between planets. The
ODE model has full knowledge of the system.

Results We simulate a 3-body system with unequal masses
and arbitrary initial conditions, use time range [0,1] year for
training, and measure the mean MSE of trajectory on [0,2]
years. Results are reported in Fig. 8 and Table 5, with details
in Appendix D. We provide videos 1 for better visualization.
With no knowledge, the LSTM model fails due to the chaotic
nature (Barrow-Green, 1997) of the three-body system and
limited training data. With partial knowledge, NODE-ACA
outperforms LSTM. With full knowledge, ODE performs
the best. ACA outperforms adjoint and naive method, and
supports general ODEs.

1https://www.youtube.com/playlist?list=
PL7KkG3n9bER4ODAMzAKzfXIaF0ndUxK-N

https://www.youtube.com/playlist?list=PL7KkG3n9bER4ODAMzAKzfXIaF0ndUxK-N
https://www.youtube.com/playlist?list=PL7KkG3n9bER4ODAMzAKzfXIaF0ndUxK-N
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5. Scopes and limitations
Considering computation burden, this project only investi-
gates explicit general-purpose one-step ODE solvers. There
exists rich literature on other solvers including multi-step
and implicit solvers (Wanner & Hairer, 1996; Rosenbrock,
1963; Hindmarsh, 1980; Brown et al., 1989). Acceleration
methods, such as spectral element methods (Patera, 1984)
and parallel-methods (Farhat & Chandesris, 2003), can be
used to further improve ACA.

6. Related works
Training of NODE Quaglino et al. (2019) proposed to use
spectral element method to train NODE. However, it re-
quires ground truth for the entire trajectory, and therefore is
not suitable for tasks like image classification. Gholami et al.
(2019) proposed ANODE to deal with reverse-inaccuracy
of the adjoint method, by discretizing the integration range
into a fixed number of steps. Equivalently, ANODE can be
viewed as a fixed-depth discrete-layer network with shared
weights. Therefore, ANODE is equivalently using a con-
stant stepsize solver, and loses the ability of error control
with adaptive solvers, while ACA supports adaptive solvers.
Dupont et al. (2019) proposed to augment NODE to a higher
dimension for better performance. However, they are not
dealing with gradient estimation, and the empirical perfor-
mance is still inferior to discrete-layer networks.

Dynamics and Physics Many works incorporate physical
priors or learn hidden dynamics from data (Ramsay et al.,
2007; de Avila Belbute-Peres et al., 2018; Jia et al., 2018;
Sienko et al., 2002; Chen & Pock, 2016; Weinan, 2017;
Lu, 2017; Sonoda & Murata, 2017). Breen et al. (2019)
used deep learning models to solve the three-body problem;
however, their methods are limited to equal masses with zero
initial velocities, while ours do not have these restrictions.
Other works try to connect neural networks with dynamical
systems (Ruthotto & Haber, 2018; Chang et al., 2018).

Gradient Checkpointing The gradient checkpointing
(GC) strategy is used to train large networks with limited
memory budget (Chen et al., 2016; Gruslys et al., 2016).
However, ACA is not a GC version of the naive method:
mathematically, naive-GC has the same computation graph
depth of O(Nf × Nt × m) as naive method, while ACA
uses a simpliefied computation graph of depth O(Nf ×Nt);
hence both naive-GC and naive suffer from exploding or
vanishing gradient problem, while ACA is more numeri-
cally stable; if provided with unlimited memory, naive-GC
achieves the same accuracy as naive method, while ACA
achieves a higher accuracy.

7. Conclusion
We analyzed the inaccuracy of the adjoint and naive method
for NODE, and proposed ACA for accurate gradient estima-
tion. We demonstrated NODE trained with ACA is accurate,
fast and robust to initialization. Furthermore, NODE can
incorporate physical knowledge for better accuracy. We im-
plemented ACA as a package. We hope the good practical
performances of ACA, theoretical properties of NODE, and
our easy-to-use package, can inspire new ideas.
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du premier ordre. Comptes rendus hebdomadaires des
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Appendix A, ACA as an AutoDiff Function in PyTorch Style
Forward (f, T, z0, tolerance):

t = 0, z = z0
state0 = f.state dict(), cache.save(state0)
Select initial step size h = h0 (adaptively with adaptive step-size solver).
time points = empty list()
z values = empty list()
While t < T :

state = f.state dict(), accept step = False
While Not accept step:

f.load state dict(state)
with grad disabled:

z new, error estimate = ψ(f, z, t, h)
If error estimate < tolerance:

accept step = True
z = z new, t = t+ h,
z values.append(z), time points.append(t)

else:
reduce stepsize h according to error estimate
delete error estimate local computation graph

cache.save(time points, z values)
return z, cache

Backward (f, T, tolerance, cache, ∂J
∂z(T ) ):

Initialize λ = − ∂J
∂z(T ) ,

∂L
∂θ = 0

{z0, z1, z2, ...zN−1, zN} = cache.z values
{t0, t1, t2, ...tN−1, tN} = cache.time points
For ti in {tN , tN−1, ..., t1, t0} :

Local forward ẑi = ψ(f, zi−1, ti−1, hi = ti − ti−1)
Local backward

∂L
∂θ ←

∂L
∂θ − λ

> ∂ẑi
∂θ

λ← λ> ∂ẑi
∂zi−1

delete local computation graph
return ∂L

∂θ , λ
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Appendix B, Proof of Theorem 3.2
We refer readers to Fig. 2 in the main paper for a graphical interpretation, and Sec. 2.3 for a list of notations.

Lemma 7.1 Suppose f is composed of a finite number of ReLU activations and linear transforms,

f(t, z) = Linear1 ◦ReLU ◦ Linear2 ◦ ... ◦ LinearN (z)

if the spectral norm of linear transform is bounded, then the IVP defined above has a unique solution on a bounded region.

Proof: f does not depend on t explicitly, hence is continuous in t. ReLU (and other activation functions such as sigmoid,
tanh, ...) is uniformly continuous; a linear transform Wz is also uniformly continuous if the spectral norm of W is bounded.
From Picard-Lindelöf Theorem, the IVP has a unique solution on a bounded region.

Flow map Denote ΦTt0(z0) as the oracle solution to the IVP at time T , with the initial condition (t0, z0). Then ΦTt0(z0)
satisfies:

Φt3t2 ◦ Φt2t1 = Φt3t1 (35)

d

dt
Φtt0(z0) = f(t,Φtt0(z0)) (36)

Φtt0(z0) = z0 +

∫ t

t0

f
(
s,Φst0(z0)

)
ds (37)

Variational flow The derivative w.r.t initial condition is called the variational flow, denoted as DΦtt0 , then it satisfies:

DΦtt0(z0) =
dΦtt0(z0)

dz0
, DΦt0t0 = I (38)

DΦt0+ht0 = I +O(h), if h is small. (39)

From Eq. 35 and 39, using the chain rule, we have:

DΦtt0(z0) =
dΦtt0(z0)

dz0
=
dΦtt0+h(Φt0+ht0 (z0))

dΦt0+ht0 (z0)

dΦt0+ht0 (z0)

dz0
= DΦtt0+h +O(h) (40)

Local truncation error Denote the step function of a one-step ODE solver as ψh(t, z), with step-size h starting from
(t, z). Denote the local truncation error as:

Lh(t, z) = ψh(t, z)− Φt+ht (z) (41)

For a solver of order p, the error is of order O(hp+1), and can be written as

Lh(t, z) = hp+1l(t, z) +O(hp+2) (42)

where l is some function of order O(1).

Global error Denote the global error as G(T ) at time T , then it satisfies:

G(T ) = zN − ΦTt0(z0) =

N−1∑
k=0

Rk (43)

where

Rk = ΦTtk+1
(zk+1)− ΦTtk(zk) (44)

= ΦTtk+1

(
Φ
tk+1

tk
(zk) + Lhk

(tk, zk)
)
− ΦTtk+1

(Φ
tk+1

tk
(zk)) (45)
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Lemma 7.2 (Approximation of Rk)

Rk = DΦTtk+1

(
Φ
tk+1

tk
(zk)

)
Lhk

(tk, zk) +O(h2p+2
k ) (46)

Lemma 7.2 can be viewed as a Taylor expansion of Eq. 45, with detailed proof in (Niesen & Hall, 2004).

Lemma 7.3 If Lh(t, y) = O(hp+1), then Gh(T ) = O(hp)

Proof for Lemma 7.3 is in (Niesen & Hall, 2004).

Plug Eq. 42 and Eq. 40 into Eq. 46, we have

Rk =
[
DΦTtk(zk) +O(hk)

]
Lhk

(tk, zk) +O(h2p+2
k ) (47)

=
[
DΦTtk(zk) +O(hk)

][
hp+1
k l(tk, zk) +O(hp+2

k )
]

+O(h2p+2
k ) (48)

= hp+1
k DΦTtk(zk)l(tk, zk) +O(hp+2

k ) (49)

Plug Eq. 49 into Eq. 43, then we have:

G(T ) =

N−1∑
k=0

Rk =

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +O(hp+2

k )
]

(50)

=

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+O(hp+1

max) (51)

Global error of the adjoint method If we solve an IVP forward-in-time from t = 0 to T , then take z(T ) as the initial
condition, and solve it backward-in-time from T to 0, the numerical error can be written as:

G(t0 → T → t0) =

Nt−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+

Nr−1∑
J=0

[
(−hj)p+1DΦ

τj
T (zj)l(τj , zj)

]
+O(hp+1

max) (52)

= G(t0 → T ) +G(T → t0) +O(hp+1) (53)

where G(t0 → T ) represents the numerical error of forward-in-time (t0 to T ) solution (discretized at step k, denoted as
zk); and G(T → t0) denotes the numerical error of reverse-in-time solution (T to t0) (discretized at step j, denoted as zj).
G(t0 → T → t0) represents the error in reconstructed initial condition by the adjoint method. Note that generally z does
not overlap with z. The local error of forward-in-time and reverse-in-time numerical integration is represented as l and l
respectively.

Although going backward is equivalent to a negative stepsize, which might cause the second term to have different signs
compared to the first term in Eq. 52, we demonstrate that generally their sum cannot cancel.

For the ease of analysis, we assume the forward and reverse-in-time calculation are discretized at the same grid points, with
a sufficiently small constant stepsize (For a variable-stepsize solver, we can modify it to a constant-stepsize solver, whose
stepsize is the minimal step in variable-stepsize solver. With this modification, the constant stepsize solver should be no
worse than adaptive stepsize solver). Then Eq. 52 can be written as:

G(t0 → T → t0) =

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk)

]
+

N−1∑
k=0

[
(−hk)p+1DΦtkT (zk)l(tk, zk)

]
+O(hp+1

max) (54)

=

N−1∑
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) + (−hk)p+1DΦtkT (zk)l(tk, zk)

]
+O(hp+1) (55)
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If the stepsize is sufficiently small, we can assume

zk = zk +O(h) (56)

DΦtkT (zk) = DΦtkT (zk) +O(h) (57)

l(tk, zk) = l(tk, zk) +O(h) (58)

Assume the existence and uniqueness conditions are satisfied on t ∈ [0, T ], so ΦTt0 defines a homeomorphism, hence:

DΦtkT = (DΦTtk)−1 (59)

Plug Eq. 56 to Eq. 59 into Eq. 55, we have

G(t0 → T → t0) =

N−1∑
k=0

hp+1l(tk, zk)ek +O(hp+1) (60)

ek = DΦTtk(zk) + (−1)p+1(DΦTtk(zk))−1 (61)

Reverse accuracy for all t0 requires ek = 0 for all k. If p is odd, then the two terms in ek are the same sign, and thus cannot
cancel to 0; if p is even, then ek = 0 requires DΦTtk(zk) = DΦTtk(zk)−1 = I , which is generally not satisfied with a trained
network (otherwise the network is an identity function with a constant bias).

In short, solving an IVP from t0 to T with z(0) = z0, then taking z(T ) as initial condition and solving it from T to t0 and
getting z(0), generally z(0) 6= z(0) because of numerical errors.

Appendix C. Proof of Theorem 2.1
In this section we derive the gradient in NODE from an optimization perspective.

Notations With the same notations as in the main paper, we use z(t) to denote hidden states z at time t. Denote parameters
of f as θ, and input as x, target as y, and predicted output as ŷ. Denote the loss as J(ŷ, y). Denote the integration time as 0
to T .

Problem setup The continuous model is defined to follow an ODE:

dz(t)

dt
= f(z(t), t, θ), s.t. z(0) = x (62)

We assume f is differentiable almost everywhere, since f is represented by a neural network in our case. The forward pass
is defined as:

ŷ = z(T ) = z(0) +

∫ T

0

f(z(t), t, θ)dt (63)

The loss function is defined as:
J(ŷ, y) = J(z(T ), y) (64)

We formulate the training process as an optimization problem:

argmin
θ

1

N

N∑
i=1

J(ŷi, yi) s.t.
dzi(t)

dt
= f(zi(t), t, θ), zi(0) = xi, i = 1, 2, ...N (65)

For simplicity, Eq. 65 only considers one ODE block. In the case of multiple blocks, z(T ) is the input to the next ODE
block. As long as we can derive dLoss

dθ and dLoss
dz(0) when dLoss

dz(T ) is given, the same analysis here can be applied to the case
with a chain of ODE blocks.
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Lagrangian Multiplier Method We use the Lagrangian Multiplier Method to solve the problem defined in Eq. 65. For
simplicity, only consider one example (can be easily extended to the multiple examples case), then the Lagrangian is

L = J(z(T ), y) +

∫ T

0

λ(t)>[
dz(t)

dt
− f(z(t), t, θ)]dt (66)

Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for a solution to be optimal. In the following sections we
start from the KKT conditions and derive our results.

Derivative w.r.t. λ At optimal point, we have δL
δλ = 0. Note that λ is a function of t, and we derive the derivative from

calculus of variation.

Consider a continuous and differentiable perturbation λ(t) on λ(t), and a scalar ε, L now becomes a function of ε,

L(ε) = J
(
z(0) +

∫ T

0

f(z(t), t, θ), y
)

+

∫ T

0

(λ(t) + ελ(t))>[
dz(t)

dt
− f(z(t), t, θ)]dt (67)

It’s easy to check the conditions for Leibniz integral rule, and we can switch integral and differentiation, thus:

dL

dε
=

∫ T

0

λ(t)
>

[
dz(t)

dt
− f(z(t), t, θ)]dt (68)

At optimal λ(t), dLdε |ε=0 = 0 for all continuous differentiable λ(t).

Therefore,

dz(t)

dt
− f(z(t), t, θ) = 0, ∀t ∈ (0, T ) (69)

Derivative w.r.t z Consider perturbation z(t) on z(t), with scale ε. With similar analysis:

L(ε) = J(z(T ) + εz(T ), y) +

∫ T

0

λ(t)>[
dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)]dt (70)

Take derivative w.r.t ε, it’s easy to check conditions for Leibniz integral rule are satisfied, when f and z(t) are Lipschitz
continuous differentiable functions:

(1) f(z(t), t, θ) is a Lebesgue-integrable function of θ for each z(t) ∈ Rd, since we use a neural network to represent f ,
which is continuous and differentiable almost everywhere.

(2) for almost all θ, ∂f(z(t),t,θ)∂z(t) exists for almost all x ∈ Rd.

(3) ∂f(z(t),t,θ)∂z(t) is bounded by g(θ) for all z(t) for almost all θ.
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Then we calculate dL(ε)
d , note that we can switch integral and derivative:

dL

dε
|ε=0 =

∂J

∂z(T )

>
z(T ) +

d

dε

∫ T

0

λ(t)>
[dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)

]
dt (71)

=
∂J

∂z(T )

>
z(T ) +

∫ T

0

λ(t)>
[dz(t)
dt
− ∂f(z(t), t, θ)

∂z(t)
z(t)

]
dt (72)

=
∂J

∂z(T )

>
z(T ) +

∫ T

0

[
λ(t)>

dz(t)

dt
+
dλ(t)

dt

>
z(t)− dλ(t)

dt

>
z(t)− λ(t)>

∂f(z(t), t, θ)

∂z(t)
z(t)

]
dt (73)

=
∂J

∂z(T )

>
z(T ) + λ(t)>z(t)|T0 −

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (74)

=
∂J

∂z(t)

>
z(T ) + λ(t)>z(T )− λ(0)T z(0)−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (75)

=
( ∂J

∂z(T )
+ λ(T )

)>
z(T )− λ(0)T z(0)−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt (76)

Since the initial condition z(0) = x is given, perturbation z(0) at t = 0 is 0, then we have:

dL

dε
|ε=0 =

( ∂J

∂z(T )
+ λ(T )

)>
z(T )−

∫ T

0

z(t)
>[dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t)

]
dt = 0 (77)

for any z(t) s.t. z(0) = 0 and z(t) is differentiable.

The solution is:
∂J

∂z(T )
+ λ(T ) = 0 (78)

dλ(t)

dt
+
∂f(z(t), t, θ)

∂z(t)

>
λ(t) = 0 ∀t ∈ (0, T ) (79)

Derivative w.r.t θ From Eq. 66,
dL

dθ
= −

∫ T

0

λ(t)>
∂f(z(t), t, θ)

∂θ
dt (80)

To sum up, we first solve the ODE forward-in-time with Eq. 62, then determine the boundary condition by Eq. 78, then
solve the ODE backward with Eq. 79, and finally calculate the gradient with Eq. 80. In fact λ corresponds to the negative
adjoint variable.
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Appendix D, Experimental Details
1. Experiments with van der Pol Equation

For experiments with the van der Pol equation, the ODE is defined as:

dy1
dt

= y2 (81)

dy2
dt

= (0.15− y21)× y2 − y1 (82)

with initial condition y1(0) = 2, y2(0) = 0. Experiments are performed in MATLAB with ode45 solver under default
settings. Results are shown as follow:

Figure 9. Results on simulation with van der Pol equation.

2. Experiments on supervised image classification

Experimental settings All experiments were performed with PyTorch 0.4.1 on a single GTX-1080Ti GPU. To generate
Fig. 7 (a) and (b) in the main paper, we trained a NODE18 model for 90 epochs, with the initial learning rate 0.01 and
decayed by a factor of 0.1 at epoch 30 and 60. Training images were augmented with random crop and horizontal flip. For
ACA, we used HeunEuler solver for training, with rtol = 10−2 and atol = 10−2; for the adjoint and naive method, we used
the solver implemented by (Chen et al., 2018) (https://github.com/rtqichen/torchdiffeq), with a Dopri5
solver, setting rtol = 10−5 and atol = 10−5; we tried larger error tolerance (10−2) for the adjoint method, but it led to
divergence during training. Batchsize is set as 128 for ACA and the adjoint method, and 32 for the naive method.

To generate Fig. 7(c) and (d), and Table 3 in the main paper, we trained NODE18-ACA and ResNet with the following
settings: initial learning rate is 0.1, decayed by 0.1 at epoch 30 and 60, total training epoch is 90; batchsize is set as 128.

To generate Table 2 in the main paper, we trained NODE18-ACA for 350 epochs, with initial learning rate 0.1, and decayed
by 0.1 at epoch 150 and 250.

Extra experiments on impact of model depth We performed experiments on CIFAR10 dataset to measure the influence
of model depth. We trained models using the same settings as described above, and tested with different solvers without
re-training.

During test, constant stepsize solvers using different stepsizes are equivalent to different model depths, for example, with
a stepsize of 0.2, the model depth is 5 times deeper than with a stepsize of 1.0 ( 1.00.2 = 5); higher-order solvers evaluates
the function more times than low-order solvers, for example, using the same stepsize, RK4 evaluates 4 times wile RK2
evaluates twice at each step. Adaptive stepsize solvers evaluate the function using a finer grid for smaller error tolerance,
hence a deeper computation graph.

https://github.com/rtqichen/torchdiffeq
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Constant Stepsize Solvers Adaptive Stepsize Solvers
stepsize 1.0 0.5 0.2 0.1 rtol / atol 1e-1 1e-2 1e-3

Euler +0.0 +1.14 +3.62 +4.84 HeunEuler +5.32 +6.33 +6.42
RK2 +7.69 +6.43 +6.38 +6.43 RK23 +6.03 +6.31 +6.44
RK4 +5.69 +6.31 +6.30 +6.47 RK45 +6.30 +6.47 +6.46

Table 6. Increase in error rate of a ResNet18 (equivalently, NODE using 1-step Euler method with integration time [0,1]) when tested
with different solvers. When trained and tested with the same method, the error rate is 8.47%, the increase in error rate is 0 as bold fonted.
When tested with different solvers without re-training, the increase in error rate is reported, with a smaller difference represents better
robustness.

Constant Stepsize Solvers Adaptive Stepsize Solvers
stepsize 1.0 0.5 0.2 0.1 rtol / atol 1e-1 1e-2 1e-3

Euler +8.31 +1.57 +0.67 +0.57 HeunEuler +1.29 +0.0 +0.18
RK2 +6.61 +0.57 +0.42 +0.39 RK23 +0.46 +0.07 +0.40
RK4 +1.09 +0.48 +0.39 +0.37 RK45 +1.75 +0.44 +0.16

Table 7. Increase in error rate of a NODE18 when trained using HeunEuler with rtol = atol = 10−2 and tested with different solvers.
When trained and tested with the same method, the error rate is 4.85%, the increase in error rate is 0 as bold fonted. When tested with
different solvers without re-training, the increase in error rate is reported, with a smaller difference represents better robustness.

To sum up, depth of the computation graph is determined by both the stepsize and order for constant stepsize solvers, and
determined by error tolerance and order for adaptive stepsize solvers.

We performed experiments on a ResNet18; equivalently, ResNet18 is NODE18 using one-step Euler solver, with integration
time [0, 1]. We also experimented with a NODE18, trained with HeunEuler solver with rtol = etol = 10−2. Results for
their performance using different solvers without re-training are summarized in Table. 6 and Table. 7.

NODE generally achieves a lower error rate than ResNet (4.85% v.s 8.47% when trained and tested using the same method).
Ignoring the absolute value of error rate, to measure the robustness to solvers, on the same model, we focus on the increase
in test error rate using different methods compared to using the same method as training.

For ResNet, when tested with different solvers, most results have a ∼ 7% increase in error rate; for NODE when trained
with HeunEuler with rtol = 10−2, and tested with different methods, most results have a ∼ 1% increase in error rate. This
results show that training as ResNet is sensitive to model depth during test; while training as NODE with adaptive solvers
are robust to different solvers (hence different model depth) during test.

3. Experiments on time-series modeling with irregularly sampled data

We performed experiments using the official implementation by (Rubanova et al., 2019) (https://github.com/
YuliaRubanova/latent_ode). All models are trained for 300 epochs on the Mujoco dataset provided by (Rubanova
et al., 2019). For the ease of visualization, we plot the test MSE curve for epochs 0-100.

Figure 10. 10% training data Figure 11. 20% training data Figure 12. 50% training data

https://github.com/YuliaRubanova/latent_ode
https://github.com/YuliaRubanova/latent_ode
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4. Experiments on the three-body problem

We summarize the training details in the following table. All models are trained with Adam optimizer. Learning rate
schedule is:

lr = InitialLR× decayepoch (83)

For all LSTM models, initial learning rate is 0.01 with a decay of 0.999, trained for 5,000 epochs; all NODEs are trained
with initial learning rate 0.1 for 100 epochs, with decay 0.99. We set a much larger epoch and smaller learning rate for
LSTM, because we found in practice the training of LSTM is much harder to converge. For adjoint and naive method,
we use Dopri5 solver by (Chen et al., 2018) with rtol = atol = 10−5; for ACA, we implemented Dopri5 solver with
rtol = atol = 10−5.

We simulate a 3-body system with unequal mass and arbitrary initial condition, use time range [0,1] year for training, and
measure the mean MSE of trajectory on [0,2] years. Training data has 1,000 equally sampled points, cut into sequences of
20 points as input to LSTM models. During inference, 1 initial point is fed to NODE and ODE, and first 10 points are fed to
LSTM. Results are shown in figures below and videos in the supplementary material, with numerical measures in the main
paper.

LSTM LSTM-aug-input NODE ODE
adjoint naive ACA adjoint naive ACA

Epoch 5,000 5,000 100 100 100 100 100 100
InitialLR 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1

decay 0.999 0.999 0.99 0.99 0.99 0.99 0.99 0.99

Table 8. Training details for the three-body problem

Figure 13. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for LSTM model.
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Figure 14. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for LSTM-aug-input.

Figure 15. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for NODE-adjoint.

Figure 16. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for NODE-naive.
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Figure 17. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for NODE-ACA.

Figure 18. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-adjoint.

Figure 19. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-naive.
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Figure 20. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.

More results of ODE-ACA with different initial conditions

Figure 21. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.
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Figure 22. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.

Figure 23. Fitted trajectory (orange dashed) and ground truth (blue solid) in 3D space, from left to right are results for 3 planets. Results
for ODE-ACA.


