arXiv:1904.01681v1 [stat.ML] 2 Apr 2019

Augmented Neural ODEs

Emilien Dupont Arnaud Doucet Yee Whye Teh
University of Oxford University of Oxford University of Oxford
dupont@stats.ox.ac.uk doucet@stats.ox.ac.uk y.w.teh@stats.ox.ac.uk

Abstract

We show that Neural Ordinary Differential Equations (ODEs) learn representa-
tions that preserve the topology of the input space and prove that this implies the
existence of functions Neural ODEs cannot represent. To address these limita-
tions, we introduce Augmented Neural ODEs which, in addition to being more
expressive models, are empirically more stable, generalize better and have a lower
computational cost than Neural ODE:s.

1 Introduction

The relationship between neural networks and differential equations has been studied in several recent
works (Weinan, [2017; |Lu et al., 2017; |Haber & Ruthotto, 2017; [Ruthotto & Haber, 2018;|Chen et al.,
2018). In particular, it has been shown that Residual Networks (He et al.l 2016) can be interpreted as
discretized ODEs. Taking the discretization step to zero gives rise to a family of models called Neural
ODE:s (Chen et al., 2018)). These models can be efficiently trained with backpropagation and have
shown great promise on a number of tasks including modeling continuous time data and building
normalizing flows with low computational cost (Chen et al., 2018).

In this work, we explore some of the consequences of taking this continuous limit and which
restrictions this might create compared with regular neural nets. In particular, we show that there are
simple classes of functions Neural ODEs (NODEs) cannot represent. While it is often possible for
NODE:s to approximate these functions in practice, the resulting flows are complex and lead to ODE
problems that are computationally expensive to solve. To overcome these limitations, we introduce
Augmented Neural ODEs (ANODESs) which are a simple extension of NODEs. ANODEs augment
the space on which the ODE is solved, allowing the model to use the additional dimensions to learn
more complex functions using simpler flows (see Fig. [I). In addition to being more expressive
models, ANODE:s significantly reduce the computational cost of both forward and backward passes
of the model compared with NODEs. Our experiments also show that ANODEs generalize better,
achieve lower losses with fewer parameters and are more stable to train.

Neural ODE Augmented Neural ODE

Figure 1: Learned flows for a Neural ODE and an Augmented Neural ODE. The flows (shown as lines
with arrows) map input points to linearly separable features for binary classification. Augmented
Neural ODEs learn simpler flows that are easier for the ODE solver to compute.

Preprint. Work in progress.

2 Neural ODEs

NODE:s are a family of deep neural network models that can be interpreted as a continuous equivalent
of Residual Networks (ResNets). To see this, consider the transformation of a hidden state from a
layer ¢ to t 4+ 1 in ResNets

h;41 =hy + fi(hy)

where h; € R is the hidden state at layer ¢ and f; : R? — R? is some differentiable function which
preserves the dimension of h; (typically a CNN or an MLP). We can rearrange this equation as

llt+At ht
— Y = f ll
At 1 (t)

where At = 1. Now letting At — 0 we see that
h;ia: —hy dh()

Ao At Y = f(h(t), 1)

so the hidden state can be parameterized by an ODE. We can then map a data point x into a set of
features ¢(x) by solving the Initial Value Problem (IVP)

dh(t)
BT f(h(t),?)

h(0) =x

to some time 7". The hidden state at time 7', i.e. h(T'), corresponds to the features learned by the
model. The analogy with ResNets can then be made more explicit. In ResNets, we map an input x to
some output y by a forward pass of the neural network. We then adjust the weights of the network to
match y with some y .. In NODEs, we map an input x to an output y by solving an ODE starting
from x. We then adjust the dynamics of the system (encoded by f) such that the ODE transforms x
to a'y which is close to yiye.

We note that f can be parameterized by any standard neural net architecture, including ones with
activation functions that are not everywhere differentiable such as ReLU. Existence and uniqueness
of solutions to the ODE are still guaranteed and all results in this paper hold under these conditions
(see appendix for details).

ODE flows. We also define the flow associated to the vector field f(h(t),¢) of the ODE. The flow
é¢ : R — R% is defined as the hidden state at time t, i.e. ¢;(x) = h(t), when solving the ODE from
the initial condition h(0) = x. The flow measures how the states of the ODE at a given time ¢ depend
on the initial conditions x. We define the features of the ODE as ¢(x) := ¢r(x), i.e. the flow at the
final time 7" to which we solve the ODE.

NODEs for regression and classification. We can use ODEs to map input data x € R? to a set of
features or representations ¢(x) € R%. However, we are often interested in learning functions from
R4 to R, e.g. for regression or classification. To define a model from R? to R, we follow the example
given in Lin & Jegelka (2018) for ResNets. We define the NODE g : R? — R as g(x) = L(4(x))
where £ : R — R is a linear map and ¢ : RY — R is the mapping from data to features. As shown
in Fig. [2] this is a simple model architecture: an ODE layer, followed by a linear layer.

t=0 t=T

Rd Rd

Figure 2: Diagram of Neural ODE architecture.

3 A simple example in 1d

In this section, we introduce a simple function which ODE flows cannot represent, motivating many
of the examples we will see later. Let g14 : R — R be a function such that

{Qld(—l) =1
g1a(1) = -1
Proposition 1. The flow of an ODE cannot represent g14(x).

A detailed proof is given in the appendix, however, the intuition behind the proof is simple. Indeed,
the trajectories mapping —1 to 1 and 1 to —1 must intersect each other (see Fig. [3a). However, ODE
trajectories cannot cross each other, so the flow of an ODE cannot represent gi4(z). This simple
observation is at the core of all the examples provided in this paper and forms the basis for many of
the limitations of NODE:s.

Experiments. We verify this behavior experimentally by training an ODE flow on the identity
mapping and on g14(x). The resulting flows are shown in Fig. and As can be seen, the model
easily learns the identity mapping but cannot represent g14(2). Indeed, since the trajectories cannot
cross, the model maps all input points to zero to minimize the mean squared error.

ResNets vs NODEs. NODE:s can be interpreted as continuous equivalents of ResNets, so it is
interesting to consider why ResNets can represent g14(x) but NODEs cannot. The reason for this is
exactly because ResNets are a discretization of the ODE, allowing the trajectories to make discrete
jumps to cross each other (see Fig. 3b). Indeed, the error arising when taking discrete steps allows
the ResNet trajectories to cross. In this sense, ResNets can be interpreted as ODE solutions with large
errors, with these errors allowing them to represent more functions.

1.0 1.0

0.5 0.5

0.0 0.0

<

h(t)
h(t)

-0.5 -0.5

==

-1.0 -1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)
e -2 PR T TR N U R
R N RRR RS
N R VL
Bool o Boop 1Y M The—m o
[N T
i [————— ° 1] I /AR A A 4
P wsl ottt

© (d)

Figure 3: (a) Continuous trajectories mapping —1 to 1 (red) and 1 to —1 (blue) must intersect each
other, which is not possible for an ODE. (b) Solutions of the ODE are shown in solid lines and
solutions using the Euler method (which corresponds to ResNets) are shown in dashed lines. As can
be seen, the discretization error allows the trajectories to cross. (c, d) Resulting vector fields and
trajectories from training on the identity function (left) and g14(x) (right).

4 Functions Neural ODEs cannot represent

We now introduce classes of functions in arbitrary dimension d which NODEs cannot represent. Let
0<ri<rg<rsandletg: R? — R be a function such that

g(x)=—1 if x| <m
g(x) =1 if o < ||x|| < s,

where || - || is the Euclidean norm. An illustration of this function for d = 2 is shown in Fig. | The
function maps all points inside the blue sphere to —1 and all points in the red annulus to 1.

Proposition 2. Neural ODEs cannot represent g(x).

A proof is given in the appendix. While the proof requires tools from ODE theory and topology, the
intuition behind it is simple. In order for the linear layer to map the blue and red points to —1 and
1 respectively, the features ¢(x) for the blue and red points must be linearly separable. Since the
blue region is enclosed by the red region, points in the blue region must cross over the red region to
become linearly separable, requiring the trajectories to intersect, which is not possible. In fact, we
can make more general statements about which features Neural ODEs can learn.

Proposition 3. The feature mapping ¢(x) is a homeomorphism, so the features of Neural ODEs
preserve the topology of the input space.

A proof is given in the appendix. This statement is a consequence of the flow of an ODE being
a homeomorphism (Younes|, 2010), i.e. a continuous bijection whose inverse is also continuous,
implying that NODESs can only continuously deform the input space and cannot for example tear a
connected region apart.

Discrete points and continuous regions. It is worthwhile to consider what these results mean in
practice. Indeed, when optimizing NODEs we train on inputs which are sampled from the continuous
regions of the annulus and the sphere (see Fig.). The flow could then squeeze through the gaps
between sampled points making it possible for the NODE to learn a good approximation of the
function. However, flows which need to stretch and squeeze the input space in such a way are likely
to lead to ill posed ODE problems that are numerically difficult to solve. In order to explore this, we
run a number of experiments.

4.1 Experiments

We first compare the performance of ResNets and NODEs on simple regression tasks. To provide a
baseline, we not only train on g(x) but also on data which can be made linearly separable without
altering the topology of the space (implying that Neural ODEs should be able to easily learn this
function). To ensure a fair comparison, we run large hyperparameter searches for each model and
repeat each experiment 20 times to ensure results are meaningful across initializations. Full details
can be found in the appendix.

We show results for experiments with d = 1 and d = 2 in Fig. |5l As can be seen, in d = 1 the ResNet
easily fits the function, while the NODE can not approximate g(x). For d = 2, the NODE eventually
learns to approximate g(x), but struggles compared to ResNets. This problem is less severe for the

Figure 4: Diagram of g(x) for d = 2.

—— ResNet
0.40 — —— ResN:
Neural ODE ResNet esNet

08 Neural ODE 06 Neural ODE

015
0.2

0.2 0.10
0.05 01
0.0 . 0.0

0 2 4 6 8 10 12 14 0 10 20 30 40 50 00 25 50 75 100 125 150 175 20.0
Time (seconds) Time (secon ds) Time (seconds)

Loss
o <
Loss

() g(x)ind =1 (b) g(x)ind =2 (c) Separable function in d = 2

Figure 5: Comparison of training losses of NODEs and ResNets. Compared to ResNets, NODEs
struggle to fit g(x) both in d = 1 and d = 2. The difference between ResNets and NODEs is less
pronounced for the separable function.

UANM
Sfdh NN
Y v v/*’ Y/ r/ el

Figure 6: Evolution of the feature space as training progresses. The leftmost tile shows the feature
space for a randomly initialized NODE and the rightmost tile shows the feature space after training.
The top row shows a model trained on g(x) and the bottow row a model trained on a separable
function. As can be seen in the top row, the NODE struggles to push the inner sphere out of the
annulus and requires a complicated flow to do so.

separable function, presumably because the flow does not need to break apart any regions to linearly
separate them.

To understand what NODE:s are learning, it is interesting to visualize how features evolve during
training. Plots of the feature space as training progresses are shown in Fig. @ For ¢g(x), NODEs
initially try to move the inner sphere out of the annulus by pushing against and stretching the barrier.
Eventually, since we are mapping discrete points and not a continuous region, the flow is able to
break apart the annulus to let the flow through. On the other hand, when training on the separable
dataset, the NODE easily transforms the input space.

4.2 Computational Cost and Number of Function Evaluations

One of the known limitations of NODE:s is that, as training progresses and the flow gets increasingly
complex, the number of steps required to solve the ODE increases (Chen et al., [2018; Grathwohl
et al.,2018). As the ODE solver evaluates the function f at each step, this problem is often referred to
as the increasing number of function evaluations (NFE). In this section, we explore how the stretching
of the input space affects the NFEs and hence the computational cost of making a forward pass of the
NODE. To analyse this, we measure how many function evaluations are required for each forward
pass of the model as training progresses. Presumably, as the function f needs to stretch the input
space in more complex ways, the number of function evaluations required to solve the ODE system
will increase. As illustrated in Fig. [/} this is indeed the case. As training progresses, the NFEs
increases implying that the ODE stretching the space to linearly separate the two regions becomes
more difficult to solve, making the computation slower.

,.
? -~
P L Y
s
a7
-
»
>
o
/ ‘

of Function Evaluations
NONON N W W
N R o @ & N

N
S

0.0 245 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

Figure 7: Evolution of the feature space as training progresses and the corresponding number of
function evaluations required to solve the ODE. As the ODE needs to break apart the annulus, the
number of function evaluations increases.

S Augmented Neural ODEs

Motivated by our theory and experiments, we introduce Augmented Neural ODEs (ANODEs) which
provide a simple solution to the problems we have discussed. We augment the space on which we
learn and solve the ODE from R¢ to R4+, allowing the ODE flow to lift points into the additional
dimensions to avoid trajectories intersecting each other. Letting a(¢) € R? denote a point in the
augmented part of the space, we can formulate the augmented ODE problem as

g]

h(0)] [x
a(0)] |0
i.e. we concatenate every data point x with a vector of zeros and solve the ODE on this augmented

space. We hypothesize that this will also make the learned (augmented) f smoother, giving rise to
simpler flows that the ODE solver can compute in fewer steps.

In the following sections, we verify this behavior experimentally and show both on toy and image
datasets that ANODESs achieve lower losses, better generalization and lower computation cost than
regular NODE:s.

5.1 Experiments

We first compare the performance of NODEs and ANODEs on toy datasets. As in previous experi-
ments, we run large hyperparameter searches and select the best parameters for each model to ensure
a fair comparison. As can be seen on Fig. [8} when trained on g(x) in different dimensions, ANODEs
are able to fit the functions NODEs are not and learn much faster than NODEs despite the increased
dimension of the input. The corresponding flows learned by the model are shown in Fig. P As
can be seen, in d = 1, the ANODE travels into a higher dimension to linearly separate the points,
resulting in a simple, nearly linear flow. Similarly, in d = 2, the Neural ODE learns a complicated
flow whereas ANODEs simply lift out the inner circle to separate the data.

We can also visualize how the learned features evolve during training. As can be seen in Fig. [I0] the
features are easily separated by ANODEs whereas NODEs struggle to stretch the outer annulus apart

(see Fig. [6).

Computational cost and number of function evaluations. ANODEs strongly reduce the NFEs
required to solve the ODE flows for several problems. Indeed, as ANODEs learn simpler flows, they
would presumably require fewer iterations to compute. To test this, we measure the NFEs for NODEs
and ANODESs when training on g(x). As can be seen in Fig. the NFEs required by ANODESs

d615130
Texte surligné

d615130
Texte surligné

07 Neural ODE 06 Neural ODE
~—— ANODE —— ANODE
0.6 0.5
0.5
0 0.4
03

0.2

0.1

o 2 a4 6 8 10 12 14 o 5 10 15 20 25 30
Epochs Epochs

Figure 8: Loss plots for NODEs and ANODEs trained on g(x) in d = 1 (left) and d = 2 (right).
ANODEs easily approximate the functions and are consistently faster than NODE:s.

0.0

Inputs Flow Features

NODE
2D

ANODE ([FF it
2D

Figure 9: Flows learned by NODEs and ANODEs. ANODE:s learn simple nearly linear flows while
NODEs learn complex flows that are difficult for the ODE solver to compute.

hardly increases during training while it nearly doubles for NODEs. We obtain similar results when
training NODEs and ANODEs on image datasets (see Section [5.2)).

Generalization. As ANODE:s learn simpler flows, we also hypothesize that they generalize better
to unseen data than NODEs. To test this, we first visualize to which value each point in the input
space gets mapped by a NODE and an ANODE that have been optimized to approximately zero
training loss. As can be seen in Fig. [12a] since NODEs can only continuously deform the input space,
the learned flow must squeeze the points in the inner circle through the annulus, leading to poor
generalization. ANODE:s, in contrast, map all points in the input space to reasonable values.

Figure 10: Evolution of features during training for an Augmented Neural ODE. The leftmost tile
shows the feature space for a randomly initialized ANODE and the rightmost tile shows the features
after training.

Neural ODE
ANODE

Neural ODE
of — ANODE

o 10 20 30 0 EY o 5 10 15 20 25 30 35 40
Epochs Epochs

Figure 11: Evolution of the number of function evaluations during training for NODEs and ANODEs
trained on g(x) in d = 1 (left) and d = 2 (right).

Neural ODE Augmented Neural ODE

(@) (b) (c)

Figure 12: (a) Plots of how NODEs and ANODEs map points in the input space to different outputs
(both models achieve approximately the same zero training loss). As can be seen, the Augmented
Neural ODE generalizes better. (b) Training and validation losses for NODE. (c) Training and
validation losses for ANODE.

As a further test, we can also create a validation set by removing random slices of the input space
(e.g. removing all points whose angle is in [0, £]) from the training set. We train both NODEs and
ANODEs on the training set and plot the evolution of the validation loss during training in Fig.
While there is a large generalization gap for NODEs, presumably because the flow moves through
the gaps in the training set, ANODEs generalize much better and achieve near zero validation loss.

As we have shown, experimentally we obtain lower losses, simpler flows, better generalization and
ODE:s requiring fewer NFEs to solve when using ANODEs. We now test this behavior on image data
by training models on MNIST and CIFAR10.

5.2 Image Experiments

We perform experiments on MNIST and CIFAR10 using convolutional architectures for f(h(¢), t).
As the input x is an image, the hidden state h(t) is now in R®***® where c is the number of channels
and h and w are the height and width respectively. In the case where h(t) € R? we augmented the
space as h(t) € R4*P, For images we augment the space as Re*">w — R(etp)xhxw e we add p
channels of zeros to the input image. While there are other ways to augment the space, we found that
increasing the number of channels works well in practice and use this method for all experiments.
Full training and architecture details can be found in the appendix.

We also note that different architectures exist for training NODEs on images. for
example, use a combination of downsampling with regular convolutions before applying a sequence
of repeated ODE flows. While some of these architectures can be understood as implicitly augmenting
the space (since downsampling convolutions increase the number of channels), for sake of comparison
we here refer to NODEs as an ODE layer followed by a linear layer (as described in Section[2) and
ANODEs as an augmented ODE layer followed by a linear layer.

Results for models trained with and without augmentation are shown in Fig. [[3] As can be seen,
ANODE:s train faster and obtain lower losses at a smaller computational cost than NODEs. On
MNIST for example, ANODEs with 10 augmented dimensions achieve the same loss in roughly 10
times fewer iterations (for CIFAR10, ANODE:s are roughly 5 times faster).

Loss NFEs NFEs vs Loss

0.5 0.5

vcoo
nonon
2 eo

0.4

0.3

0.2

of Function Evaluations
I
8

e
0.0 25 5.0 75 10.0 125 15.0 175 0.0 25 5.0 75 10.0 125 15.0 175 40 50 60 70 80 90 100 110 120
Epochs Epochs # of Function Evaluations

100

coo

nonon
2o
s

80

60

: o 8o,
8 ’ Ny,
- -.,;\" e,

40

of Function Evaluations

3 . 4
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 40 50 60 70 80 90 100 110
Epochs Epochs. # of Function Evaluations

Figure 13: Losses, NFEs and NFEs vs Loss for various augmented models on MNIST (top row)
and CIFAR10 (bottom row). Note that p indicates the size of the augmented dimension, so p = 0
corresponds to a regular NODE model.

Perhaps most interestingly, we can plot the NFEs against the loss to understand roughly how complex
a flow (i.e. how many NFEjs) are required to model a function that achieves a certain loss. For example,
to compute a function which obtains a loss of 0.8 on CIFAR10, a NODE requires approximately
100 function evaluations whereas ANODESs only require 50. Similar observations can be made for
MNIST, implying that ANODESs can model equally rich functions at half the computational cost of
NODEs.

Parameter efficiency. As we augment the dimension of the ODEs, we also increase the number of
parameters of the models, so it may be that the improved performance of ANODE:s is due to the
higher number of parameters. To test this, we train a NODE and an ANODE with the same number
of parameters on both MNIST (84k weights) and CIFAR10 (172k weights). As can be seen in Fig.
[14] the augmented model achieves lower losses with fewer NFEs than a NODE with the same number
of parameters, suggesting that ANODEs use the parameters more efficiently than NODE:s.

NFEs and weight decay. The increased computational cost as training progresses is a known
issue with Neural ODEs and has previously been tackled by adding weight decay during training
(Grathwohl et al.l 2018). As ANODE:s also achieve lower computational cost, we test models
with various combinations of weight decay and augmentation (see Fig. [I3). As can be seen,
ANODE:s outperform NODEs even when using weight decay. However, using both weight decay and
augmentation achieves the lowest NFEs at the cost of a slightly higher loss. Combining augmentation
with weight decay may therefore be a fruitful avenue for further scaling Neural ODE models.

Generalization for images. As noted in Section [5.1] ANODEs generalize better than NODEs on
simple datasets, presumably because they learn simpler and smoother flows. We also test this behavior
on CIFAR10 by training models with and without augmentation on the training set and calculating
the loss on the test set. As can be seen on Fig. [I6] both the NODE and ANODE overfit the training
data, but ANODE:s achieve lower validation loss than NODEs (1.18 vs 1.34). This suggests that
ANODE:s also achieve better generalization on image datasets.

Stability and scaling. While experimenting with NODEs we found that the NFEs could often
become prohibitively large. For example, when overfitting a NODE on MNIST, the learned flow
can become so ill posed the ODE solver requires timesteps that are smaller than machine precision
resulting in underflow. Further, while we cap the NFEs to 1000 during training (which roughly
corresponds to a ResNet with 1000 layers which should be sufficient for MNIST), the model regularly
requires more than this to compute the flow. Further, this complex flow often leads to unstable training
resulting in exploding or wildly varying losses. This unstable behavior is likely a function of many
factors, such as the choice of architecture, activation function and optimizer and it may be that an
appropriate choice of these could lead to more stable models. However, we observed this phenomenon

Loss NFEs vs Loss

° o
o
w o

MNIST o2
84k params ..

00 25 50 75 100 125 150 175 40 50 60 70 80 90 100
Epochs # of Function Evaluations

— p=0
175 \ p=5
1.50 1.50 r

1.25 1.25

CIFAR10 ., 2100 ‘\"‘L
172k params ~ 5. o o T

e

>

0 5 10 15 20 25 30 35 40 : a0 50 60 70 80 90 100 110
Epochs # of Function Evaluations

Figure 14: Losses, NFEs and NFEs vs Loss for various augmented models on MNIST and CIFAR10.
Note that p indicates the size of the augmented dimension, so p = 0 corresponds to a regular NODE
model.

0.5

—— no augmentation, weight decay . no augmentation, weight decay
augmentation, no weight decay L4 augmentation, no weight decay
0.4 —— augmentation, weight decay 0.4 augmentation, weight decay
03 03)
@ @
@ a 2. %
. 0.2 3 Rl - TN
- 0.2 -
Wit aen
.
01 01 § h o
——— ‘rvb
0.0 — 0.0
0 5 10 15 20 25 30 40 50 60 70 80 90
Epochs # of Function Evaluations

Figure 15: Losses and NFEs for models with and without weight decay. ANODEs perform better
than NODEs with weight decay but adding weight decay to ANODEs also reduces their NFEs at the
cost of a slightly higher loss.

across a variety of architectures and hyperparameters. We also found that augmentation consistently
lead to more stable training and fewer function evaluations, even when overfitting datasets. Results
for models (with the same number of parameters) trained on MNIST are shown in Fig. [I7] As can be
seen, the training of ANODE:s is stable, leading to models with low losses and low NFEs. NODEs
in contrast tend to become unstable when overfitting the data and often learn flows that require a
prohibitively large number of steps to solve (several hundred function evaluations). We hope that
ANODEs will facilitate the scaling of Neural ODE models and plan to explore this further in future
research.

Augmentation for ResNets. Since ResNets can be interpreted as discretized equivalents of Neural
ODEs, it is also interesting to consider how augmenting the space could affect the training of ResNets.
Indeed, most ResNet architectures (He et all, 2016}, Xie et all, 2017) already employ a form of
augmentation by performing convolutions with a large number of filters before applying residual
blocks. This effectively corresponds to augmenting the space by the number of filters minus the
number of channels in the original image. Further, Behrmann et al.| (2018) also augment the input
with zeros to build invertible ResNets. Through the analogy between NODEs and ResNets, we hope
that some of the ideas presented in this paper could be used to guide future research into ResNet
architectures.

10

Neural ODE Augmented Neural ODE

2.00 2.00
Training —— Training
175 —— Validation 175 —— Validation

150w 1.50

1.25 1.25

Loss
e
o
s

Loss

1.00

0.75 0.75

0.50 0.50

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Epochs Epochs

Figure 16: Training and validation losses on CIFAR10 for NODEs and ANODEs. Both models
overfit the training data, but ANODEs achieve a lower minimum for the validation loss.

2.00 600
Neural ODE Neural ODE

1.75 Augmented Neural ODE 500 Augmented Neural ODE

400

300

200

Loss
=
=)
3
of Function Evaluations

100
0.25 = ——

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Epochs Epochs

Figure 17: Instabilities in the loss (left) and NFEs (right) when fitting NODEs to MNIST. In the latter
stages of training NODEs can become unstable and the loss and NFEs become erratic.

6 Scope and Future Work

In this section, we describe some limitations of ANODEs, outline potential ways they may be
overcome and list ideas for future work. First, while ANODE:s are faster than NODE:s, they are still
slower than ResNets. This stands in the way of scaling such models to very large datasets and we
believe further research is needed in this area. Second, there may be different architectural choices
that could have similar properties to those exhibited by ANODE:s. [Chen et al.|(2018) for example,
downsample MNIST twice with regular convolutions (and hence also increase the number of channels
in a similar way to ANODESs) before applying a sequence of NODEs to train on MNIST. Finally, the
augmented dimension can be seen as an extra hyperparameter to tune. While the model is robust for a
large range of augmented dimensions, we observed that for excessively large augmented dimensions
(e.g. adding a 100 channels to MNIST), the model tends to perform worse yielding higher loss and
NFEs.

We believe the ideas presented in this paper could create other interesting avenues for future research,
including:

Overcoming the limitations of Neural ODEs. In order to allow trajectories to travel across each
other, we augmented the space on which the ODE is solved. However, there may be other ways to
achieve this, such as learning an augmentation (as in ResNets) or adding noise (in a similar way to
‘Wang et al.[(2018)).

Augmentation for Normalizing Flows. The NFEs typically becomes prohibitively large when
training continuous normalizing flow models (Grathwohl et al., 2018)). Adding augmentation to
continuous normalizing flows could likely mitigate this effect and we plan to explore this in future
work.

Improving our understanding of augmentation. It would be interesting to provide more theoretical
arguments for how and why augmentation improves the training of NODE models. For example it
would be interesting to more precisely characterize what is meant by ANODEs learning simpler flows
and to explore how this could guide our choice of architectures and optimizers for Neural ODEs.

11

7 Conclusion

In this paper, we highlighted and analysed some of the limitations of Neural ODEs. We proved that
there are classes of functions Neural ODEs cannot represent and, in particular, that Neural ODEs only
learn features that are homeomorphic to the input space. We showed through experiments that this
lead to slower learning and increasingly complex flows which are expensive to compute. To mitigate
these issues, we proposed Augmented Neural ODEs which learn the flow from input to features in an
augmented space. Our experiments show that Augmented Neural ODEs can model more complex
functions using simpler flows. In addition, they achieve lower losses, reduce computational cost, and
improve stability and generalization. In future work we hope to extend these ideas to a more general
setting, including for continuous normalizing flows.

Acknowledgements

We would like to thank Anthony Caterini, Daniel Paulin, Abraham Ng, Joost Van Amersfoort and
Hyunjik Kim for helpful discussions and feedback. Emilien gratefully acknowledges his PhD funding
from Google DeepMind. Arnaud Doucet acknowledges support of the UK Defence Science and
Technology Laboratory (Dstl) and Engineering and Physical Research Council (EPSRC) under grant
EP/R0O13616/1. This is part of the collaboration between US DOD, UK MOD and UK EPSRC under
the Multidisciplinary University Research Initiative. Yee Whye Teh’s research leading to these results
has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) ERC grant agreement no. 617071.

References

Shair Ahmad and Antonio Ambrosetti. A Textbook on Ordinary Differential Equations, volume 88.
Springer, 2015.

Mark Anthony Armstrong. Basic Topology. Springer Science & Business Media, 2013.

Jens Behrmann, David Duvenaud, and Jorn-Henrik Jacobsen. Invertible residual networks. arXiv
preprint arXiv:1811.00995, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In 32nd Conference on Neural Information Processing Systems, 2018.

Earl A Coddington and Norman Levinson. Theory of Ordinary Differential Equations. Tata McGraw-
Hill Education, 1955.

Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34
(1):014004, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Ralph Howard. The Gronwall inequality. 1998. URL http://people.math.sc.edu/howard/
Notes/gronwall.pdf.

Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator.
In 32nd Conference on Neural Information Processing Systems, 2018.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:

Bridging deep architectures and numerical differential equations. arXiv preprint arXiv:1710.10121,
2017.

12

http://people.math.sc.edu/howard/Notes/gronwall.pdf
http://people.math.sc.edu/howard/Notes/gronwall.pdf

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
arXiv preprint arXiv:1804.04272, 2018.

Bao Wang, Binjie Yuan, Zuoqiang Shi, and Stanley J Osher. Enresnet: Resnet ensemble via the
Feynman-Kac formalism. arXiv preprint arXiv:1811.10745, 2018.

E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1-11, 2017.

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492-1500, 2017.

Laurent Younes. Shapes and Diffeomorphisms, volume 171. Springer Science & Business Media,
2010.

13

A Proofs

Throughout this section, we refer to the following Initial Value Problem (IVP)

dh(t)
- f(h(t),t)

h(0) =x

)

where h(t) € R? and f : R? x R — R% is continuous in ¢ and globally Lipschitz continuous in h, i.e.
there is a constant C' > 0 such that

[£(hy(2),) — £(hu(t),)] < Cllha(t) — ha(8)]]

for all ¢ € R. These conditions imply the solutions of the IVP exist and are unique for all ¢ (see e.g.
Theorem 2.4.5 in|/Ahmad & Ambrosetti| (2015)).

We define the flow ¢ (x) associated to the vector field f(h(¢), t) as the solution at time ¢ of the ODE
starting from the initial condition h(0) = x. The flow measures how the solutions of the ODE depend
on the initial conditions. Following the analogy between ResNets and Neural ODEs, we define the
features ¢(x) output by the ODE as the flow at the final time 7" to which we solve the ODE, i.e.
¢(x) = ¢r(x). Finally, we define the Neural ODE model as the composition of the feature function
¢ : R? — R? and a linear map £ : RY — R.

For clarity and completeness, we include proofs of all statements. Whenever propositions or theorems
are already known we include references to proofs.

A.1 ODE trajectories do not intersect

This result is well known and proofs can be found in standard ODE textbooks (e.g. Proposition C.6
in|Younes| (2010)).

Proposition. Ler hy(t) and ha(t) be two solutions of the ODE (1)) with different initial conditions,
i.e. h1(0) # ho(0). Then, forallt € (0,T)], hy(t) # ha(t). Informally, this proposition states that
ODE trajectories cannot intersect.

Proof. Suppose there exists some ¢ € (0,7 where h;(#) = hy(). Define a new IVP with initial
condition h(f) = h; () = hy(f) and solve it backwards to time ¢ = 0. As the backwards IVP also
satisfies the existence and uniqueness conditions, its solution h(¢) is unique implying that its value at
t = 0 is unique. This contradicts the assumption that h; (0) # hy(0) and so there is no ¢ € (0, T]]

such that hy (t) = ha(t).

A.2 Gronwall’s Lemma

We will make use of Gronwall’s Lemma and state it here for completeness. We follow the statement
as given inHoward| (1998)):

Theorem. Let U C R? be an open set. Let f : U x [0,T] — R be a continuous function and let
hy,hy : [0,T] — U satisfy the IVPs:

dh, (¢) B B
T f(hy(t),t), hy(0) =x

dhy(¢) B B
s f(ha(t),t), ha(0) =xo

Assume there is a constant C' > 0 such that
[£(ha(t),t) — f(hu(2),t)]| < Cllha(t) —hi(t)||

Then fort € [0,T]
2 (t) = ha(t)] < elxz — x|

Proof. See e.g. [Howard| (1998) or Theorem 3.8 in|Younes| (2010).

14

B Proof for 1d example

Let g14 : R — R be a function such that

{gld(—l) =1
g1a(1) = —1
Proposition 1. The flow of an ODE cannot represent g14().

Proof. The proof follows two steps:

(a) Continuous trajectories mapping —1 to 1 and 1 to —1 must cross each other.
(b) Trajectories of ODEs cannot cross each other.

which is a contradiction and implies the proposition. Part (b) was proved in Section[A.T] All there is
left to do is to prove part (a).

Suppose there exists an f such that there are trajectories hq (t) and ha(¢) where
hi(0) = —1 hy(T) =1
he(0) =1 ho(T)=-1

As hy(t) and ho(t) are solutions of the IVP, they are continuous (Coddington & Levinson), [1955).
Define the function h(t) = ha(t) — hi(t). Since both h;(t) and ho(t) are continuous, so is h(t).
Now h(0) = 2 and h(T) = —2, so by the Intermediate Value Theorem there is some ¢ € [0, T'] where

h(t) = 0, i.e. where hy(t) = ha(t). So hy(t) and hs(t) intersect.

C Proof that ¢,(x) is a homeomorphism

Since the following theorem plays a central part in the paper, we include a proof of it here for
completeness. For a more general proof, see e.g. Theorem C.7 in|Younes| (2010).

Theorem. Forallt € [0,T), ¢; : R — R? is a homeomorphism.
Proof. In order to prove that ¢, is a homemorphism, we need to show that

(a) ¢, is continuous
(b) ¢, is a bijection

(c) ¢ is continuous

Part (a). Consider two initial conditions of the ODE system, h; (0) = x and h5(0) = x + 0 where §
is some perturbation. By Gronwall’s Lemma, we have

Iha(t) — by ()] < e|ha (0) — ha(0)]] = e

Rewriting in terms of ¢;(x), we have

| < e“lal]

[f1(x +0) — d1(x)

Letting 6 — 0, this implies that ¢;(x) is continuous in x for all ¢ € [0, T7].

Part (b). Suppose there exists initial conditions x; # X2 such that ¢ (x1) = ¢;(x2). We define the
IVP starting from ¢ (x;) and solve it backwards to time ¢ = 0. The solution of the IVP is unique, so
it cannot map ¢, (x1) back to both x; and x5. So for each x; # xo, we must have ¢4 (x1) # ¢¢(x2),
that is the map between x and ¢;(x) is one-to-one.

Fart (c). To check that the inverse ¢, L is continuous, we note that we can set the initial condition
to h(t) = ¢;(x) and solve the IVP backwards in time (as it satisfies the existence and uniqueness
conditions). The same reasoning as part (a) then applies.

Therefore ¢, is a continuous bijection and its inverse is continuous, i.e. it is a homeomorphism.

15

(a) (b)

Figure 18: (a) Diagram of g(x) in 2d. (b) An example of the map ¢(x) from input data to features
necessary to represent g(x) (which NODEs cannot learn).

Corollary. Features of Neural ODEs preserve the topology of the input space.

Proof. Since ¢(x) is a homeomorphism, so is ¢(x) = ¢ (x). Homeomorphims preserve topological
properties, so Neural ODEs can only learn features which have the same topology as the input space.

This corollary implies for example that Neural ODEs cannot break apart or create holes in a connected
region of the input space.

D Proof that there are classes functions Neural ODEs cannot represent

This section presents a proof of the main claim of the paper.

Let0 <ry <ryg<rsgandletg: R¢ — R be a function such that

g9(x) = =1 if [x|[<
gx)=1 ifrg <|x|]| <rs

We denote the sphere where g(x) = —1 by A = {x: ||x|| < 71} and the annulus where g(x) = 1 by
B = {x:ry < |x|| < rs} (see Fig. [18). For a set S, we write ¢(S) = {y : y = ¢(x),x € S} to
denote the feature transformation of the set.

Proposition 2. Neural ODEs cannot represent g(x).

Proof. For a Neural ODE to map points in A to —1 and points in B to +1, the linear map £ must
map the features in ¢(A) to —1 and the features in ¢(B) to +1, which implies that ¢(A) and ¢(B)
must be linearly separable. We now show that this is not possible if ¢ is a homeomorphism.

Define a disk D C R¥by D = {x € R? : ||x|| < ro} with boundary 0D = {x € R? : ||x|| = ro}
and interior int(D) = {x € R? : ||x|| < 2}. Now A C int(D), ANID = (h and D C B, that is
all points in 9D should be mapped to +1 (i.e. they are in B) and a subset of points in int(D) should
be mapped to —1 (i.e. they are in A). So if ¢(int(D)) and ¢(9D) are not linearly separable, then
neither are ¢p(A) or ¢(B).

The feature transformation ¢ is a homeomorphism, so ¢(int(D)) = int(¢(D)) and ¢(0D) =
9(¢(D)), i.e. points on the boundary get mapped to points on the boundary and points in the interior
to points in the interior (Armstrong,2013). So it remains to show that int(¢(D)) and 9(¢(D)) cannot
be linearly separated. For notational convenience, we will write D' = ¢(D).

Suppose all points in 9D’ lie above some hyperplane, i.e. suppose there exists a linear function
L(x) = wlx and a constant C such that £(x) > C for all x € dD’. If int(D’) were linearly
separable from 0D’ then £(x) < C for all x € int(D’). We now show that this is not the case.
Since D’ is a connected subset of R? (since D is connected and ¢ is a homeomorphism), every point
x € int(D’) can be written as a convex combination of points on the boundary D’ (to see this
consider a line passing through a point x in the interior and its intersection with the boundary). So if
x € int(D'), then

x=Ax1 + (1 — A\)x2

16

for some x;,%x9 € 0D’ and 0 < A < 1. Now,

L(x) =wlx
=wl(Axy + (1 = N)xz)
=Awlx; 4+ (1 - Nwlxo
>AC+(1-XNC
=C
so all points in the interior are on the same side of the hyperplane as points on the boundary, that is

the interior and the boundary are not linearly separable. This implies that the set of features ¢(A)
and ¢(B) cannot be linearly separated and so that Neural ODEs cannot represent g(x).

oD
oD oD’
/ L(x)=C
) (®)

(a (©)

Figure 19: (a) Diagram of the disk D and its boundary. The boundary is equal to the inner boundary
of B. (b) An example of how ¢ transforms the disk. (c) The boundary of the transformed set is above
the hyperplane, which implies that all points on the interior must also be above the hyperplane.

E Experimental Details

‘We used the ODE solvers in the torchdiff ecﬂ library for all experiments (Chen et al.,|2018)). We
used the Runge-Kutta 4 solver with an absolute and relative error tolerance of le-3.

E.1 Architecture

Throughout all our experiments we used the ReLU activation function. We also experimented with
softplus but found that this generally slowed down learning.

E.1.1 Toy datasets

We parameterized f by an MLP with the following structure and dimensions

dinput +1— dhidden — ReLU — dhidden — ReLU — dinput

where the additional dimension on the input layer is because we append the time ¢ as an input.
Choices for dipput and dhiggen are given for each model in the following section.

E.1.2 Image datasets
We parameterized f by a convolutional block with the following structure and dimensions
e 1 x 1 conv, k filters, 0 padding.

e 3 x 3 conv, k filters, 1 padding.
e 1 x 1 conv, c filters, 0 padding.

"https://github.com/rtqichen/torchdiffeq

17

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

where £k is specified for each architecture in the following sections and c is the number of channels (1
for MNIST and 3 for CIFAR10). We append the time ¢ as an extra channel on the feature map before
each convolution.

E.2 Hyperparameters

For the toy datasets, each experiment was repeated 20 times. The resulting plots show the mean and
standard deviation for these runs.

E.2.1 Hyperparameter search

To ensure a fair comparison between models, we ran a large hyperparameter search for each model
and chose the best hyperparameters to generate the loss plots in the paper. We used |skorch|and
scikit-learn (Pedregosa et al.l[2011) to run the hyperparameter searches and ran 3 cross validations
for each setting.

For d = 1 and d = 2 we trained on g(x) (i.e. on the dataset of concentric spheres), with 1000 points
in the inner sphere and 2000 points in the outer annulus. We used r; = 0.5, 7o = 1.0 and r3 = 1.5
and trained for 50 epochs. The space of hyperparameters we searched were:

e Batch size: 64, 128

e earning rate: le-3, 5-4, le-4

Hidden dimension: 16, 32

e Number of layers (for ResNet): 2, 5, 10

e Number of augmented dimensions (for ANODE): 1, 2, 5

The best parameters for ResNets:

e d = 1: Batch size 64, learning rate 1e-3, hidden dimension 32, 5 layers

e d = 2: Batch size 64, learning rate le-3, hidden dimension 32, 5 layers
The best parameters for Neural ODEs:

e d = 1: Batch size 64, learning rate le-3, hidden dimension 32

e d = 2: Batch size 64, learning rate le-3, hidden dimension 32
The best parameters for Augmented Neural ODEs:

e d = 1: Batch size 64, learning rate le-3, hidden dimension 32, augmented dimension 5
e d = 2: Batch size 64, learning rate le-3, hidden dimension 32, augmented dimension 5
E.2.2 Image experiments

For both MNIST and CIFAR10, we used k& = 64 filters and repeated each experiment 5 times. For
models with the same number of parameters we used, for MNIST

e Neural ODE: 92 filters — 84395 parameters
o Augmented Neural ODE: 64 filters, augmented dimension 5 — 84816 parameters

and for CIFAR10

e Neural ODE: 125 filters — 172358 parameters
e Augmented Neural ODE: 64 filters, augmented dimension 10 — 171799 parameters

18

https://github.com/skorch-dev/skorch
https://scikit-learn.org/stable/

	1 Introduction
	2 Neural ODEs
	3 A simple example in 1d
	4 Functions Neural ODEs cannot represent
	4.1 Experiments
	4.2 Computational Cost and Number of Function Evaluations

	5 Augmented Neural ODEs
	5.1 Experiments
	5.2 Image Experiments

	6 Scope and Future Work
	7 Conclusion
	A Proofs
	A.1 ODE trajectories do not intersect
	A.2 Gronwall's Lemma

	B Proof for 1d example
	C Proof that t(x) is a homeomorphism
	D Proof that there are classes functions Neural ODEs cannot represent
	E Experimental Details
	E.1 Architecture
	E.1.1 Toy datasets
	E.1.2 Image datasets

	E.2 Hyperparameters
	E.2.1 Hyperparameter search
	E.2.2 Image experiments

