Deep Learning in Practice

Guillaume Charpiat
Wenzhuo Liu, Lucas Meyer & Matthieu Nastorg

TAU team, LISN, Université Paris-Saclay / INRIA Saclay

... and guests!

Overview

- Course summary and organization
- Chapters overview

Context

- ▶ Deep learning: impressive results in the machine learning literature
- yet difficult to train, and still poorly understood; results = black-boxes missing explanations.
- Huge societal impact of ML today (assistance in medicine, hiring process, bank loans...)
 - ⇒ explain their decisions, offer guarantees?
- Real world problems: usually do not fit standard academic assumptions (data quantity and quality, expert knowledge availability...).
- This course: aims at providing insights and tools to address these practical aspects, based on mathematical concepts and practical exercises.

Organisation and evaluation

- Most courses: a lesson + practical exercises (to hand in within 2 weeks, and evaluated)
- Extras: a few guest talks

Schedule

8 classes of 3 hours, on Thursday mornings (9h-12h15 with a break; check the webpage for details), at CentraleSupelec (just next to ENS Paris-Saclay) or online? [not sure yet!].

Webpage & mailing-list: https://www.lri.fr/~gcharpia/deeppractice/

Prerequisite

- The introduction to Deep Learning course by Vincent Lepetit (1st semester), or any similar course
- Notions in differential calculus, Bayesian statistics, analysis, information theory

Links with other Deep Learning courses

- ► Introduction to Deep Learning (V. Lepetit) : prerequisite
- Fondements Théoriques du deep learning (F. Malgouyres & al)
- Modélisation en neurosciences et ailleurs (J-P Nadal)
- Apprentissage Profond pour la Restauration et la Synthese d'Images (A. Almansa & al)
- Deep learning for medical imaging (O. Colliot & M. Vakalopoulou)
- Object recognition and computer vision (Willow team & al)
- etc. (NLP, graphs...)
- Our course: understanding and tools to make NN work in practice
 with a focus on architecture design, explainability, societal impact, real datasets
 and tasks (e.g. small data, limited computational power vs. scaling up, RL...).

 negligible overlap

Overview

Outline

Deep learning vs. classical ML and optimization

- January 13th

- ► Going Deep or not?
 - Examples of successes and failures of deep learning vs. classical techniques (random forests)
 - ▶ Approximation theorems vs. generalization [3, 4]
 - Why deep: ex. of <u>depth</u> vs. <u>layer size</u> compromises (explicit bounds)
- ► Gap between classical Machine Learning and Deep Learning
 - Forgotten Machine Learning basics (Minimum Description Length principle, regularizers, objective function different from evaluation criterion) and incidental palliatives (drop-out, early stopping, noise)
- Hyper-parameters and training basics
 - + list of practical tricks

Interpretability

January 20th

At stake: the example of medical diagnosis, and societal issues with black-box algorithms [5]

- Interpretability of neural networks
 - Analyzing the black-box

Wrong Regist to the legist Reasons:

Baseline:
A mate alting of a dask with A present alting in frost of a supple computer.

- at the neuron level: filter visualisation, impact analysis
- at the layer level: layer statistics...
- ▶ at the net level: low-dimensional representation (t-SNE) + IB
- by sub-task design: "explainable Al"
- Adversarial examples & remedies
- Issues with datasets
 - Biases in datasets : 4 definitions of fairness
 - Getting invariant to undesirable dataset biases (e.g. gender in CVs / job offers matching)
 - Ensuring errors are uniform over the dataset
 - Differential privacy (database client protection)
- ► Visualization tools: grad-CAM

Architectures

January 27th

- ► Architectures as priors on function space
 - Change of design paradigm
 - Random initialization
- Architecture zoo
 - Reminder (CNN, auto-encoder, LSTM, adversarial...)
 - Dealing with scale & resolution (fully-convolutional, U-nets, pyramidal approaches...)
 - Dealing with depth (ResNet, auxiliary losses) and mixing blocks (Inception)
 - Attention mechanisms
 - GraphCNN

Problem modeling: molecular dataset using graph-NN

Small data, weak supervision and robustness

February 3rd

- Small data
 - Data augmentation / synthetic data
 - Multi-tasking
 - Transfer learning
- ► Few labeled examples: forms of weak supervision
 - Semi-supervision
 - Weak supervision
 - Self-supervision
 - Active learning
- Noisy data
 - Denoising auto-encoder
 - Classification with noisy labels
 - Regression with noisy labels
- Exploiting known invariances or priors
 - Permutation invariance: "deep sets" [8], applied to people genetics
 - Choosing physically meaningful metrics, e.g. optimal transport (Sinkhorn approximation)[9]
- ► Transfer learning

Guest talks (to be confirmed)

February 24th

- ► Deep Reinforcement Learning by Olivier Teytaud (Facebook FAIR)
 - Crash-course about deep RL...
 - ... until alpha-0!
 - and more topics (evolutionary optimization...)

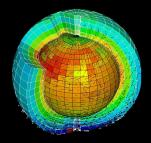
- Presentation of Therapixel by Yaroslav Nikulin
 - start-up in medical imaging (DL to detect breast cancer in scans)

Overview

Incorporating physical knowledge / Learning physics

March 3rd

- ► Course by Michele Alessandro Bucci and Lionel Mathelin (Safran/LISN)
 - Data assimilation
 - Learning a PDE (equation not known)
 - Incorporating invariances/symmetries of the problem
 - Knowing an equation that the solution has to satisfy: solving PDEs!
 - Deep for physic dynamics : learning and controlling the dynamics



Learning a dynamical system

Generative models + Modeling tasks and losses

- Generative models
 - GAN, VAE (Variational Auto-Encoder), and Normalizing Flows
- Modeling tasks and losses
 - KL, optimal transport, MMD...
- ► GAN vs. VAE vs. NF

Guarantees? Generalization and formal proofs + Auto-DL - March 17th

- Guarantees?
 - Generalization: double gradient descent and Neural Tangent Kernel
 - formal proofs of (very small) neural networks
- ► Auto-DeepLearning by Isabelle Guyon's group
 - Overview of recent approaches for automatic hyper-parameter tuning (architecture, learning rate, etc.): classical blackbox optimisation, Reinforcement Learning approaches, constrained computational time budget, self-adaptive architectures...
 - Presentation of the Auto-ML & Auto-DL challenges

To attend the course

- go see the website and subscribe to the course https://www.lri.fr/~gcharpia/deeppractice/
- install PyTorch, Jupyter and matplotlib
- See you... on Thursday 13th of January
 ... online or at CentraleSupelec? (not known yet, will be announced on the Discord channel & by email)

Biographies

- Guillaume Charpiat is an INRIA researcher in the TAU team (INRIA Saclay/LISN/Paris-Sud). He has worked mainly in computer vision, optimization and machine learning, and now focuses on deep learning. He conducts studies on neural networks both in theory (self-adaptive architectures, formal proofs) and in applications (remote sensing, people genetics, molecular dynamics simulation, brain imagery, weather forecast...).
- Wenzhuo Liu, Matthieu Nastorg and Manon Verbockhaven are PhD students in the TAU team, working on deep learning for dynamical physical systems and on automatic architecture adaptation, respectively.

Overview Bibliography

- Why does deep and cheap learning work so well?, Henry W. Lin, Max Tegmark, David Rolnick
- https://arxiv.org/abs/1608.08225
- Representation Benefits of Deep Feedforward Networks, Matus Telgarsk
- https://arxiv.org/abs/1509.08103
- On the structure of continuous functions of several variables, David A. Sprecher.
- Representation properties of networks: Kolmogorov's theorem is irrelevant, Federico Girosi and Tomaso
- Weapons of Math Destruction, Cathy O'Neil.
- Practical Variational Inference for Neural Networks, Alex Graves
- https://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-
- Auto-Encoding Variational Bayes, Diederik P. Kingma and Max Welling.
 - https://arxiv.org/abs/1312.6114
- Deep Sets, Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
- Alexander Smola. https://arxiv.org/abs/1703.0611
- Learning Generative Models with Sinkhorn Divergences, Aude Genevay, Gabriel Peyré, Marco Cuturi. https://arxiv.org/abs/1706.00292
- Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, Priya Goyal, Piotr Dollár, Ross Girshich Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, Kaiming He.
- Temporal Ensembling for Semi-Supervised Learning, Samuli Laine, Timo Aila
- https://arviv.org/abs/1610.02242