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Abstract

A theoretical framework which unifies the conventional Mori–Zwanzig formalism
and the approximate Koopman learning of deterministic dynamical systems from noise-
less observation is presented. In this framework, the Mori–Zwanzig formalism, devel-
oped in statistical mechanics to tackle the hard problem of construction of reduced-
order dynamics for high-dimensional dynamical systems, can be considered as a natu-
ral generalization of the Koopman description of the dynamical system. We next show
that similar to the approximate Koopman learning methods, data-driven methods can
be developed for the Mori–Zwanzig formalism with Mori’s linear projection operator.
We have developed two algorithms to extract the key operators, the Markov and the
memory kernel, using time series of a reduced set of observables in a dynamical sys-
tem. We have adopted the Lorenz ‘96 system as a test problem and solved for the
above operators. These operators exhibit complex behaviors, which are unlikely to be
captured by traditional modeling approaches in Mori–Zwanzig analysis. The nontriv-
ial Generalized Fluctuation Dissipation relationship, which relates the memory kernel
with the two-time correlation statistics of the orthogonal dynamics, was numerically
verified as a validation of the solved operators. We present numerical evidence that
the Generalized Langevin Equation, a key construct in the Mori–Zwanzig formalism,
is more advantageous in predicting the evolution of the reduced set of observables than
the conventional approximate Koopman operators.
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tions, Generalized Fluctuation-Dissipation relationship, Dynamic Mode Decomposi-
tion, Extended Dynamic Mode Decomposition, approximate Koopman learning, data-
driven, reduced-order dynamical system
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1 Introduction

The Mori–Zwanzig formalism [29, 51, 52, 14] was first developed in statistical physics for the
difficult task of constructing coarse-grained models from high-dimensional microscopic mod-
els. The goal of model coarse-graining is to construct equations describing the evolution of a
smaller set of variables which are measurable, or quantities of our interests. These quantities
are often referred to as the relevant or resolved variables. For example, a microscopic model
can be all-atom molecular dynamics simulation of a protein in a solvent, and a relevant
variable can be the distance between two atoms of our interests. It is desirable to construct
a closed dynamical system which include only the resolved variables without the information
of other degrees of freedom. On the one hand, it is easier to perform analysis on a closed
lower-dimensional system and to shed important insights on the interactions between the re-
solved variables. On the other hand, it is more efficient to simulate the reduced-dimensional
system computationally.

The major challenge of coarse-graining modeling is that the resolved variables may be
influenced by the unresolved variables. In the above example, the distance between the two
specific atoms may be influenced by nearby water molecules that are not in the set of resolved
variables. To solve this difficult closure problem, Mori [29] and Zwanzig [51] developed the
projection-based methods to express the effect of the unresolved variables in terms of the
resolved ones. The Generalized Langevin Equation, the main result of the Mori–Zwanzig
formalism, decomposes the evolutionary equations of the resolved variables into three parts:
a Markov term, which captures the interaction within the resolved variables, a memory
term, which is history-dependent and captures the interactions between the resolved and the
unresolved variables, and a term representing the orthogonal dynamics, which captures the
unknown initial condition of the unresolved variables. Although the Generalized Langevin
equation is formally exact, it is challenging to theoretically derive closed-form expressions of
these terms in the Generalized Langevin Equation without approximations. Conventionally,
the applications of the Mori–Zwanzig formalism rely on modeling self-consistent operators
based on the mathematical structure of the Generalized Langevin Equation [39, 12, 7, 22,
21, 23, 33, 45, 13].

In a seemingly unrelated research area, approximate Koopman learning methods such as
Dynamic Mode Decomposition [36, 37] and Extended Dynamic Mode Decomposition [47],
have been actively developed for data-driven modeling of dynamical systems. The general
idea is that by collecting enough data of a dynamical system, possibly from a high-fidelity
simulation of the microscopic system, one would be able to learn important features in the
dynamics, e.g., spectral [27] and dynamic modes [36, 37, 47]. The theoretical foundation of
these methods, the Koopman theory, is a formulation for general dynamical systems [18, 17].
Instead of the typical description of a possibly nonlinear system in the physical space, in
Koopman theory, the dynamics are described as a linear dynamical system of the functions
of the observables in an infinite-dimensional Hilbert space. Because the interactions in this
framework are linear (but with a caveat that the space is infinite dimensional), learning from
data is a convex problem which is easier to solve, in contrast to the nonlinear regression in
the conventional physical-space picture.

The major aim of this article is to bridge these two seemingly disconnected research
areas in dynamical systems: the Mori–Zwanzig formalism and the approximate Koopman
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learning. We will establish that the Mori–Zwanzig formalism with Mori’s linear projector
is functionally identical to the approximate Koopman learning methods in a shared Hilbert
space. This connection helps to bring the advantage of one research area to another. On the
one hand, the approximate Koopman learning methods can be generalized for data-driven
modeling of the operators in Mori–Zwanzig formalism. As will be seen in this article, the
operators describing the Markov and memory terms in the Generalized Langevin Equation
can be numerically learned from the simulation of the microscopic system. Surprisingly,
these operators, inferred from data, are highly nontrivial and are unlikely to be modeled
accurately without in-depth knowledge of the system. On the other hand, the memory terms
in the Mori–Zwanzig formalism can be considered as higher-order corrections of the Koopman
learning methods. We will show that by including the memory kernel and the history of the
resolved variables, the Generalized Langevin Equation predicts more accurately than the
Extended Dynamic Mode Decomposition.

This article is organized by the following structure. In Sec. 2, we provide a gentle intro-
duction to the two descriptions of a dynamical system: the description of a finite-dimensional,
but possibly nonlinear dynamics in the physical space, and the Koopman description of an
infinite-dimensional, but linear dynamics of the observables. For completeness, we include a
self-contained introduction and review of the Mori–Zwanzig formalism in Sec. 3. We estab-
lish that the Mori–Zwanzig formalism is a generalization, in the sense that it contains the
higher-order memory effect, of the Extended Dynamic Mode Decomposition (EDMD, [47])
in Sec. 4. Two novel algorithms, motivated by the EDMD to extract the key operators in the
Mori–Zwanzig formalism by simulation data, are presented in Sec. 5. We perform numerical
experiments on a Lorenz ‘96 model [25] and present the results in Sec. 6. In Sec. 6.2, we
demonstrate the advantage of the Mori–Zwanzig formalism over the conventional EDMD in
predicting dynamical systems into the future. Finally, we provide a discussion and future
outlook in Sec. 7.

2 Preliminaries

There exist two equivalent formulations to describe a dynamical system. In the first formu-
lation [1, 40], the system is characterized by a collection of physical-space variables, often
termed as the state of the system. For example, a physical-space variable can be one compo-
nent of the position of an atom in a many-particle system, or one component of the velocity
field at a specific location in a fluid dynamical system. The aim of this first formulation is to
describe the evolution of these physical-space variables. Suppose the state of the system is
fully characterized by N physical-space variables φi, i = 1, . . . , N , and we denote the state
of the system at time t by Φ (t) := [φ1 (t) , . . . , φN (t)]T , an N × 1 column vector. Then, the
evolution of the variables in the physical space (assumed to be RN for simplicity) is described
by the deterministic evolutionary equations

d

dt
φi (t) = Ri (Φ (t) , t) , and Φ (0) = Φ0, i = 1, . . . N, (1)

where the flow Ri : RN → R is a function which maps the state Φ to a real number that
characterizes the velocity of the physical-space variable φi at time t, and Φ0 is the given
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N × 1 column vector specifying the initial condition of the system’s state. In this article, we
exclusively consider autonomous dynamical systems, where Ri does not explicitly depends
on the time t. Thus, the evolutionary equation (1) can be written in a terse form Φ̇ = R (Φ),
where the flow R is defined as [R1 (Φ (t)) , . . . , RN (Φ (t))]T and is implicitly time-dependent.
In general, the flow R can be nonlinear in Φ.

In the second formulation proposed by Koopman [18, 17], the system is characterized by
a collection of observables which are functions of the physical-space variables. For example,
an observable can be a component of the total angular momentum of a subset of all atoms
in a particle system, or the locally averaged density in a fluid dynamical system. The
Koopmanian formulation describes how observables evolve in an infinite-dimensional Hilbert
spaceH, which is composed of all the possible observables. The advantage of this formulation
is that the evolution of the observables, which is a vector in the infinite dimensional Hilbert
space H, is always linear, even for systems that are nonlinear in the physical-space picture.
The disadvantage of this formulation is that the state space of the system, which consists of
all possible observables, is infinite dimensional.

To illustrate the difference of the formulations, we consider a one-dimensional nonlinear
dynamical system in the physical-space formulation: φ̇(t) = R (φ (t)) and φ (0) := φ0, where
R(x) := −x2 is a nonlinear function and φ0 is the initial condition. While the analytic
solution exists for this simple problem (φ (t) = 1/(t + 1/φ0)), it is challenging to derive
the closed-form solution for general multidimensional (N > 1) nonlinear dynamical systems.
Note that φ(t) is a nonlinear function of the initial condition φ0. In the Koopman formulation,
the dynamics are characterized by observables of φ. It is sufficient for us to consider a set of
observables which will serve as the basis functions. For this example, we consider gk(φ) := φk,
k ∈ Z+. Other observables can be expressed as a weighted linear superposition of these basis
functions via Taylor series expansion. In contrast to the first formulation, Koopman’s theory
describes the dynamics of the basis functions gk:

d

dt
gk (t) :=

d

dt
[gk ◦ φ (t)] =

dgk
dφ
· dφ

dt
= kφk−1 (t) ·

[
−φ2 (t)

]
= −kgk+1 (t) . (2)

Throughout this article, we will use the symbol ◦ to denote the composite functions. Here,
the observable functions gk are functions of the physical-space variable φ, which is a function
of the physical time t. The dynamics of gk(t) is always linearly dependent to gk+1(t), but is
not closed unless the system involves infinitely many k’s. The evolution of lower-order non-
linearity involves higher-order nonlinearity, similar to the common phenomenon in Carleman
linearization [6, 19] and moment expansion methods [2, 38]. Nevertheless, we can choose two
simple functions g0(φ) := φ0 and g−1 (φ) = φ−1 and their dynamics are closed:

d

dt

[
g0 (t)
g−1 (t)

]
=

[
0 0
1 0

] [
g0 (t)
g−1 (t)

]
, and

[
g0 (0)
g−1 (0)

]
=

[
1
φ−1

0

]
. (3)

The above linear ordinary differential equations are solved to derive the analytical solution
of g−1 (φ (t)) = t + φ−1

0 , which is then used to calculate φ (t). The choice of this invariant
set of functions is not unique. We can even choose a smaller set which contains only one
observable ge(φ) := exp(−1/φ), which satisfies a one-dimensional linear ordinary equation
ġe(t) = −ge(t).
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The above examples illuminate two key features of the Koopman theory. First, the dy-
namics of observables are always linearly dependent on other observables. Secondly, to derive
closed-form solution in the Koopman theory is equivalent to identifying a set of observables
whose dynamics are invariant in a subspace which is linearly spanned by the set of the ob-
servables. In general, it is challenging to identify the finite set of observables that closes the
dynamics, and one has to resort to approximation methods to close the system. In the next
section, we illustrate how the Mori–Zwanzig formalism leverage the projection operators to
close the dynamics.

3 The Mori–Zwanzig Formalism

Here, we provide a review to the Mori–Zwanzig formalism. For completeness, we provide two
comprehensive derivations of the major result of the Mori–Zwanzig formalism, the General-
ized Langevin Equation (GLE). We begin with the operator algebraic derivation [8, 3, 10]
in Sec. 3.1. To make the connection to the Koopman representation of the dynamics, we
provide an alternative derivation of the GLE based on the the Koopman eigenfunctions in
Sec. 3.2. Although the first derivation is terse and elegant, it is not easy to build intuition to
understand the action of operators in the GLE. The second derivation has two advantages:
(1) it provides a more transparent representation of the Mori–Zwanzig operators and (3) its
terminology naturally bridges to approximate Koopman analysis such as EDMD [47]. In
fact, the second approach’s geometric representation in the functional space is identical to
Mori’s original construct [29], and the derivation is very close to the variation of constant
method presented in Zwanzig’s own derivation [52]. We will thus adopt the terminology of
the second derivation throughout the rest of the paper. After the GLE is set up, we provide
a geometric interpretation of the GLE in Sec. 3.3 and a detailed discussion on the projection
operator in Sec. 3.4. In Sec. 3.5 we discuss the consequence of the GLE on the evolutionary
equations of the covariance matrices and the projected image. Sec. 3.6 is dedicated to the
emergence of the self-consistent generalized fluctuation dissipation relationship. We conclude
the review to the Mori–Zwanzig by remarking its applicability to discrete-time dynamics in
Sec. 3.7.

3.1 Operator algebraic derivation of the Generalized Langevin Equation

We begin with the evolutionary equation (1), where the flow field R : RN → RN is assumed
to be locally Lipschitz continuous such that a unique Φ(t) exists ∀t ≥ 0. More generally, the
state space can be any compact Riemannian manifold endowed with the Borel σ-algebra and
a measure; for brevity, we will consider the state space as RN below. The solution Φ(t; Φ0)
nonlinearly maps the initial condition Φ0 to the phase-space configuration at physical time
t. Next, one defines the Liouville operator L :=

∑N
i=1Ri (x) ∂xi , with a dummy variable

x ∈ RN , and considers the following partial differential equation (PDE)

∂ψ(t,x)

∂t
= Lψ(t,x), (4a)

ψ(0,x) = g (x) , (4b)
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where g : RN → R is real-valued function of the state of the system, x ∈ RN . One can
show that, the solution to the above first-order PDE is u(t,x) ≡ g (Φ (t; x)) by the method
of characteristics. Note that x ∈ RN can be any initial state. Thus, solving the above
linear PDE fully solves the function g evaluated at the trajectory of the nonlinear system
given any initial condition Φ0: g (Φ (t; Φ0)) = ψ(t,Φ0). We adopt the slightly abused
notation in published literature [8, 3, 10] and denote the solution ψ (t,x) with the initial
condition ψ(0,x) = g(x) by g(t,x). A special choice of g is g(x) := xi, that g extracts
the ith component of the multivariate vector. In this case ψ(Φ0, t) is the solution of the ith

component, ψ(t,Φ0) ≡ φi (t; Φ0). The semigroup notation tersely represents the solution of
the above PDE (4) as ψ(t,x) = etLg(x), with an evolutionary equation

∂

∂t

[
etLg

]
(x) =

(
LetLg

)
(x) =

(
etLLg

)
(x). (5)

The above equation applies to any x ∈ R so “(x)” is often neglected in calculations.
Conventionally, the goal of Mori–Zwanzig procedure is to construct the evolutionary

equations for a set of components φ̂ := {φi}Mi=1, M < N , referred to as the resolved compo-
nents. These are the components which we can measure as the dynamics move forward in
time. Because the state space RN can be fully characterized by N coordinates φi, i = 1 . . . N ,
knowing M < N resolved observables could not fully specify the system’s state for construct-
ing a closed dynamical system. Consequently, one would need to postulate another N −M
under-resolved components, often denoted by φ̃. Mori–Zwanzig procedure proceeds with a
postulated joint distribution dµ ≡ ρ(x) dNx, where ρ is the probability density and dNx
is the Borel measure in RN , for asserting the initial distribution of the under-resolved φ̃
conditioned on a given set φ̂. The choice of dµ is model-specific but often the equilibrium
(or non-equilibrium stationary) distribution of the system. Despite the conventional choice
of using the components of the state (i.e., g(x) = xi) as the resolved and under-resolved
observables, g can be any function of the state (for example, g can be the center of mass
of a molecule whose full configurations are specified by the position and momentum of all
its atoms.) A technical condition on g is that it has to be L2-integrable with respect to the
measure dµ for constructing an inner product of a Hilbert space in which Mori–Zwanzig
formalism operates.

Mori–Zwanzig procedure proceeds with a specified projection operator P , which maps
a function of the full-space configuration, g : RN → R, to a function of only the resolved
observables Pg : RM → R, assumed to be L2-integrable with respect to dµ. The complement
of the projection operator is defined as Q := I − P . Applying the Dyson identity [9]

et(A+B) = etB +

∫ t

0

e(t−s)(A+B)AesB ds (6)

to operators A := PL and B := QL, one obtains

etL = etQL +

∫ t

0

e(t−s)LPLesQL ds. (7)

The operator is applied to Eq. 5, resulting in the following expression for any g with the fact
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that P +Q = I:

d

dt

[
etLg

]
=
[
etLLg

]
=
[
etL (P +Q)Lg

]
(8)

=
[
etLPLg

]
+
[
etQLQLg

]
+

∫ t

0

e(t−s)L [PLesQLQLg] ds

Specifically for g (x) = xi, i = 1 . . .M , one define the Markov transitionMi(x̂) := [PRi] (Φ (t,x)),
the orthogonal dynamics Fi(t,x) :=

[
etQLQLg

]
(x) and the memory function Ki(t, x̂) :=

− [PLFi] (t,x) to obtain the the generalized Langevin equation (GLE) describing the evolu-
tion of resolved components given an initial condition Φ0:

d

dt
φ̂i(t,Φ0) = Mi

(
Φ̂ (t,Φ0)

)
−
∫ t

0

Ki

(
Φ̂ (t,Φ0) , t− s

)
ds+ Fi(t,Φ0). (9)

Note that we follow the original sign convention that Mori [29] and Zwanzig [51] adopted:
the memory term is with a negative sign, contrast to later publications [8, 3, 10] in which
the memory term was defined with a positive sign.

The difference between Mori and Zwanzig is their choice of the projection operator. With
Mori’s construction [29], one relies on an inner product defined as

〈f, g〉 =

∫
RN

f (x) g (x) ρ (x) dNx, f, g ∈ L2 (µ) (10)

to define a projection operator given a set of resolved observables φ̂ = {φi}Mi=1:

[Pf ]
(
φ̂
)

:=
M∑
i,j=1

〈f, φi〉
[
C−1

0

]
i,j
φj. (11)

where C−1(0) is the inverse of an M ×M matrix C0 whose (i, j) entry is 〈φi, φj〉. A more
geometric interpretation of Mori’s projector will be presented in Sec. 3.4. Note that Pf
is a linear function of the resolved observables, φj, j = 1 . . .M , and thus Mori’s projector
is often referred to as a linear projection. In contrast, with the same set of observables,
Zwanzig [51] does not rely on the inner product but relies on the direct marginalization of
the under-resolved obeservables:

[Pf ] (x̂) :=

∫
RN−M f (x̂, x̃) ρ (x̂, x̃) dx̃∫

RN−M ρ (x̂, x̃) dx̃
. (12)

Note that the resulting function Pf is generally nonlinear in the resolved observables, and
thus, Zwanzig’s projection is often referred to as the “nonlinear projection”. Also termed as
the nonlinear projection [3] and infinite-rank projection [10], Zwanzig’s projection opeator
can lead to a nonlinear Markov transition and nonlinear memory kernel in the Generalized
Langevin Equation [8, 3, 13].

After applying Mori’s projection operator to M , F , and K, one obtains a linear GLE
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[52]:

d

dt
φ̂i(t,Φ0) =

M∑
j=1

[M]i,j φ̂j (t,Φ0)−
∫ t

0

[K(t− s)]i,j φ̂j (t,Φ0) ds+ Fi(t,Φ0). (13)

where M is an M × M constant matrix, as well as K(t), t ≥ 0. We will illuminate the
physical meaning of this linear GLE in Sec. 3.3. In this manuscript, we will focus on Mori’s
projection and its connection to the approximate Koopman learning methods.

3.2 Generalized Langevin Equation in Koopman representation

It is not easy to build intuitions from the terse derivation presented in the previous section
3.1. R. Zwanzig even commented “The derivation to be given here is based on abstract
operator manipulations that were designed to get to the desired result as quickly as possible”
and provided a more lengthy motivating derivation based on variation of constant method
prior to the formal operator algebraic derivation. In this section, we aim to provide a similar
derivation using Koopman representation of the dynamics for better understanding the GLE.
By introducing a Koopman representation of the dynamics, we also aim to make a natural
and formal connection between Mori–Zwanzig and Koopman formulations.

As shown in the motivating example in Sec. 2, in Koopman representation of the dynam-
ics, one aims to describe the evolution of the observables, which are functions of the system’s
state Φ. In the space of all L2-integrable observables, the evolution is always linear in other
observables, but the dimensionality of the operating space can be infinite. Formally, given
a measure dµ, we denote the space of all L2-integrable real-valued (can be generalized to
complex-valued) observables of the state space by F = L2

(
RN , µ

)
. Together with a defined

inner product, such as (10), these functions form a Hilbert functional space H, in which the
functions evolve forward in time. The continuous-time Koopman operator Kt : F → F is
defined by

(Ktg) (Φ0) = g ◦Φ (t; Φ0) ≡ g (Φ (t; Φ0)) , ∀g ∈ F , ∀Φ0 ∈ RN . (14)

In other words, Koopman operator Kt transforms the function g to a function Ktg of any
initial condition Φ0. At any time t ≥ 0, Ktg is equivalent to the observable g evaluated at the
solution of the dynamics Φ (t; Φ0), which is also a function of Φ0. The above equation shows
the dual representations of the dynamics: The left hand side of the equation is the Koopman
picture, analogous to the Heisenberg picture in quantum mechanics, that the observable is
evolving (transformed by Kt) forward in time and is always evaluated at the fixed state
Φ0, while the right hand side of the equation is the Perron–Frobenius picture, analogous to
the Schrödinger’s picture in quantum mechanics, that the state is evolving forward in time
(Φ (t; Φ0)) and evaluated by a fixed observable g.

The linear Koopman operator Kt can be characterized by its eigenvalues and eigenfunc-
tion. A function φ : RN → R (or C) is defined as a Koopman eigenfunction if it satisfies
(Ktφ) = eλtφ. Here, we drop the “as a function of initial-condition” annotation “(Φ0)” again.
The space of the eigenfunctions are infinite-dimensional: given two pairs (λ1, φ1) and (λ2, φ2),
one can generate infinitely many eigenfunctions (mλ1 +nλ2, φ

m
1 φ

n
2 ), m,n ∈ N. The infinites-
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imal generator of Kt, limt↓0 (Kt − I) /t is the Liouville operator L :=
∑N

i=1Ri (x) ∂xi , which
is the Lie derivative with respect to the flow field R : RN → RN [26]. Note that Lφ = λφ.
As such, the Koopman eigenfunctions are the eigenfunctions of the Liouville operator and
are special initial data following a coherent evolution ψ(t,x) = φ(x) exp (λt) by Eq. (4).

One aims to construct the evolution of a set of linearly independent observables, M :=
{gi}Mi=1. Given a time t ≥ 0, we would like to know how gi(t) := Ktgi, a function of the initial
condition Φ0 parametrized by time t, changes with respect to time t. We remark that such
a dynamical variable notation (“gi(t)”) was first introduced by Mori [29] and has been the
mainstream notation in the physics literature [52]. Using the modern Koopman notation,
g(t) is expressed as Ktgi, and with the algebraic notation in Sec. 3.1 as gi(t, ·). Note that
gi(0) = K0gi = gi. Although the Koopman operator may contain a continuous spectrum
[18, 44, 27] for chaotic dynamical systems, in this derivation, we consider systems with only
point spectra for brevity. For these systems, the observables gi can be expressed as a linear
combination of the countably infinite eigenfunctions [35, 47]:

gi =
∞∑
j=1

vi,jφj, i = 1 . . .M. (15)

In contrast to the above equation which decompose a function into Koopman eigenfunctions,
Mori–Zwanzig formalism utilizes the inner product in the Hilbert space to decompose the
space into the subspace linearly spanned by the set of observables, Hg := Span(M), and an
orthogonal subspace Hḡ = {ḡ ∈ F : 〈ḡ, gi〉 = 0, gi ∈M}. One proceeds with constructing
a complete set of basis functions in H, with a natural choice of using M as the set of
basis functions in Hg. One can then use the Gram-Schimidt process to construct the basis
functions in the orthogonal space from the Koopman eigenfunctions, {φi}∞i=1. We denote
this infinite set of basis functions by M̄ := {ḡi}∞i=1. Similar to Eq. (15), we can decompose
ḡi’s in terms of the eigenfunctions: ḡi =

∑∞
j=1 v̄i,jφj, i ∈ N. By construction, 〈gi, ḡj〉 = 0,

i ∈ {1, . . . ,M}, j ∈ N. Note that we did not require orthogonality between the basis
functions in the same subspace, that is, 〈gi, gj〉 and 〈ḡi, ḡj〉 are not required to be 0 if i 6= j.
However, we assume linear independence between any of the pairs of the basis functions,
and the combined set M∪ M̄ forms a complete set of basis functions in H. Consequently,
one can express any Koopman eigenfunction φi in terms of these new basis functions

φi =
M∑
j=1

ωi,jgj +
∞∑
j=1

ω̄i,j ḡj. (16)

Applying the Koopman operator Kt to the above equation, we obtain the relationship ∀t ≥ 0,
φi(t) =

∑M
j=1 ωi,jgj(t) +

∑∞
j=1 ω̄i,j ḡj(t). Now, we can express the evolution of the basis
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functions gi, i = 1 . . .M :

d

dt
gi(t) = lim

s↓0

Ksgi(t)− gi(t)
s

=
∞∑
j=1

vi,jλje
λjtφj =

∞∑
i=0

vi,jλjφj(t) (17)

=
M∑
`=1

(
∞∑
j=1

vi,jλjωj,`

)
g`(t) +

∞∑
`=1

(
∞∑
j=1

vi,jλjω̄j,`

)
ḡ`(t),

and similarly for ḡi, i ∈ N:

d

dt
ḡi(t) =

M∑
`=1

(
∞∑
j=1

v̄i,jλjωj,`

)
g`(t) +

∞∑
`=1

(
∞∑
j=1

v̄i,jλjω̄j,`

)
ḡ`(t). (18)

We have established that at any time, the evolution of gi(t) and ḡi(t) are linear functions
of themselves, which is the major consequence of the Koopman representation. We now
adopt a terse vector notation gM (t) = [g1(t), . . . gM(t)]T and gM̄ (t) = [ḡ1(t), ḡ2(t) . . .]T and
concisely express the full dynamics as:

d

dt

[
gM(t)
gM̄(t)

]
= L ·

[
gM(t)
gM̄(t)

]
:=

[
LMM LMM̄
LM̄M LM̄M̄

]
·
[
gM(t)
gM̄(t)

]
. (19)

Here, the matrices Li,j, i, j ∈
{
M,M̄

}
, quantifies the effect from set j to set i in the linear

evolution. While these matrices can be found explicitly from Eqs. (17) and (18) should
one know the Koopman eigenfunctions, we derive them just for the purpose of establishing
the linear evolutionary equation (19). We emphasize that although gi(0) = gi ∈ Hg and
ḡi(0) = ḡi ∈ Hḡ, for t > 0, gi(t) and ḡi(t) are not necessarily in Hg and Hḡ respectively,
if the interactions between the spaces, LMM̄ and LM̄M, are not zero. In other words, in
general, both gi(t) and ḡi(t) have nonzero components of the basis functions in Hg and Hḡ.
Nevertheless, the above linear equation (19) always holds.

To obtain a closed-form evolution for our observables of interest in M, we first solve for
the observables in set M̄ implicitly. Treating LM̄MgM as an inhomogeneous driving term
of the linear system, we solve the linear evolutionary equation for gM̄:

gM̄(t) =

∫ t

0

e(t−s)LM̄M̄ · LM̄M · gM(s) ds+ etLM̄M̄ · gM̄(0). (20)

The implicit solution of gM̄ is in turn used to express closed evolutionary equations for the
observables in the set M.

d

dt
gM(t) = LMMgM (t) + LMM̄

∫ t

0

e(t−s)LM̄M̄ · LM̄M · gM(s) ds (21)

+ LMM̄e
tLM̄M̄ · gM̄(0).

Equation (21) is almost closed in our chosen set of variables except for the last term. The
first term is the instantaneous configuration of the set of observables applied to the physical-
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space configuration at time t and the second is a delayed impact of the set of observables
applied to the physical-space variables at an earlier time s < t. Both these terms depend
only on the resolved observables gM at time t. However, the third term is induced by the
initial setting of the under-resolved observables, gM̄(0), which cannot be generally resolved.
Equation (21) is exact if one knows both gM̄(0) and gM̄(0), in which case, the system is fully
resolved. Unfortunately, we do not have direct access to gM̄(0) as they are under-resolved
observables, and one has to postulate their configurations in practice.

This simple analysis illustrates the essential intuition of the Mori–Zwanzig formalism.
Because we only resolve a set of observables gM(t) of the full dynamics, the impact from other
observables gM̄(t) in Eq. (19) cannot be directly accessed. Instead, we indirectly estimate the
effect LMM̄ ·g (t) from Eq. (20), which contains two parts: the impact of resolved observables
gM(s) at an earlier time s, and the initial conditions of the orthogonal observables gM̄. The
former characterizes the “echo” of the set of our interested observables to itself: at an earlier
time s, these observables made an impact to the under-resolved observables gM̄ (via LM̄M),
and such an impact propagates among the under-resolved observables gM̄ for t − s time
via e(t−s)LM̄M̄ before coming back to affect the resolved observables at time t via LMM̄.
The second part is a generic impact from the initial configuration of the orthogonal set of
observables, gM̄(0), which has propagated in the under-resolved observables until the current
time t and affects the resolved observables. In the end, Eq. (21) tells us that the accurate
evolutionary equations of gM(t) always depend on (1) their instantaneous configuration,
(2) their past history, and (3) an external “driving force” which depends on the initial
configurations in the orthogonal space.

We make a remark that the second and the third term are zero if the dynamics is closed
in M, that is, LMM̄ = 0 which corresponds to the scenario when we have a complete set of
observables to describe the full dynamics. For example, this would be the ge := exp(−1/x)
for the dynamics ẋ = −x2. The memory and the external driven force exist only because we
have an incomplete observable set in H.

We now drop the subscriptM in gM, as we only care about the dynamics of the resolved
observables. By defining an M ×M matrix M := LMM, an M ×M matrix parametrized
by K (s) := −LMM̄e

sLM̄M̄ · LM̄M parametrized by s ∈ R+, and an M × 1 matrix F(t) :=
LMM̄e

tLM̄M̄ · gM̄(0), we arrive at the GLE

d

dt
g (t) = M · g (t)−

∫ t

0

K (t− s) · g (s) ds+ F (t) . (22)

In the rest of the paper, we refer to M as the Markov transition matrix, K(s) as the memory
kernel, and F(t) as the orthogonal dynamics. Although F(t) is fully deterministic in Mori–
Zwanzig formalism for deterministic systems, it is often referred to as the noise because
its resemblance of a Langevin noise in a Langevin equation. Note that the operators M
quantify the interactions within the group of the relevant observables {gi}Mi=1 (that is, LMM).
In contrast, the memory kernel combines the effects of the rest of the interactions (LMM̄,
LM̄M, and LM̄M̄)

Finally, we remark that despite their different terminologies, Eq. (22) and the operator
algebraic formulation Eq. (13) are equivalent. When gi(x) = xi, given an initial condition
Φ0, gi ◦Φ0 in Eq. (22) is φi (t,Φ0) in Eq. (13).

11



Figure 1: Schematic diagram of the Mori–Zwanzig formalism. The Hilbert space H con-
tains all possible observables which are functions of the initial conditions of the physical-
space variables Φ0. The subspace Hg is linearly spanned by the set of selected observables

Span({gi}Mi=1). We define the functions gi(t) parametrized by time t to be gi(t)◦Φ0 := gi◦Φt,
noting that Φ(t) are functions of the initial condition Φ0. At time t = 0, the vector
g (0) = [g1(0), . . . , gM(0)]T is exactly the vector of the basis {gi}Mi=1 and thus, g (0) is in
Hg. As the nonlinear dynamics evolves, g (t) does not necessarily stays invariantly in Hg;

in other words, g (t) is not necessarily a linear combination of {gi}Mi=1. Mori’s projection op-
erator P projects g(t) into Hg. The image is termed as g‖(t), which is a linear combination

of {gi}Mi=1 and g‖(t) satisfies Eq. (23).

3.3 Geometric interpretation of the GLE

The GLE describe the exact evolution of g(t) in H. Figure 1 illustrates a schematic diagram
of the dynamics of g(t) in the space H. Because the GLE (22) is linear, the observables
g(t) can be decomposed into two components: g(t) = g‖ (t) + g⊥ (t). We define the parallel
component g‖ (t) as the general solution of the linear system and satisfies

ġ‖ (t) = M · g‖ (t)−
∫ t

0

K (t− s) · g‖ (s) ds, (23a)

g‖ (0) = g (0) . (23b)

Because (23) is linear, it is clear that g‖(t) is just linear combination of the initial observables,

i.e., we can always express g‖(t) =
∑M

i=1 αi(t)gi(0) with some time-dependent coefficients
αi(t). Then, for any t ≥ 0,

(
g‖ (t)

)
i
∈ Hg, i = 1 . . .M . The orthogonal component g⊥ (t) is

the particular solution of the linear system with the driven force F(t) and satisfies

ġ⊥ (t) = M · g⊥ (t)−
∫ t

0

K (t− s) · g⊥ (s) ds+ F(t), (24a)

g⊥ (0) = 0. (24b)

Recall that the orthogonal dynamics (F(t))i ∈ Hḡ, i = 1 . . .M . Then, again due to the
linearity of (24), the orthogonal component (g⊥(t))i ∈ Hḡ, for any time t ≥ 0.

The geometric representation in Fig. 1 illustrates the closure problem in the Hilbert
space: to evolve the exact g(t), one needs to provide the orthogonal dynamics F(t). Solving
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F(t) is as difficult as solving the full dynamics in the physical-space picture—we would need
all the information of the orthogonal components, and thus the Mori–Zwanzig formalism
has little to no advantage over the physical-space picture if the task is to solve for the
exact g(t). In fact, there is no free lunch by changing the Perron–Frobenius picture to the
dual Koopman picture. To move forward, traditional analysis aim to select a set of slow-
evolving observables—often referred to as the coarse-grained variables—and a noise model to
replace the orthogonal dynamics F(t). The rational of this approach is that, if the selected
observables are complete to describe the slow dynamics, the orthogonal dynamics shall live
at a much faster timescale and a proper noise model should suffice to model the dynamics
of F(t). When a set of observables is given and when their dynamics when the timescales of
the resolved and under-resolved observables are well-separated, Gottwald et al. [11] provides
a systematic slow-fast asymptotic analysis to homogenize effect of the orthogonal noise.
The challenge is that it is not a priori known what these observables are and what the
corresponding noise model is, and identifying the observables and noise model is often from
educated guesses supported by domain-specific knowledge.

3.4 Mori’s linear projection operator

Both the Koopman [18, 17, 27] and Mori–Zwanzig formulations operate in a Hilbert space,
whose inner product is commonly defined as the inner product of two functions as the
expected value of the product of the two with respect to a chosen measure dµ, Eq. (10).
Despite of the freedom to choose this measure, dµ is conventionally set as a natural measure
that is specific to the dynamics. For example, it is natural to adopt the canonical equilibrium
distribution (Gibbs’ measure) for equilibrium Hamiltonian systems [29]. For non-equilibrium
systems, we can adopt the stationary measure as dµ [14], as shown below. For stochastic
and transient systems, it is natural to choose the induced time-dependent distribution [48].

With a defined inner product, Mori used an operator P that projects any function (of

the initial condition Φ0) f ∈ H, onto the subspace Hg := span (M) = span
(
{gi}Mi=1

)
. As

such, the projected image can be expressed by Pf :=
∑M

i=1 αigi with coefficients αi. Now, we
decompose the function f by f = Pf+f⊥ where f⊥ ∈ Hḡ. Because 〈f⊥, gj〉 = 0, j = 1 . . .M ,
the inner product 〈f, gj〉 is:

〈f, gj〉 = 〈Pf, gj〉 =
M∑
i=1

αi 〈gi, gj〉 . (25)

In vector notation, g := [g1 . . . gM ]T and α := [α1 . . . αM ], the above equation can be ex-
pressed concisely by

〈
f,gT

〉
= α ·

〈
g,gT

〉
. Because the basis functions gi’s are linearly

independent,
〈
g,gT

〉
is a full-rank and invertible matrix. Then, α =

〈
f,gT

〉
·
〈
g,gT

〉−1
, and

we obtain the final expression for the projection operator

Pf =
〈
f,gT

〉
·
〈
g,gT

〉−1 · g. (26)

Note that if and only if the pre-selected set of functions {gi}Mi=1 are orthonormal with respect

to the defined inner product,
〈
g,gT

〉−1
is an identity matrix and the expression can be
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simplified by Pf =
〈
f,gT

〉
· g. Finally, we emphasize that the projection operator crucially

depends on the choice of the defined inner product. In the rest of this article, we consider an
inner product defined by averaging the observables over a long trajectory of the dynamical
system:

〈f, g〉 := lim
T→∞

1

T

∫ T

0

(f ◦Φ(s)) (g ◦Φ(s)) ds, (27)

where Φ (t) is the solution of Eq. (1) from any initial condition, assuming the choice of the
initial condition does not change the long-time statistics.

3.5 The evolution of the projected image and time correlation matrix

The GLE (22) is not a closed dynamical system for the exact g(t) because it contains the
generalized Langevin noise, F, which is not known and hard to obtain. However, because
g(t) = g‖ + g⊥, the projected image Pg(t) = Pg‖(t) + Pg⊥(t) = g‖ follows the closed
evolutionary Eq. (23) and with an initial condition Pg(0) = g(0). The L2-norm of the
residual error of the projected image ‖g − Pg‖2

2 := 〈g − Pg,g − Pg〉 is minimal among all
the schemes that decompose g(t) into a parallel component and a non-parallel component.
Thus, the projected image Pg(t) is the best approximation to the evolution of g(t) in the
parallel space, and in this sense one can conceive it as the optimal predictor of the exact
evolution g(t) into the future (t > 0). Somewhat interestingly, this shows that the optimal
prediction into the future defined as above only depends on the choice of the inner product
(and consequently the projection operator) and does not depend on the orthogonal dynamics
F(t).

A related way to close the dynamics is to apply
〈
·,gT

〉
to the GLE (22), resulting in the

evolutionary equation for the two-time correlation function C(t) :=
〈
g(t),gT

〉
:

d

dt
C(t) = M ·C(t)−

∫ t

0

K (t− s) C(s) ds, C(0) =
〈
g,gT

〉
. (28)

Here, C(t) is the expected two-time correlation of the observables with respect to an initial
condition Φ0 distributed according to a long-time statistics dµ (cf. Eq. (27)). Multiplying
C−1(0) · g(0) to Eq. (28) from the right, we obtain

d

dt
C(t) ·C−1(0) · g(0) = M ·C(t) ·C−1(0) · g(0)−

∫ t

0

K (t− s) C(s) ·C−1(0) · g(0) ds. (29)

Comparing Eq. (29) to the evolutionary Eq. (23), we immediately identify the solution of
the projected image g‖(t):

g‖(t) = C(t) ·C−1(0) · g(0). (30)

Thus, the temporal correlation matrix C(t) encodes the information for optimally predicting
the dynamics into the future. In addition, it is straightforward to solve the orthogonal
component g⊥(t) as a superposition of the orthogonal driven force F(t):

g⊥(t) =

∫ t

0

C(t− s) ·C−1(0) · F(s) ds. (31)
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We illustrate the analysis in Appendix A.
As will be seen in Sec. 5, Eq. (28) plays a pivotal role for data-driven learning of the

Markov transition M and memory kernel K(s), s ≥ 0. We will also see that the solution
of the optimal prediction Eq. (30) establishes the equivalence between the Mori–Zwanzig
formalism and the approximate Koopman learning algorithm in Sec. 4.

3.6 Generalized Fluctuation-Dissipation Relationship

With a suitable choice of the inner product, there exists a subtle relationship—often referred
to as the Generalized Fluctuation-Dissipation (GFD) relationship—between the memory
kernel K and the orthogonal dynamics F:

K (s) =
〈
F(s),FT (0)

〉
C−1(0). (32)

Using the notations defined in Sec. 3.2, we illustrate how this subtle relationship emerges.
Explicitly, from Eq. (21), we identify the orthogonal dynamics

F(t) = LMM̄e
tLM̄M̄gM̄, (33)

because gM̄(0) ≡ gM̄. Next, with the choice of the temporal averaging inner product
Eq. (27), we can obtain:

〈
F(t),FT (0)

〉
= lim

T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄gM̄ ◦Φ(s) · [LMM̄gM̄ ◦Φ(s)]T ds. (34)

Induced by the dynamics Eq. (1), gM̄(s) ≡ gM̄ ◦ Φ(s) and gM(s) ≡ gM ◦ Φ(s) satisfy
Eq. (19), so we use the identity

LMM̄gM̄(s) =
d

ds
gM(s)− LMMgM(s) (35)

to replace LMM̄gM̄(s) in (34):

〈
F(t),FT (0)

〉
= lim

T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄gM̄(s) ·

[
d

ds
gM(s)− LMMgM(s)

]T
ds

= lim
T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄gM̄(s) · d

ds
gTM(s) ds

− LMM̄e
tLM̄M̄

〈
gM̄,g

T
M
〉

LT
MM

= lim
T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄gM̄(s) · d

ds
gTM(s) ds. (36)

In the last line, we have used the fact that gM and gM̄ are orthogonal with respect to the
inner product by construction. Next, we perform an integration by part, assume that the
boundary terms are bounded and thus converge to 0 after divided by T in the limit T →∞,
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and use the full dynamics Eq. (19) again to obtain

〈
F(t),FT (0)

〉
= − lim

T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄

d

ds
gM̄(s) · gTM(s) ds

= − lim
T→∞

1

T

∫ T

0

LMM̄e
tLM̄M̄ [LM̄MgM(s) + LM̄M̄gM̄(s)] · gTM(s) ds

= − LMM̄e
tLM̄M̄

[
LM̄M

〈
gM,g

T
M
〉

+ LM̄M̄
〈
gM̄,g

T
M
〉]

= − LMM̄e
tLM̄M̄LM̄M

〈
gM,g

T
M
〉
. (37)

Again, we used the orthogonality 〈gM,gM̄〉 = 0. Finally, the memory kernel K(t) :=
−LMM̄e

tLM̄M̄LM̄M can be expressed as the two-time correlation statistics of the orthogonal
dynamics F(t) and the autocorrelation of the observables

〈
gM,g

T
M
〉
:

K(t) =
〈
F(t),FT (0)

〉
·
〈
gM,g

T
M
〉−1

. (38)

The above relationship between the two-time statistics of the orthogonal dynamics F(t)
and the memory kernel K(t) is referred to as the Generalized Fluctuation-Dissipation re-
lationship. In the operator algebraic derivation (cf. 3.1), GFD holds when the Liouville
operator L = L (Φ) is anti self-adjoint with respect to the chosen inner product, i.e., for any
test functions f and h of the physical-space variable Φ,

〈f,Lh〉 = −〈Lf, h〉 . (39)

For Hamiltonian systems, the anti self-adjointness is guaranteed directly from the volume-
preserving property of the dynamics [18]. For non-equilibrium systems, using long time-
averaging as the inner product also has the anti self-adjoint property:

〈f,Lh〉 =

〈
f,

d

dt
h

〉
= lim

T→∞

1

T

∫ T

0

f ◦Φ(t)
d

dt
[g ◦Φ(t)] dt

= − lim
T→∞

1

T

∫ T

0

d

dt
[f ◦Φ(t)] g ◦Φ(t) dt = −

〈
d

dt
f, h

〉
= −〈Lf, h〉 . (40)

All we need are the minor conditions that the integration by part is valid, and negligible
boundary terms which can be guaranteed for bounded systems.

Furthermore, if the dynamical system is ergodic, the temporal average (27) converges to
(10), in which dµ = ρstat (Φ0) dNx where ρstat is the stationary density function and satisfies
etL
∗
ρstat = ρstat; here, the adjoint L∗ defines the Perron-Frobenius operator. In the literature,

it is generally presented that the anti self-adjointness is valid for Hamiltonian systems in a
heat bath, e.g., where there is an induced Gibbs measure [3]. Our analysis shows that GFD
is generally valid, even for non-equilibrium (not necessarily Hamiltonian) systems, so long as
we choose time-averaging as the inner product and the observables along a long trajectory
is bounded.

Finally, GFD can be considered as a self-consistent condition of the memory kernel K
and the orthogonal dynamics F. A real stochastic Langevin system with a white noise
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(no time correlation) would result in a K(t) = K0 δ (t) where K0 is a constant matrix and
δ is the Dirac δ-distribution. The Mori–Zwanzig formalism shows that when a dynamical
system is not fully resolved, in general, there exists a non-zero memory kernel K and thus the
self-consistent orthogonal dynamics F must be a color noise. Below in Sec. 5 we provide data-
driven algorithms to extract the memory kernel and the noise directly from the measured
observables along a long trajectory. The GFD can serve as a very stringent self-consistency
check for the algorithms.

3.7 A discrete-time Mori–Zwanzig formalism

Even though we are interested in a continuous-time model, it is common that the observations—
either empirical measurements of the physical system or the output of computer simulations—
are discrete in time. It is also desirable to store the trajectories of a large set of observables
sparsely sampled in time to mitigate to the storage limitation. In this case, the continuous-
time Mori–Zwanzig formalism is not adequate. In this section, we provide the result of
a discretized Mori–Zwanzig formulation that is more suitable for discrete-time data. For
brevity, we only present the result in this section and leave the tedious yet straightforward
derivation in Appendix B.

We consider to observe the continuous-time system at discretization of times, t = k∆,
k ∈ Z≥0 and ∆ is not necessarily small. After integrating the GLE Eq. (22) and the
evolutionary equations for the correlation matrix C(t) (Eq. (28)) and the optimal prediction
Pg (t) (Eq. (30)) at the discrete times, the snapshots of the observables of interests satisfy
very similar mathematical structures of the continuous-time formulations. Specifically, in
Appendix B.1, we establish the discrete-time GLE (cf. Eq. (22))

g ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ · g((k − `) ∆) + Wk, (41)

where Ω
(`)
∆ ’s are M × M , ∆-dependent matrices which can be defined in terms of the

continuous-time Markov transition matrix M and memory kernel K, and Wk is the discrete-
time orthogonal dynamics which can be decomposed into linear functions of the continuous-
time orthogonal dynamics F. Similarly, the snapshots of the correlation matrix C satisfy
(cf. Eq. (28))

C ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ ·C((k − `) ∆), (42)

and the snapshots of the projected image Pg(t) satisfy (cf. Eq. (30))

Pg ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ · Pg((k − `) ∆). (43)

It is tempting to associate the operator Ω
(0)
∆ to the continuous-time Markov matrix Ω

(0)
∆ ≈

I+M∆, where I is theM×M identity matrix, and to associate the operator Ω
(`)
∆ , ` > 1, to the

continuous-time memory kernel by Ω
(`)
∆ ≈ ∆2K (`∆). We remark that these representations
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involving the infinitesimal ∆ � 1 are mathematically valid, but in general for finite ∆, the
expressions of the operators Ω

(`)
∆ in terms of the continuous-time objects (M and K(s)) are

not simple; see Lemma 1 in Appendix B.1. Nevertheless, the above Eqs. (41), (42), and (43)
are always valid regardless of the choice of ∆. We also establish the GFD relationship in
Appendix B.4.

For a generic discrete-time dynamical system, it is also possible to directly derive its
Mori–Zwanzig formula (Appendix B.2 and reference [24]). We remark that while the math-
ematical expression of the results of this approach look identical to Eqs. (41)-(43), there
exists a subtlety between discretizing the correlation matrix C(t) of a continuous-time sys-
tem (Appendix B.1) and the generic discrete-time correlation matrix (Appendix B.2). We
discuss such a subtlety in Appendix B.3. Furthermore, in Appendix B.4.2, we show that the
GFD relationship is valid when the discrete-time operator Ld, which forward propagates the
observables (i.e., g ((k + 1) ∆) = Ldg (k∆)), is anti-self-adjoint with respect to the invariant
measure of the discrete-time dynamics (cf. Sec. 3.6).

4 Relation to the approximate Koopman learning methods

The discretized formulations presented in Sec. 3.7 provide the mathematical structure for
making comparison to the approximate Koopman learning framework [36, 37, 47]. In this
section, we establish that the Mori–Zwanzig formalism with Mori’s projection operator is
not only compatible with, but also a generalization of the Koopman learning framework.

We begin with a short summary of the approximate Kooman learning methods, specif-
ically, the extended dynamic mode decomposition (EDMD, [47]). EDMD takes a long tra-
jectory of a set of M observables, {gi}Mi=1, of a nonlinear dynamical system as an input.
The snapshots of these descriptors on a uniformly separated temporal grid were recorded as
gi (jδ), j = 0 . . . N − 1. Generally, δ is conceived as a small time separation. The goal of
the EDMD is to identify the approximate Kooman operator KKoop

δ —note the unfortunate
convention of K for memory kernel in the context of Mori–Zwanzig—which linearly maps
the previous snapshots to the consecutive next ones with a minimal squared residual error.
Operationally, EDMD stacks up the snapshots into an array of “dependent variables” Y and
“independent variables” X:

Y =


g1 (1δ) . . . g1 ((N − 1) δ)
g2 (1δ) . . . g2 ((N − 1) δ)

...
. . .

...
gM (1δ) . . . gM ((N − 1) δ)

 , X =


g1 (0δ) . . . g1 ((N − 2) δ)
g2 (0δ) . . . g2 ((N − 2) δ)

...
. . .

...
gM (0δ) . . . gM ((N − 2) δ)

 , (44)

and the M×M matrix K̂Koop
δ is the linear operator which minimizes the mean squared error

ε2 :=
1

N − 1

N−1∑
j=1

M∑
i=1

(
y −KKoop

δ · x
)2

i,j
. (45)

When the observables form a complete set of basis functions, the dynamics is closed in
the linear spanned space Hg, and ε2 can be minimized to zero. Nevertheless, for general
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problems, it is challenging to identify a complete set of basis functions. Consequently, there
exist non-zero residuals. The learning problem is fundamentally a linear regression problem,
which is concave. Formally, the unique minimizer K̂Koop

δ conditioned on a pair of Y and X
is

KKoop
δ =

(
Y ·XT

)
·
(
X ·XT

)−1
, (46)

when the set of the observables are linearly independent. When the set of the observables
are not linearly independent, the problem is under-determined and there exist a family of

minimizers [47]; in such a case, the inverse matrix
(
X ·XT

)−1
can be operationally carried

out by the Moore–Penrose pseudoinverse [47] to identify one of the minimizers. In the
analysis below, we assume that the set of the basis functions is carefully chosen so that they
are linearly independent.

Equation (46) exhibits the exact mathematical expressions of the projected image g‖(t)
in the continuous-time Mori–Zwanzig formalism (Eq. (30)). In the limit of infinitely long
snapshots separated by δ, the matrices Y ·XT and X ·XT are exactly C(δ) and C(0) where
the inner product is defined to be with respect to the distribution induced by the long
trajectories:

C(0) =
〈
g,gT

〉
= lim

T→∞

1

T

∫ T

0

g ◦Φ (s) · gT ◦Φ (s) ds ≈ X ·XT , (47a)

C(δ) =
〈
eδLg,gT

〉
= lim

T→∞

1

T

∫ T

0

g ◦Φ (s+ δ) · gT ◦Φ (s) ds ≈ Y ·XT . (47b)

Thus, both formulations predict the exact propagator forward δ-time C(δ) ·C−1(0).
It is intriguing that the Mori–Zwanzig formulation relies on the projection operator P

which requires the equipped inner product of the Hilbert space, but the approximate Koop-
man learning framework only relies on the mean L2-norm of the error which relies on a
less strict norm space. Nevertheless, operationally, we can use the geometric interpreta-
tion provided in Sec. 3.3 to illustrate the intuition of the two formulations. The Koopman
learning framework seeks a point in Hg that minimizes the L2-norm between the point and
g(δ), which is generally outside Hg (see Fig. 1). In contrast, the Mori–Zwanzig formalism
simply projects g(δ) onto Hg. These two formulations are formally identical because the
projected image Pg(δ) would be the unique point on Hg such that the L2-error of the pro-
jected image to g(δ), ‖g(δ)− Pg(δ)‖2

2 = 〈g(δ)− Pg(δ),g(δ)− Pg(δ)〉 is minimized. We
remark the subtle difference between the two frameworks. In the Koopman framework, or-
thogonality between the residual and the Hg is not established—there is no notion of an
inner product. In the Mori–Zwanzig formalism with the equipped inner product in H, the
unique operator C(kδ) · C−1(0), k ∈ N propagates g(0) to C(kδ) · C−1(0) · g(0) which is
always the projected image of g(kδ), and the residual g(kδ)− Pg(kδ) is always orthogonal
to Hg, with respect to the induced inner product. We remark that C(δ) · C−1(0) can also
be derived from Rayleigh—Ritz variational principle of the leading eigenvalues of either the
Perron–Frobenius of Koopman operators using related algorithms such as the time-lagged
independent component analysis and Algorithm for Multiple Unknown Signals Extraction,
commonly used and historically founded in the Perron–Frobenius picture by the molecular
dynamics community [43, 28, 34, 30, 31, 49, 16, 48].
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We have established the equivalence of the Mori–Zwanzig formalism and the approximate
Koopman learning framework. Mori–Zwanzig is more general than the existing Koopman
learning methods. First, Eq. (43) prescribes the optimal prediction Pg(∆) = Ω

(0)
∆ g(0) if

g(0) was sampled from the measure dµ which was used to define the inner product, and
the horizon ∆ does not have to be small. Our analysis in Appendix B.1 shows that it is
always possible to identify the unique (but ∆-dependent) operator Ω

(0)
∆ , regardless of how

large ∆ is. Interestingly, in our derivation provided in Appendix B.1, we can see that Ω
(0)
∆

depends on not only the Markov transition M but also the memory kernel K(s), s ∈ [0,∆).
This formally states that when the system is not fully resolved, the forward operator cannot
be simply approximated by etM. Instead, the linear operator Ω

(0)
∆ , which can be estimated

by our proposed algorithm in Sec. 5, has an implicit memory-kernel (K(s), s ∈ [0,∆))
dependence, and thus we cannot simply exponentiate it for predicting the system further
than ∆ into the future. Secondly, the discretized Generalized Langevin Equation (41) states
that the prediction shall be made with the past history, when it is available and when the
discretized memory kernel Ω

(`)
∆ , ` ≥ 1 is not zero. By taking into the account of the past

history, we will be simultaneously use the information in the parallel component g‖(j∆) and
the perpendicular component g⊥(j∆) to forward propagate the system and thus reduce the
prediction error. In contrast, in approximate Koopman learning, we only use the current
time to predict the next time step and neglect the orthogonal contribution which would be
estimated by the past trajectory in the context of Mori–Zwanzig formalism. The advantage
of of the Mori–Zwanzig’s history-dependent prediction will be numerically illustrated in
Sec. 6.2.

5 Learning the operators in the Mori–Zwanzig formalism from data

Conventionally, the aim of Mori–Zwanzig analysis is to select a set of coarse-grained variables
to construct a parallel space Hg in which the projected image Pg(t) captures the slow
modes of the dynamics, mostly described by the Markov transition matrix M. If the parallel
space fully capture the slow modes, the orthogonal dynamics would predominantly be the
fast modes of the dynamics. In such construction by time-scale separation, the orthogonal
dynamics F(t) are usually modeled by a generic stochastic process, and the self-consistent
memory kernel can be constructed to establish the Generalized Langevin Equation (22)
describing the slow modes of the dynamics [39, 12, 7, 22, 21, 23, 33, 45, 13].

The conventional approach is challenging because the selection of the observables re-
quires sophisticated understanding of how to separate the modes with different timescales in
a complex dynamical systems. Nevertheless, the GLE (22) is always mathematically correct,
and thus, if we have collected a large enough set of data of a dynamical system, it is possible
to numerically estimate Markov transition matrix M, memory kernel K, and the orthogo-
nal dynamics F directly from the collected data. Here, we provide two algorithms, one for
continuous-time models (Algorithm 1) and the other for discrete-time models (Algorithm 2)
for estimating the key quantities in the Mori–Zwanzig formalism directly from long trajec-
tories of the observables. We remark that the scope of this study is restricted to noiseless
observations of deterministic systems. For systems with some form of randomness, such as
noisy observation on a deterministic system or a generic stochastic system, the estimation of

20



stochastic Koopman operators [27, 47, 13, 49] requires additional mathematical construction
(a probability space) that is beyond the scope of our theoretical analysis in the previous
sections. As such, we will defer these cases to future studies.

The procedure begins with calculating the two-time correlation functions C(t) of the
observables from the recorded long trajectory. Then, we exploit Eqs. (28) for continuous-
time systems and (42) for discrete-time systems to estimate continuous-time M and K and
various orders of discrete-time Ω(`). After solving these operators, we will use Eqs. (22)
and (41) to solve for the orthogonal dynamics F (continuous-time) and Wk (discrete-time).
Specifically, for the continuous-time system, we first set t = 0 in Eq. (28), leading to

Ċ(0) = M ·C(0). (48)

Thus, we can solve for the Markov matrix M = Ċ(0) · C−1(0). The estimation of Ċ(0)
can be made by finite-difference method, or alternatively, directly computed from the right-
hand-side of the dynamical equation (1) in the microscopic simulator. Next, we differentiate
Eq. (28) with respect to time t once and obtain

C̈(0) = K(0) ·C(0). (49)

The memory kernel evaluated at t = 0 is K(0) = C̈(0) · C−1(0). Again, C̈(0) can either
be accessed directly in the simulator, or estimated by finite-difference data. Then, we set
t = δ � 1 to Eq. (28) and approximate the memory integration by trapezoidal rule∫ δ

0

K(δ − s) ·C(s) ds ≈ δ

2
(K(0) ·C(δ) + K(δ) ·C(0)) (50)

to solve for K(δ) =
[
2Ċ(δ)− 2M ·C(δ)− δK(0) ·C(δ)

]
·C−1 (0). Similarly, we can recur-

sively solve for K((k + 1) δ), k ∈ N, as functions of previously obtained K((`) δ), ` ≤ k, and
the measured correlation matricies C:

K((k + 1)δ) = (51)

2

[
Ċ(kδ)−M ·C (kδ)

δ
+

k∑
`=1

K (`δ) ·C ((k − `) δ) +
K (0) ·C (kδ)

2

]
·C−1 (0) .

Once M and K are solved, we use Eq. (22) and the measured trajectory to solve for the
orthogonal dynamics F(t). A detailed description of our proposed procedure is presented as
Algorithm 1.

As for the discrete-time dynamics, we use Eq. (42). Setting k = 0 in (42), C (∆) =

Ω
(0)
∆ C(0) indicates that Ω

(0)
∆ = C (∆) ·C−1(0), exactly the approximate Koopman operator

that one would obtain by carrying out EDMD analysis (cf. Sec. 4). Then, recursively, we can

solve Ω
(k)
∆ , k ∈ N in terms of the correlation matrices C and previously solved lower-order

21



Ω
(`)
∆ , ` < k, using Eq. (42):

Ω
(k)
∆ =

(
C ((k + 1) ∆)−

k−1∑
`=0

Ω
(`)
∆ ·C ((k − `) ∆)

)
·C−1(0). (52)

Once the operators Ω
(k)
∆ ’s are solved, we use Eq. (41) and the measured trajectory to solve for

the discrete-time noise W. A detailed description of the procedure is presented as Algorithm
2.
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Figure 2: The dynamics of the physical-space variables {φi}20
i=1 of the Lorenz ’96 system (53).

The highlighted panels are those chosen variables which serve as the observables g1 := φ1,
g2 := φ4, g3 := φ8, and g4 := φ14. Because the observables are not zero-meaned, we also
include a constant function g0 := 1. For the reference of the reader, the estimated Lyapunov
time ≈ 0.622.

6 Numerical experiment

6.1 Test model

In this section, we present the application of our proposed algorithms. Our aim is to illustrate
that the usage and the capability of the algorithms to extract the Mori–Zwanzig operators
from a long trajectory of simulation.

Throughout this section, we adopt the Lorenz ’96 system [25] as the test problem. The
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Figure 3: The two-time correlation function C(t) computed from snapshots along a long

(105) trajectory Cij(kδ) = 10−5×
∑105−k

`=1 gi((k + `) δ) gj(kδ). The estimated Lyapunov time
≈ 0.622.

system consists of N physical-space variables which evolve nonlinearly by

d

dt
φi (t) = (φi+1 − φi−2)φi−1 − φi + F, i = 1 . . . N, (53)

with the periodic boundary condition φ−1 = φN−1, φ0 = φN , and φN+1 = φ1. We fixed the
model parameter N = 20 and F = 8, with which the system has a chaotic behavior.

We define our observables to be g1(t) := φ1(t), g2(t) := φ4(t), g3(t) := φ8(t), and g4(t) =
φ14(t). We also include a constant function g0 = 1 because the long-time average of the
observables are not zero-meaned. We remark that the results below are conditioned on
the choice of the observables we choose. We use the general-purpose integrator LSODA
(by scipy.integrate.solve ivp) to solve the evolutionary equation (53). LSODA uses
adaptive time steps for controlling the error of the numerical integration, and can handle
stiff ODE systems. We chose a randomized initial condition, integrated the trajectory until
t = 105, and recorded the snapshot of the observables every δ = 0.01. The total length
t = 105 was deemed sufficient from the convergence of the computed correlation matrix C
between these chosen observables. We checked that the choice of the initial condition does
not affect the obtained two-time correlations. Numerically, the trajectory is long enough
such that the contribution of the initial transient behavior of the trajectory converging to
the attractor is negligible. A short-time behavior of the dynamical system is shown in Fig. 2,
where the observables are highlighted. We numerically computed the Lyapunov exponents of
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the system and determined that the largest Lyapunov exponent ≈ 1.608, which corresponds
to a Lyapunov time ≈ 1/1.608 ≈ 0.622. The estimated Kaplan–Yorke dimension [32] of the
system is ≈ 13.37.

We use the collected snapshots of the observables to compute two-time correlation func-
tion up to a lag t = 10, as shown in Fig. 3. Then, we apply Algorithm 1 to the the numerically
computed C (t) to extract the continuous-time Markov matrix

M =


0.0 0.0 0.0 0.0 0.0
1.0 −0.052 −0.416 0.215 −0.175

0.652 0.372 0.099 −0.795 0.047
−2.333 −0.066 0.787 −0.068 0.342
0.338 0.171 0.043 −0.378 0.021

 , (54)

and the memory kernel K(t), illustrated in Fig. 4. With the the calculated kernel K, Algo-
rithm 1 also quantifies the orthogonal dynamics, F (t,Φ (s)) for t ≥ s, which allows us to
calculate the right-hand side of the Generalized Fluctuation-Dissipation relationship (32).
The GFD, which servers as a stringent self-consistent condition, is numerically verified and
presented in Fig. 4.
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Figure 4: The memory kernel K(t) is illustrated as the solid line. To verify the General-
ized Fluctuation-Dissipation (GFD) relationship, the right-hand-side of Eq. (32), GFDij :=[〈

F (t) · FT (0)
〉
·C−1 (0)

]
ij

, is calculated and plotted as the discrete dots, which perfectly

align with the memory kernel K. The timescale of nontrivial memory kernel exceeds the
estimated Lyapunov time ≈ 0.622.

We also applied the Algorithm 2 to extract the discrete-time operators Ω
(`)
∆ . We first fix
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∆ = 30δ and identify the lowest order Ω
(0)
∆ which serves like the Markov transition matrix

in the discrete-time formulation:

Ω
(0)
∆ =


1.0 0.0 0.0 0.0 0.0

1.827 0.294 −0.062 0.036 −0.053
1.378 0.173 0.332 −0.108 0.016
0.925 −0.015 0.27 0.284 0.064
1.771 0.026 0.012 −0.105 0.311

 , (55)

We present the higher-order operators, Ω
(`)
∆ in Fig. 5. Algorithm 2 also quantifies the discrete-

time orthogonal dynamics Wk, which we used to evaluate the right-hand side of the discrete-
time GFD relationship (89). Again, the stringent self-consistent GFD illustrates that our
numerical analysis quantifies the operators accurately.
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Figure 5: We present the extracted higher-order discrete-time operators Ω
(`)
∆ , ` ≥ 1 in

discrete dots. To verify the discrete-time Generalized Fluctuation-Dissipation (GFD) rela-
tionship, the right-hand-side of Eq. (89), GFDij :=

[〈
W` ·WT

0

〉
·C−1 (−∆)

]
ij

, is calculated

and plotted as the discrete pluses, which align with the memory kernel Ω
(`)
∆ .

For a comparison between the continuous-time and discrete-time operators, we compute
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the propagator exp(∆×M) using the continuous-time Markov operator M computed in 54:

exp (∆×M) =


1.0 0.0 0.0 0.0 0.0

0.256 0.976 −0.117 0.08 −0.049
0.296 0.114 0.995 −0.234 −0.001
−0.658 −0.003 0.236 0.946 0.103
0.149 0.052 −0.004 −0.111 0.999

 . (56)

The difference between the lowest-order Markov operators, Eqs. (55) and (56), illustrate
the difference between the continuous-time and the discrete-time formulation. The discrete
Markov operator Ω

(0)
∆ is identical to the approximate Koopman operator if one would carry

out the EDMD [47] with a time separation ∆ = 30δ = 0.3. Nevertheless, as pointed out in

Sec. 4, although the operator Ω
(0)
∆ can always be estimated by data (using Algorithm 2) and

is optimal to predict one-step ∆ into the future, it cannot be approximated by exponentiating
the instantaneous Markov operator of the continuous-time formulation, exp (∆×M). Our

analysis in Appendix B.1 shows that Ω
(0)
∆ contains not only the effect of continuous-time

Markov operator M which is the exact Koopman operator of the dynamics, but also the
effect of the continuous-time memory kernel K(s), 0 ≤ s ≤ ∆.

The continuous-time and discrete-time memory kernels shown in Figs. 4 and 5 show
similar behavior. Note that in the GLE (22), it is conventional that the memory kernel
K comes with an overall negative sign in front, but in the discrete formulation (Eq. (41)),
it is more natural not to put the −1 only in front of the ` ≥ 1 terms. Thus, to make
comparison between Figs. 4 and 5, one of them shall be flipped upside-down. We point out
a few important observations in these numerical estimations of the memory kernels. First,
it shows that in both formulations, the memory kernels decay to zero at a finite timescale.
The finite timescale of the memory kernel indicates that operationally, we do not necessarily
need the full history of the system from t = 0 until the current time to make prediction—
the trajectory with the finite timescale is sufficient. Secondly, the analysis shows that the
memory kernels could behave very non-trivially, and the kernels are not likely captured by
simple models. Thirdly, the discrete-time memory kernel seems to be a coarse-grained and
smoothed-out picture of the continuous-time kernel.

To investigate further into the ∆-dependence smoothing of the discrete memory op-
erators, we calculate Ω

(`)
∆ , ` ≥ 1 with ∆ = 0.01, 0.1, and 0.2. Note that the smallest

∆ = 0.01 corresponds to the smallest time resolution δ = 0.01, which we used to compute
the continuous-time operators. To properly scale and compare their behavior, we need to
scale the discrete operators by ∆−2. The first scaling ∆ comes from the fact that for a fixed
physical memory timescale, a larger ∆ comes with fewer snapshots in the discrete sum of the
past history. Another way to understand this scaling is that Ω in Eq. (41) is analogous to
−K(s) ds in Eq. (22), and the scaling comes from ∆ ∼ ds. The second scaling comes from
the fact that the discrete operators map the system forward to ∆. We present the scaled op-
erators, ∆−2Ω

(`)
∆ on the same figure 6, which shows that when ∆ = δ = 0.01, the calculated

discrete-time operator by Algorithm 2 converges to the continuous-time kernel calculated
using continuous-time Algorithm 1. The smoothing as we increase ∆ can also be observed.
With this comparison, we recommend the discrete-time formulation as it requires less inputs
but achieves comparable results of the continuous-time formulation which needs estimation
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of Ċ(0) and C̈(0), when the time separation ∆ is set equal to the fine discretization δ of the
continuous-time model.
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Figure 6: Comparisons between the discrete-time memory operators Ω
(`)
∆ , ` ≥ 1 with various

∆ and the continuous-time memory kernel −K(t). Note that the continuous-time memory
kernel in the generalized Langevin equation (22) has a sign difference to the discrete-time
formulation (41). To make comparable visualization, we compare the discrete-time operators
to the negative of continuous-time memory kernel, −K.

6.2 Advantage of the Mori–Zwanzig formalism in prediction

In this section, we compare different numerical procedures for making prediction to illustrate
the advantage of the Mori–Zwanzig formalism over plain Koopman analysis when the set
of basis functions is not complete. Specifically, we consider the following problem setup.
Suppose we obtain snapshots of a set of observables along a long trajectory. These snapshots,
separated by a fine time resolution δ, were used to compute either the approximate Koopman
operator (cf. Sec. 4) or the Mori–Zwanzig operators (cf. Algorithm 2). Next, suppose we
were given the snapshots of the observables along a segment of trajectory of length ζ = mδ,
m ∈ N. We denote the snapshots by {g(kδ)}mk=1, noting that g is an M × 1 column vector.
We are interested in using the given snapshots to predict the observables η = nδ, n ∈ N in
the future. Specifically, we are interested in comparing the prediction errors of Koopman
and discrete-time Mori–Zwanzig formulations:
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1. The recursive Koopman computation: With this approach, we use the EDMD [47] to
compute the approximate Koopman operator KKoop

∆ with a time separation ∆ = kδ. Because
the aim is to predict nδ into the future, k is restricted to the set of divisors of n. When k = 1,
the learned approximate Koopman operator would be closest to the true Markov operator
in the Mori–Zwanzig formalism. When k = n, the time separation is chosen to be exactly
the predictive horizon. We then apply n/k times the learned Koopman operator to advance

the last known observables to make prediction, i.e., g ((m+ n) δ) ≈
(
KKoop

∆

)n/k
· g (mδ).

2. The recursive discrete-time Mori–Zwanzig computation: With this approach, we
use Algorithm 2 to compute the Mori–Zwanzig operators Ω

(`)
∆ . We are interested in different

magnitudes of ∆, noting a restriction that they must be multiples of the finest time resolution
δ. We chose ∆ = 0.01, 0.02, 0.05, 0.1, and 0.2. We are also interested in the predictive error
as a function of the memory length, which is restricted as multiples of ∆. We will integrate
Eq. (41) to advance g(t) to g(t+∆), noting that it is not possible to estimate the exact noise
Wk. Instead of injecting artificially generated samples from a noise model, we set Wk’s to
zero. Note that the steps needed for such integration is also ∆-dependent. For example,
when ∆ matches the predictive horizon (∆ = nδ), we only need to integrate Eq. (41) once;
when ∆ is the finest time resolution (∆ = δ), we need to interatively integrate Eq. (41)
n times and accumulate the prediction g ((m+ k) δ), 1 ≤ k < n as past history until the
horizon is met.

We remark that when the memory length is set to zero in the recursive discrete-time
Mori–Zwanzig approach, the method converges to the recursive Koopman approach because
KKoop

∆ ≡ Ω
(0)
∆ . Thus, the second family of numerical procedures (with different settings of

∆ and memory length) is a superset of the first one.
We adopt the L2-norm as the measure to compare errors between different methods.

That is, suppose a method made a prediction gpred and suppose the ground truth is gGT,
the error is computed by

ε2 :=
∥∥gpred − gGT

∥∥2

2
≡

M∑
i=1

(gpred
i − gGT

i )2. (57)

To collect the statistics of the prediction error, we generate 2 × 104 samples of segments,
each of which contains m = 500 snapshots (separated by δ = 0.01), sampled from a long
(t = 105) test trajectory. Because we are interested in out-of-sample prediction, the long
test trajectory used to generate test samples is different from the one we used to compute
the correlation matrix (and the operators). Both trajectories were generated by integrating
the same evolutionary equation (53) with two randomized initial conditions; the procedure
ensures a consistent inner-product space which is defined by the long-time statistics.

We present the error statistics from the Mori–Zwanzig with different memory and pre-
diction horizon in Fig. 7. In Fig. 7 (a) and (b), we present the average error over 2 × 104

samples when the prediction horizon is chosen as nδ = 0.2 and 0.8 (20 and 80 finest time
steps, δ = 0.01), respectively. The recursive Koopman computation corresponds to those
points with the zero memory length. A few important observations can be made. First, for
approximate Koopman computation, the most accurate way is to match the time separation
∆ to the prediction horizon nδ. This observation is consistent to our reasoning in Sec. 3.5,
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Figure 7: Comparison of the prediction error of different numerical procedures. (a) The mean
error of the Mori–Zwanzig formulation for predicting the observable nδ = 0.2 into the future.
(b) The mean error of the Mori–Zwanzig formulation for predicting the observable nδ = 0.8
into the future. (c) We compare the statistics of the prediction error as the function of the
prediction horizon nδ from (1) the approximate Koopman operator Kδ, (2) the approximate
Koopman operator Knδ, and (3) recursive Mori–Zwanzig computation. For the reader’s
reference, the estimated Lyapunov time ≈ 0.622.

that the optimal prediction nδ into the future is C(nδ) ·C−1(0), which is the approximate
Koopman operator KKoop

nδ (cf. Sec. 4). Secondly, as the length of the past history is in-
creased, the error decreases but levels off at a finite timescale which depends on the choice
of ∆. The improvement comes from an important fact that the given segment of trajectory
g(kδ), k = 1 . . .m, contains information in both the parallel and orthogonal spaces; see
decomposition Eqs. (23) and (24). By integrating GLE forward in time with the segment of
trajectory, we can evolve both the parallel and orthogonal dynamics beyond t = mδ, despite
the fact that we cannot access the unknown orthogonal dynamics F(t ≥ mδ), which is thus
set to be zero operationally for making predictions. In contrast, the Koopman approach
always predicts from the last snapshot at t = mδ and can only optimally predict in the
parallel space by Eq. (23) and misses out more orthogonal contributions. Interestingly, the
optimal choice of ∆, the separation between snapshots for learning, depends nontrivially
on the memory length and the prediction horizon in the Mori–Zwanzig formulation. For a
prediction horizon 0.2 (Fig. 7 (a)), it is optimal to match ∆ = 0.2 regardless of the memory
length; however, for a prediction horizon 0.8 (Fig. 7 (b)), it is more advantageous to adapt
a mismatched ∆ = 0.4 in the long-memory kernel regime. Regardless, in all cases, we found
that including the memory contribution improves the prediction, compared to the memory-
less Koopman prediction. Finally, we observed that the memory length does not need to be
long before the accuracy levels off.

Consistent with these results, it is not expensive to improve the accuracy using the
discrete-time Mori–Zwanzig formulation: we only need to store a finite length of snapshots
to carry out the discrete sum in (41). In Fig. 7 (c), we present the error as a function of
the prediction horizon nδ. In addition to the average error, we also visualize the standard
deviation of the ε2 in 2 × 104 sample segments. We compare three methods: Koopman
with the smallest time separation ∆ = δ, with the matched time separation ∆ = nδ, and
discrete Mori–Zwanzig with ∆ = nδ with a fixed memory length 0.24. We conclude that,
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the Mori–Zwanzig formulation is consistently more accurate in making predictions into the
future, and if one must carry out the approximate Koopman analysis, it is best to match
the time separation ∆ to that of the prediction horizon—learning an approximate Koopman
operator with a short time separation ∆ and recursively applying KKoop

∆<nδ invokes more error.
Finally, it is worth pointing out that similar to the Koopman analysis, the quality of

the prediction crucially depends on the selection of the observables. In our test problems
above, we only considered five simple observables {1, φ1, φ4, φ8, φ14} and performed apples-to-
apples comparison between the Koopman and Mori–Zwanzig predictions. We emphasize on
the result that the Mori–Zwanzig, with the same functional basis, improves the prediction of
the plain Koopman analysis, despite that the absolute error of the Mori–Zwanzig prediction
is still large (see Fig. 7 (a) and (b)). To further improve the prediction, one then needs
to optimize a set of observables, which is an important procedure but not the focus of this
article.

7 Discussion

In this article, we showed that the Mori–Zwanzig formalism with Mori’s projector [29] is not
only consistent with but also a generalization of the existing Koopman learning procedures,
such as the extended dynamic mode decomposition (EDMD, [47]). The propagator of the
projected image C (∆) ·C−1 (0) for any time separation ∆ is identified as the discrete-time
approximate Koopman operator KKoop

∆ . We identify that the propagator does not only
contain the effect of the instantaneous Markov transition matrix M ≡ Ċ (0) · C−1 (0), but
also the memory effect from the trajectory between t = 0 to t = ∆ (Lemma 1). Such a history
dependence emerged because of the dynamics is not fully resolved—that is, the dynamics
does not evolves invariantly in functional subspace Hg spanned by the selected observables.
Although the Markov transition matrix M is the instantaneous Koopman operator, the finite-
time propagator is exp (∆M) only when the dynamical system is fully resolved. In those
partially observed cases, there always emerge a history-dependent term and the orthogonal
dynamics from the unresolved degrees of freedom of the dynamics.

Motivated by the data-driven Koopman learning methods, we constructed two numerical
algorithms which extract key operators in the Mori–Zwanzig formalism, specifically, with
Mori’s projection operator. One of our algorithms extracts the continuous-time operators,
and the other the discrete-time ones. To the lowest order, the algorithms are operationally
identical to the EDMD and they compute the continuous-time Markov matrix M and the
discrete-time approximate Koopman operator Ω

(0)
∆ . The novelty of our algorithms is that

they go beyond the lowest order and proceed with a recursive procedure which uses further
two-time correlations to extract the memory kernels (continuous-time K(s) and discrete-time

Ω
(`)
∆ , ` ≥ 1). The orthogonal dynamics can be computed after the Markov transition matrix

and the memory kernel are obtained.
Our proposed algorithms provide an alternative data-driven way of applying the Mori–

Zwanzig formalism to study dynamical systems. Our approach bypasses the conventional
need of modeling the memory kernel and the orthogonal dynamics. The numerical analysis
on the test problem shows the complex behavior of the memory kernel which is not likely
to be modeled by simple mathematical models. Importantly, we numerically verified that
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the extracted memory kernel and orthogonal noise satisfy the self-consistent Generalized
Fluctuation-Dissipation relationship. To our knowledge, it is the first time that the GFD
is numerically verified on a nontrivial model whose analytic solution is not known. We are
confident with the validity of the extracted memory kernel because of the rather stringent
GFD relationship.

We showed that the Mori–Zwanzig formalism with the numerically extracted memory
kernel and the past history can significantly improve the accuracy of the prediction of the
Extended Dynamic Mode Decomposition [47]. The reason is that the past history contains
partial information of the orthogonal dynamics, g⊥(t), and the prediction can be improved
by incorporating the information. We remark that such a memory-dependent learning is fun-
damentally different from the recently proposed time-embedded Koopman learning methods
[12, 4, 5, 20, 15, 46, 24] which include the past history in the set of the observables. These
methods, motivated by the famous Takens’ embedding theorem [41], requires to expand the
number in the set of variables by h times, where h is the number of the past snapshots and
h has to be specified before the computation. With such a construction, the subspace that
functions are projected to is span({g ((h− 1) ∆) . . .g(∆),g(0)}) which is larger than Hg.
Despite the one-step projection using the past history seems to be mapped by a memory
kernel, a more proper way to interpret the operation is to regard the augmented config-
uration mapped by the Markov transition matrix to that at the next discrete time, i.e.
[g (h∆) . . .g(2∆),g(∆)]T = M · [g (h∆) . . .g(2∆),g(∆)]T + W where W0 is the orthogonal
noise. Note that with a finite (h <∞) past history, the Mori–Zwanzig memory kernel would
emerge if a history is longer than h steps are given and if the past h-step observables do
not linearly span an invariant manifold. Time-embedded analysis requires a more expensive
inversion of the larger C(0) ∈ RMh×Mh matrix. In comparison, the memory kernel of the
Mori–Zwanzig construction requires a single inversion of the C(0) ∈ RM×M and the memory
kernel is constructed by other two-time correlations C(k∆).

Our approach here is close to but different from the method presented by Lin and Lu
[24], and it merits a more careful and detailed comparison. At the very high level, we share
the same formal construction of the discrete-time GLE. Our approaches diverged as soon
as the projection operator is chosen: we chose Mori’s projection (referred to as the finite-
rank projection in [24]) and Lin an Lu chose the Wiener projection. Formally, choosing
Wiener projection is identical to the time-embedding technique: as pointed out in [24], the
subspace to which Wiener projection projects is spanned by the past trajectory, and there
is no Mori–Zwanzig memory kernel for a single prediction. Lin and Lu had to impose a
“decaying memory condition”, by which they meant the Markov transition weight of distant
past configuration must decay. In our case, the Mori–Zwanzig memory kernel naturally
decays and no such a constraint is imposed. Computationally, our operations are always
linear operations with explicit solution of the linear optimizer, and nonlinear optimization is
needed in [24] because they invoke the rational approximations after the z-transformation.
In this manuscript, we did not propose practical ways to model the orthogonal dynamics
Wk, but Lin and Lu provided a practical way forward using multivariate Gaussian process
model to match the power spectrum. As time-embedded analysis are much more expensive
to fit but have the benefit of having smaller prediction error [data not shown], it remains an
interesting future research direction to objectively evaluate these two methods: under the
same computational budget, which one has a higher accuracy and with what metric (e.g.
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error in prediction, error in estimated Koopman spectrum, etc.)? Which one converge faster
with the same finite data set?

Although the mathematical construction of the Mori–Zwanzig formalism and Koopman
theory is general for any set of observables, the accuracy of the prediction crucially depends
on the selection of the observables. In practice, it is preferable to adopt a set of observ-
ables which invoke smaller orthogonal dynamics F(t). Our algorithms, which are first to
our knowledge, extract the exact orthogonal dynamics from the data and thus they provide
an opportunity for us to study the statistics from the extracted orthogonal dynamics. One
possibility in the future is to treat the orthogonal dynamics, F(t), as another dynamical sys-
tem and recursively perform Mori–Zwanzig learning to telescope into the residual dynamics.
We propose another possibility, analogous to Gram–Schmidt process, to use the numerically
extracted F(t) for identifying those predominant observables orthogonal to the existing set of
observables. We expect by including these orthogonal observables, the predictive accuracy of
the model can be improved. We remark that it is much cheaper to extract the memory kernel
K(s) than the orthogonal dynamics F(t). Since the memory kernel is related to the two-time
correlation function of the orthogonal dynamics by the Generalized Fluctuation-Dissipation
relationship, it will be an interesting research direction to identify those properties of the
memory kernel that can be directly used for optimizing the observables, potentially combin-
ing the recent development of using deep neural networks as approximate functions by Yeung
et al. [50]. The extracted operators provides multiple angles for such an optimization: For
example, should the objective be minimizing the magnitude of the memory kernel (which
∝
〈
F(t),FT (0)

〉
by Eq. (32)), or the timescale of the memory kernel as one would like to

achieve in the Markov State Models?
We are currently working on generalizing the proposed methods to partially observed

Markov stochastic systems with a focus on spectral analysis on the Mori–Zwanzig operators.
In terms of applications, we are applying the proposed data-driven learning algorithm to
study the modeling of turbulent flows [42] and molecular dynamical systems, both which are
extremely challenging engineering applications.
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Identification of slow molecular order parameters for Markov model construction, The
Journal of Chemical Physics, 139 (2013), p. 015102, https://doi.org/10.1063/1.

4811489.
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A Solution of the orthogonal component

It is straightforward to check that (31),

g⊥(t) =

∫ t

0

C(t− s) ·C−1 (0) · F(s) ds (58)

is the solution to (24):

d

dt
g⊥(t) =

d

dt

[∫ t

0

C(t− s) ·C−1 (0) · F(s) ds

]
(59)

= F(t) +

∫ t

0

dC (t− s)
dt

·C−1 (0) · F(s) ds,

and by Eq. (28),

d

dt
g⊥(t) = F(t) +

∫ t

0

M ·C (t− s) ·C−1 (0) · F(s) ds (60)

−
∫ t

0

∫ t−s

0

K (w) ·C (t− s− w) ·C−1 (0) · F(s) dw ds.

We assume that the integrand satisfies the conditions which allow the change of the order
of integrations:

d

dt
g⊥(t) = F(t) + M ·

∫ t

0

C (t− s) ·C−1 (0) · F(s) ds (61)

−
∫ t

0

K (w)

[∫ t−w

0

·C (t− w − s) ·C−1 (0) · F(s) ds

]
dw

= F(t) + M · g⊥ (t)−
∫ t

0

K (w) g⊥ (t− w) dw,

which is Eq. (31). In addition, g⊥(t) = 0 satisfies the initial condition in (24).
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B Derivation of the discrete-time Mori–Zwanzig formalism from continuous-
time

We present two independent derivations of the discrete-time Mori–Zwanzig formalism, as-
suming the underlying process is a continuous-time and deterministic dynamics. In the
first approach presented in B.1, we begin with the continuous-time equations (22), (28),
and (30), solving for the quantities evaluated on a temporally evenly sampled time grid
t = 0,∆, 2∆ . . ., and identify the recursive relationship between the solutions. In the second
approach presented in B.2, we consider to discretize the dynamics first by transforming the
continuous-time operator to a abstract discrete-time map, and re-derive the Mori–Zwanzig
equations (analogous to (22), (28), and (30)) to the discrete-time map. Importantly, in both
approaches, we do not impose infinitesimal constraint on ∆, and it can be any finite number.

Interestingly, the two constructs delivers the same recursive relationship that resembles
the continuous-time Mori–Zwanzig equations. We shall refer to these relationships as the
discrete-time Mori–Zwanzig equations. However, there exists a subtle difference that the
same discrete-time Mori–Zwanzig equations link different mathematical objects in the two
approaches. We discuss this subtle difference between the two approaches, and a sufficient
condition that the two descriptions agree, in B.3. The generalized fluctuation-dissipation
relationship in the discrete-time formulation is discussed in B.4.

B.1 Discretization of the continuous-time Mori–Zwanzig equations

The Generalized Langevin Equation (22), the evolutaionary equations for the correlation
matrix C(t) (Eq. (28)) and the projected image Pg(t) = g‖(t) (Eq. (30)) exhibit a similar
evoluationary operator which involves the Markov matrix M and the memory kernel K(t).
Thus, here we consider the evolutionary operator applied on a test matrix T(t), which is
M × P where M is the number of the observables serving as our basis functions spanning
Hg. In the case of Eqs. (22) and (28), P = 1, and in the case of Eq. (28), P = M . Suppose
the evolutionary equation of the test matrix T(t) satisfies

d

dt
T(t) = M ·T(t)−

∫ t

0

K (t− s) ·T (s) ds, (62)

and suppose we only measure the snapshots of the observables at times on a evenly spaced
grid t = [0,∆, 2∆ . . .] with a not necessary small separation ∆. We also assume that we
know the initial value T(0). The central aim of this section is to prove that the solution
T (k∆), k ∈ Z+, can be written as

T ((k + 1) ∆) =
k∑
`=0

Ω(k) ·T ((k − `) ∆) , (63)

where Ω(k) are prescribed M ×M matrices. We break down the proof into a few separate
Lemmas.

Lemma 1. Given the evolutionary equation (62) with an initial condition T(0) and the
continuous-time kernel K(s), for any t ≥ 0, the solution T(t) can be expressed as a linear
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operator Ωt parametrized by the continuous-time t operated on the initial condition T(0):

T (t) = Ω
(0)
t ·T (0) . (64)

Proof. We observe that the correlation matrix C(t) satisfies Eq. (28), which has a similar
form to Eq. (62). It is easy to check that Ω0

t := C(t) ·C−1(0) is the solution:

d

dt
T(t) =

d

dt

[
C(t) ·C−1(0) ·T(0)

]
(65)

=

[
d

dt
C(t)

]
·C−1(0) ·T(0)

=

[
M ·C(t)−

∫ t

0

K (t− s) ·C (s) ds

]
·C−1(0) ·T(0)

= M ·T(t)−
∫ t

0

K (t− s) ·T (s) ds.

Theorem 1. Given (1) the evolutionary equation (62), (2) the continuous-time memory
kernel K(s), s ≥ 0, (3) a non-negative integer k ∈ Z+, and (4) snapshots of past history at
discrete times T(j∆), j = 0, 1, . . . ≤ k, we can express T at a future time k∆+τ , 0 < τ ≤ ∆
in terms of linear superpositions of the past snapshots:

T (τ + k∆) =
k∑
`=0

Ω(`)
τ ·T ((k − `) ∆) , (66)

where the higher order operators Ω
(k)
τ , k ∈ N+ are recursively defined by

Ω(k)
τ = Ω

(0)
τ+k∆ −

k−1∑
`=0

Ω(`)
τ Ω

(0)
(k−`)∆. (67)

Proof. From Lemma 1,
T(τ + k∆) = Ω

(0)
τ+k∆T(0), (68)

and the recursive relationship (67) states

Ω
(0)
τ+k∆ =

k∑
`=0

Ω(`)
τ Ω

(0)
(k−`)∆, (69)

and thus,

T(τ + k∆) =
k∑
`=0

Ω(`)
τ Ω

(0)
(k−`)∆T(0) =

k∑
`=0

Ω(`)
τ T((k − `) ∆). (70)

Corollary 1. Given the operators (67), T ((k + 1) ∆) can be expressed as linear combination
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of the past snapshots T (`∆), ` = 0, 1, . . . k:

T ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ T((k − `) ∆). (71)

Corollary 2. Because the correlation matrix C(t) satisfies Eq. (28) which is of the form (62),
given the operators (67), the snapshots of the correlation matrix at discrete times satisfy

C ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ C((k − `) ∆). (72)

Corollary 3. Because the projected image Pg(t) satisfies Eq. (30) which is of the form (62),
given the operators (67), the snapshots of the projected image at discrete times satisfy

Pg ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ Pg((k − `) ∆). (73)

Theorem 2. Discretized Generalized Langiven Equation. Given the GLE (22) and the
associated operators (67), the snapshots g(t) at discrete times (k + 1)∆, k ∈ N, satisfy

g ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ g((k − `) ∆) + Wk. (74)

where Wk is the discrete-time orthogonal dynamics, which is a linear function of the orthog-
onal dynamics F(t), t ≤ (k + 1)∆ and Wk+1 is orthogonal to Hg.

Proof. As illustrated in Sec. 3.3, the solution of GLE can be written as a general solution
g‖(t) and a particular solution g⊥(t) satisfying Eqs. (23) and (24) respectively. Note that
g‖(t) is just the projected image Pg(t), and from Corollary 3, we conclude that

g‖ ((k + 1) ∆) =
k∑
`=0

Ω
(`)
∆ · g‖ ((k − `) ∆) . (75)
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Because g(t) = g‖(t) + g⊥(t), ∀t ≥ 0, at time t = (k + 1) ∆, we can equate

g ((k + 1) ∆) = g‖ ((k + 1) ∆) + g⊥ ((k + 1) ∆) (76)

=
k∑
`=0

Ω
(`)
∆ · g‖ ((k − `) ∆) + g⊥ ((k + 1) ∆)

=
k∑
`=0

Ω
(`)
∆ ·

[
g‖ ((k − `) ∆) + g⊥ ((k − `) ∆)

]
+ g⊥ ((k + 1) ∆)

−
k∑
`=0

Ω
(`)
∆ · g⊥ ((k − `) ∆)

=
k∑
`=0

Ω
(`)
∆ · g ((k − `) ∆)

+

[
g⊥ ((k + 1) ∆)−

k∑
`=0

Ω
(`)
∆ · g⊥ ((k − `) ∆)

]
.

We identify

Wk = g⊥ ((k + 1) ∆)−
k∑
`=0

Ω
(k−`)
∆ g⊥ (`∆) . (77)

Note that Wk is a linear function of the snapshots of g⊥, which are linear functions of F(s),
t ≤ (k + 1) ∆, and thus Wk is orthogonal to Hg.

B.2 Mori–Zwanzig equations of the generic discrete-time dynamics

We present an intuitive derivation of that is analogous to Sec. 3.2, noting that a more general
derivation can be found in reference [24]. We begin with Eq. (19), and integrate the equation
to the discrete time grid t = 0,∆, 2∆, . . . to obtain the discrete mapping in the full Hilbert
space H: [

gM(t+ ∆)
gM̄(t+ ∆)

]
= e∆L ·

[
gM(t)
gM̄(t)

]
:=

[
UMM UMM̄
UM̄M UM̄M̄

]
·
[
gM(t)
gM̄(t)

]
. (78)

Given the initial condition gM (0) and gM̄ (0), the solution of the orthogonal component at
the discrete times, gM̄ (k∆), can be expressed in terms of the historical snapshots of the
resolved components, gM (`∆), ` = 0, 1, . . . k, and the initial condition gM̄ (0):

gM̄ ((k + 1) ∆) =
k∑
`=0

U`
M̄M̄UM̄MgM ((k − `) ∆) + Uk

M̄M̄gM̄ (0) , (79)
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thus,

gM((k + 1) ∆) = UMMgM(k∆) + UMM̄gM̄(k∆) (80)

= UMMgM(k∆) + UMM̄Uk
M̄M̄gM̄ (0)

+ UMM̄

k−1∑
`=0

U`
M̄M̄UM̄MgM ((k − `− 1) ∆) .

Now we define Λ
(0)
∆ := UMM, Λ

(`)
∆ := UMM̄U

(`−1)

M̄M̄UM̄M, ` = 1, 2, . . ., and Vk := UMM̄Uk
M̄M̄gM̄ (0)

and obtain the discrete-time generalized Langevin equation

g ((k + 1) ∆) =
k∑
`=0

Λ
(`)
∆ g((k − `) ∆) + Vk. (81)

A more general derivation first transforms the dynamics Eq. (1) to a discrete map of the
solutions evaluated at t = 0,∆, 2∆ . . .,

Φ(t+ ∆) = U∆ (Φ(t)) (82)

Here, U∆ is the nonlinear operator defined as the solution of the continuous-time equation:

U∆ (Φ0) :=

∫ ∆

0

R (Φ (t)) dt+ Φ0. (83)

With the transformed discrete-time map, U∆, we apply the generic Mori–Zwanzig formula-
tion for the discrete-time dynamics [24] to obtain the discrete-time GLE (81).

Because the samples collected from this picture involves only discrete-time snapshots
separated by a finite time ∆, we need to replace the inner product from averaging over a
continuous-time trajectory (Eq. (27)) by a discrete-time sum:

〈f, h〉∆ := lim
N→∞

1

N

N∑
i=1

∫
Ω

f (Φ0)h (Φ0) dµ (Φ0) . (84)

We put a subscript under the inner product 〈·, ·〉∆ to denote the difference between (84) and
its continuous-time counterpart (27).

Finally, a similar analysis to the one we presented in Sec. 3.5 results in the discrete-
time recursive relationship between the correlation matrix C∆ (k∆) and the projected image
P∆g (k∆), k = 0, 1, 2 . . .,

C∆ ((k + 1) ∆) =
k∑
`=0

Λ
(`)
∆ C∆((k − `) ∆), (85)

P∆g ((k + 1) ∆) =
k∑
`=0

Λ
(`)
∆ P∆g ((k − `) ∆) . (86)
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Again, we put the subscript to the correlation matrix C∆ and the projection operator P∆

to differentiate them from their counterparts computed with continuous-time inner product,
Eq. (27).

B.3 Difference between the two formulations

The discrete-time dynamics in the above two formulations coincide, and it is tempting to
equate the operators Ω

(`)
∆ to Λ

(`)
∆ , and the discrete-time noise Wk to Vk. Nevertheless, there

is a subtle difference between these two formulation, and in general, they do not have to be
the same. The subtlety is that the inner product is defined by integrating over a continuous
domain of time in the first formulation, but by summing over a discrete domain of the time
in the second derivation. The invariant measure of the former does not have to be equal
to the latter. Consequently, the projection operator, which depends on the definition inner
product, Eq. (25), does not have to be identical in these two formulation.

In our proposed algorithm 2, the discrete-time operators (either Ω
(`)
∆ or Λ

(`)
∆ ) and noise

(either Wk or Vk) are extracted from the correlation matrices. In the first formulation, the
correlation matrix was computed with the inner product Eq. (27),

C (k∆) := lim
T→∞

1

T

∫ k∆

0

g ◦Φ (k∆ + s) · gT ◦Φ (s) ds, (87)

and in the second approach, it is computed by with the inner product Eq. (84),

C∆ (k∆) := lim
N→∞

1

N

N−1∑
i=0

g ◦Φ ((k + i) ∆) · gT ◦Φ (i∆) . (88)

Our analysis shows that a sufficient condition for Ω
(`)
∆ = Λ

(`)
∆ and Wk = Vk is C (k∆) =

C∆ (k∆). The correlation matrices computed by two approaches are not necessarily identical.
A simple harmonic oscillator ẋ = p and ṗ = −x with a unit amplitude x2(t) + p2(t) = 1 can
be a counterexample. It has a period 2π, and if we choose ∆ is 2π/3, these two formulations
can be quite different: the continuous correlation matrix (Eqs. (87)) has 〈x, x〉 = π, but the
discrete correlation matrix ((88)) has 〈x, x〉 = 1+cos2 (2π/3)+cos2 (4π/3) = 3/2 if x(0) = 1.
Note that in prediction (cf. Sec. 6.2), the correlation matrix obtained from the first approach
can be used to project any configuration satisfying x2(0) + p2(0) = 1, but the correlation
matrix obtained from the second approach can be only used to a subset of possible initial
conditions: x(0) ∈ {0, 2π/3, 4π/3}.

The subtlety between the two formulations serves as a caution to the practitioners to
pay attention to formulating what we aim to learn. On the one hand, the first formulation
presented in B.1 learns the discrete-time operators Ω

(`)
∆ , which have direct connection to

the continuous-time operators because they are defined in terms of the continuous-time
Markov transition M and the memory kernel K(t). Despite the fact that the correlation
matrix is discretized and stored with a coarser resolution, the overall learned operators
Ω

(`)
∆ serve a similar role to the continuous-time Mori–Zwanzig operators. For example, the

operators predict the same Pg(t) in Hg. Thus, if one aims to learn about the continuous-
time operators, the first approach is more desirable. The cost of the first approach is that
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even though the discretization ∆ can be finite, one still needs a very finely sampled temporal
grid to evaluate the continuous-time correlation matrix C(t), if an analytical expression of
C(t) is not possible. We remark that an additional online computation of C in the fine-scale
simulation can make computations efficient. On the other hand, a discretization with a finite
∆ is beneficial because it provides another coarser resolution in which the correlation matrix
is stored. The second formulation presented in B.2 learns the Mori–Zwanzig operators of
the generic discrete maps. In those cases where the inner product defined by the discrete-
time statistics ((88)) is not identical to the continuous-time statistics ((87)), the projection
operator in the second formulation is not the same as the one in the continuous-formulation.
Consequently, the operators would predict a different projected image P∆g(t) in Hg. The
above simple harmonic oscillator provides an intuitive example.

Finally, we point out that despite the subtle differences, if the two measures (statistics
from discrete-time snapshots and continuous-time dynamics) are identical, these two formu-
lations converge. In this scenario, there is no difference between the formulations in the
theoretical sense. Nevertheless, computationally, the first approach—choosing a small δ to
collect the snapshot data, computing the correlation matrix C, and then discretizing C to
multiples of δ—possesses two advantages. First, because the computation of the correlation
matrix is agnostic to the discretization parameter ∆, one does not need to re-simulate the
discrete-time simulation when we change ∆. Secondly, recall that we need to compute the
correlation matrix from the snapshots, which were recorded from a high-fidelity simulation
which is generally computationally expensive. Thus, given a fixed amount of computational
resource, there is generally an upper bound of the physical time which we are allowed to
simulate. Because the first approach uses an equal or finer temporal resolution in compari-
son to the second (δ ≤ ∆), we will collect more snapshots before the high-fidelity simulation
ends. Thus, computationally, the convergence of the correlation matrix is generally better
due to more samples.

B.4 Generalized Fluctuation–Dissipation Relationship in the discrete-time formulations

In each of the frameworks presented in Appendices B.1 and B.2, with respect to the cor-
responding inner product (see discussion in B.3), there exists a Generalized Fluctuation-
Dissipation relationship between the discrete-time noise (Wk or Vk) and the discrete time

operators (Ω
(`)
∆ or Λ

(`)
∆ ):

Ω
(k)
∆ = −

〈
Wk,W

T
0

〉
·C−1 (−∆) , k ∈ N, (89)

Λ
(k)
∆ = −

〈
Vk,V

T
0

〉
∆
·C−1

∆ (−∆) , k ∈ N. (90)

Here, the first inner product in Eq. (89) is an integration against the continuous-time tra-
jectory (e.g., Eq. (27)), and the second inner product in Eq. (90) is a discrete sum over
the snapshots (e.g., Eq. (84)). Note that C(−∆) ≡ CT (∆) and C∆ (−∆) = CT

∆ (∆) by
definitions (87) and (88). In this section, we present the proof to the generalized fluctuation-
dissipation relationship, Eqs. (89) and (90).
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B.4.1 Discretization of the continuous-time Mori–Zwanzig framework

From Eq. (77) and noting that g⊥ (0) = 0 (because g(0) = g‖(0)),

〈
Wk,W

T
0

〉
=

〈
g⊥ ((k + 1) ∆)−

k∑
`=0

Ω
(k−`)
∆ g⊥ (`∆) ,gT⊥(∆)

〉
(91)

=
〈
g ((k + 1) ∆)− g‖ ((k + 1) ∆) ,gT (∆)− gT‖ (∆)

〉
−

〈
k∑
`=0

Ω
(k−`)
∆

[
g (`∆)− g‖ (`∆)

]
,gT (∆)− gT‖ (∆)

〉
.

This is because g⊥(t) = g(t) − g‖. Then, we can express
〈
Wk,W

T
0

〉
in terms of pairs of

observables,〈
Wk,W

T
0

〉
=
〈
g ((k + 1) ∆) ,gT (∆)

〉
−
〈
g ((k + 1) ∆) ,gT‖ (∆)

〉
−
〈
g‖ ((k + 1) ∆) ,gT (∆)

〉
+
〈
g‖ ((k + 1) ∆) ,gT‖ (∆)

〉
−

k∑
`=0

Ω
(k−`)
∆

〈
g (`∆) ,gT (∆)

〉
+

k∑
`=0

Ω
(k−`)
∆

〈
g (`∆) ,gT‖ (∆)

〉
+

k∑
`=0

Ω
(k−`)
∆

〈
g‖ (`∆) ,gT (∆)

〉
−

k∑
`=0

Ω
(k−`)
∆

〈
g‖ (`∆) ,gT‖ (∆)

〉
. (92)

The above expression can be simplified by〈
g(t),gT‖ (s)

〉
=
〈
g‖(t),g

T
‖ (s)

〉
=
〈
g‖(t),g

T (s)
〉
, (93)

which leads to〈
Wk,W

T
0

〉
=
〈
g ((k + 1) ∆) ,gT (∆)

〉
−
〈
g‖ ((k + 1) ∆) ,gT‖ (∆)

〉
−

k∑
`=0

Ω
(k−`)
∆

〈
g (`∆) ,gT (∆)

〉
+

k∑
`=0

Ω
(k−`)
∆

〈
g‖ (`∆) ,gT‖ (∆)

〉
=
〈
g ((k + 1) ∆) ,gT (∆)

〉
−

k∑
`=0

Ω
(k−`)
∆

〈
g (`∆) ,gT (∆)

〉
, (94)

The last equality comes from Eq. (73), that

g‖ ((k + 1) ∆)−
k∑
`=0

Ω
(k−`)
∆ g‖ (`∆) = 0

⇒

〈
g‖ ((k + 1) ∆)−

k∑
`=0

Ω
(k−`)
∆ g‖ (`∆) ,gT‖ (∆)

〉
= 0. (95)
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By definition,
〈
g ((k + 1) ∆) ,gT (∆)

〉
= C(k∆) and

〈
g (`∆) ,gT (∆)

〉
= C ((`− 1) ∆). Using

Eq. (72), we can further simplify the two-time correlation of the discrete-time noise W:

〈
Wk,W

T
0

〉
= C (k∆)−

k∑
`=0

Ω
(k−`)
∆ C ((`− 1) ∆)

=
k−1∑
`=0

Ω
(k−1−`)
∆ C (`∆)−

k∑
`=0

Ω
(k−`)
∆ C ((`− 1) ∆)

=
k−1∑
`=0

Ω
(k−1−`)
∆ C (`∆)−

k−1∑
`′=−1

Ω
(k−1−`′)
∆ C (`′∆)

= − Ω
(k)
∆ C(∆), (96)

and establish Eq. (89) by multiplying C−1 (−∆) to both sides of the above equation.

B.4.2 Generalized Fluctuation–Dissipation Relationship in the time-discretized
dynamics

A parallel analysis to the one presented in the above section B.4 can be carried out to prove
Eq. (90) with the inner product (e.g., Eq. (88)), the Generalized Langevin Equation (81), and
the evolutionary equations of the correlation matrix Eq. (85) and projected image Eq. (86).

An alternative derivation, parallel to the derivation in Sec. 3.6, can be carried out. We use
the intuitive notation presented in B.2. By definition, the discrete-time noise after k snap-
shots, starting at the ith snapshot along the long trajectory is Vk|i := UMM̄Uk

M̄M̄gM̄ (i∆).
Then, the two-time correlation between the noise with respect to the inner product is

〈
Vk,V

T
0

〉
= lim

N→∞

1

N

N∑
i=1

UMM̄Uk
M̄M̄gM̄ (i∆) gTM̄ (i∆) UT

MM̄. (97)

From the discrete-time mapping Eq. (78),

UMM̄gM̄ (i∆) = gM ((i+ 1) ∆)−UMMgM (i∆) , (98)

and thus,

〈
Vk,V

T
0

〉
= lim

N→∞

1

N

N∑
i=1

UMM̄Uk
M̄M̄gM̄ (i∆)

[
gTM ((i+ 1) ∆)− gTM (i∆) UT

MM
]

= lim
N→∞

1

N

N∑
i=1

UMM̄Uk
M̄M̄gM̄ (i∆) gTM ((i+ 1) ∆)

−UMM̄Uk
M̄M̄

〈
gM,g

T
M̄
〉

UT
MM

= lim
N→∞

1

N

N∑
i=1

UMM̄Uk
M̄M̄gM̄ (i∆) gTM ((i+ 1) ∆) , (99)
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because by construction,
〈
gM,g

T
M̄

〉
= 0. Again, using Eq. (78), UM̄M̄gM̄ (i∆) = gM̄ ((i+ 1) ∆)−

UMMgM (i∆),

〈
Vk,V

T
0

〉
= lim

N→∞

1

N

N∑
i=1

UMM̄Uk−1
M̄M̄gM̄ ((i+ 1) ∆) gTM ((i+ 1) ∆)

− lim
N→∞

1

N

N∑
i=1

UMM̄Uk−1
M̄M̄UMMgM (i∆) gTM ((i+ 1) ∆)

= UMM̄Uk−1
M̄M̄

〈
gM̄,g

T
M
〉

− lim
N→∞

1

N

N∑
i=1

UMM̄Uk−1
M̄M̄UMMgM (i∆) gTM ((i+ 1) ∆)

= −UMM̄Uk−1
M̄M̄UMMC∆ (−∆) . (100)

By definition, UMM̄Uk−1
M̄M̄UMM = Λ

(k)
∆ , and thus, we prove Eq. (90):〈

Vk,V
T
0

〉
= −Λ

(k)
∆ C∆ (−∆)⇒ Λ

(k)
∆ =

〈
Vk,V

T
0

〉
C−1

∆ (−∆) . (101)
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Algorithm 1 Data-driven learning of the continuous-time Mori–Zwanzig operators. This
algorithm uses a long trajectory of the reduced-order dynamics to estimate the continuous-
time Markov transition matrix M, memory kernel K(s), and orthogonal dynamics F(t) in the
Generalized Langevin Equation (22). The algorithm requires the trajectories of M a priori
selected observables {gi}Mi=1, measured at finely and evenly discretized times t = kδ, δ � 1,
k = 0 . . . N−1 along the long (N � 1) trajectory. A number 0 ≤ h < N is required to specify
the longest estimated horizon of the memory kernel K. The algorithm will deliver estimates
of the (1) Markov transition matrix M, (2) memory kernel at the discretized time points
K(kδ), and (3) the orthogonal dynamics F(kδ|i), evaluated at discrete times k = 0 . . . h− 1,
conditioned on the system started at the ith snapshot (i.e., the system’s initial condition was
set at g (iδ)).

for k in {0, . . . h+ 1} do

Cij (kδ)← 1
N−k

[∑N−k−1
`=0 gi((k + `) δ)× gj(`δ)

]
end for
for k in {1, 2} do

Cij (−kδ)← Cji (kδ)
end for
for k in {−1, 0, . . . h} do

Ċij (kδ)← 1
2δ

[Cij ((k + 1)δ)− Cij ((k − 1)δ)]
end for
for k in {0, . . . h} do

C̈ij (0)← 1
2δ

[
Ċij (δ)− Ċij (−δ)

]
end for
M← Ċ(0) ·C−1 (0)
K (0)← C̈(0) ·C−1 (0)
for k in {1, . . . h} do

K(kδ)← 2
[
Ċ(0)−M·C(kδ)

δ
+
∑k−1

`=1 K (`δ) ·C ((k − `) δ) + K(0)·C(kδ)
2

]
·C−1 (0)

end for
for i in {0, . . . N − h− 1} do

for k in {0, . . . h} do

m← δ
2

[
K (0) · g (kδ) + 2

∑k−1
`=1 K (`δ) ·C ((k − `) δ) + K (kδ) · g (0)

]
F(kδ|i)← 1

δ
[g ((k + 1) δ)− g (kδ)]−M · g (kδ) +m

end for
end forreturn M, K(kδ), F(`δ|i)
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Algorithm 2 Data-driven learning of the discrete-time Mori–Zwanzig operators. This al-
gorithm estimates the discrete-time operators Ω

(`)
∆ and the orthogonal dynamics W in the

discrete-time Generalized Langevin Equation (41) from a long trajectory of the dynami-
cal simulations of the dynamical system. The algorithm requires the snapshots of a set
of M a priori selected observables {gi}Mi=1 measured at evenly distributed times t = k∆,
k = 0 . . . N − 1, along a long (N � 1) trajectory. In contrast to Algorithm 1, the time
separation of the snapshots ∆ does not necessarily to be small. A number 0 ≤ h < N is
required to specified the highest order of the discrete-time operators (Ω(h)). The algorithm
delivers estimates of (1) the discrete-time operators Ω(k∆) and (2) the orthogonal dynamics
W (k∆|i∆), k = 0, 1, . . . h conditioned on the system started at the ith snapshot (i.e., the
system’s initial condition was set as g (i∆)).

for k in {0, . . . h+ 1} do

Cij (k∆)← 1
N−k

[∑N−k−1
`=0 gi((k + `) ∆)× gj(`∆)

]
end for
Ω

(0)
∆ ← C(∆) ·C−1 (0)

for k in {1, . . . h} do

Ω
(k)
∆ ←

[
C ((k + 1) ∆)−

∑k−1
`=0 Ω(`) ·C ((k − `) ∆)

]
·C−1(0)

end for
for i in {0, . . . N − h− 1} do

for k in {0, . . . h} do
W(k∆|i∆)← g (i+ k + 1)−

∑k
`=0 Ω(`) · g ((i+ k − `) ∆)

end for
end forreturn Ω

(k)
∆ , W(k∆|i∆)
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