Societal impact & approaches

ex: medical diagnosis

"Weapons of maths destruction" by Cathy O'Neil

- Black-box software (at large scale) for important matters
 - hiring
 - hiring
 - (big school)
 - loans (banks)
 - Schuying arbitrarily / stochastic
 - no feedback / questioning possible
 - large scale => arbitrariness nightmare
 - illegal criteria / proxy

ex: COMPAS: redlining prediction
 - high bias
 - self-fulfilling prophecy: police patrols

think twice about the impact of your algorithms before deploying them

be responsible & careful

⇒ AI ethics = Modified declaration for responsible AI

"FAT"-ML: Fairness, Accountability, Transparency

Interpretability by design: "X-AI"

Explainable

Causality

\[
\text{age} \rightarrow \text{gender} \rightarrow \text{sickle}
\]

\[
x = \Delta \text{File}
\]

\[
x^2 + y^2 = 1
\]

\[
y^2 = (\sqrt{x})^2
\]

\[
\text{independent}
\]

\[
\text{dependent but not correlated}
\]

\[
E[(x-Y)(y-y)] \Rightarrow \text{Correlated}
\]
Issues related to datasets

Dataset poisons

car

bag

Equation for car

dog

easy to detect for NLP pipeline

caus

depth

Fairness

Introduction

Words/view:

words ∈ dictionary

Definition 1:
- Simplicity: unawareness
 - do not include sensitive features
- Awareness
 [Cynthia Dwork et al., 2012]

F: stochastic

\(\phi_D(D(x), D(x')) \leq d(x, x') \)

\(S \) need relevant metric

MMD

Kullback-Leibler (KL) - optimal transport
Def 2: Equal opportunity / e-fairness

- Input: (x, A)
- Sensitive attribute (e.g., ethnicity)
- Output: \(\hat{y} \): predicted
- y: being hired

Equal opportunity:

\[P(\hat{y} = 1 | A = a, Y = 1) = P(\hat{y} = 1 | A = a', Y = 1) \]

Group-based def:

Statistics

Relax: e-fairness:

\[|P(\hat{y} = 1 | A = a, Y = 1) - P(\hat{y} = 1 | A = a', Y = 1)| < \epsilon \]

Def 3: Group-based

Same distibution of outputs | errors

Algorithms

Fairness / accuracy trade-off

[After training]

+a

Bias

decies at post-processing

(easy for group-based fairness)

1 threshold per group

Need to know the group

i.e., the sensitive attribute

[During training] while optimizing

\[\min_{\theta} \mathcal{L}(D, \theta) \]

Adversarial training

- \(g \): sensitive task

- \(g \): make \(g \) fail

- criterion
Information Bottleneck

\[f(x;a) \rightarrow (x,z) \rightarrow \max I(x;2) \text{ mutual information} \]

Differential privacy

Why care about privacy?

- Netflix prize 2007 movies
- Cross
- JMYB

Electricity consumption

- 67% of US citizens: identifiable from birthdate, gender, zip code

Group insurance is voter roll database

If no data sharing

Queries on a database

\[\text{ask statistical questions} \]

Ex: wages in company

\[\begin{array}{c}
\text{from join} \\
N \text{ persons} \\
\text{N+1 persons} \\
\text{average } s' \end{array} \]

\[(s') x N \]

Principle:

1) add noise
2) bound the # of requests
\[\text{Algorithm: } A \]
\[\text{Dataset: } D_1 \]
\[\epsilon = D_1 + \text{one element} = D_2 \]

A has \((\epsilon, \delta)\)-privacy if:

For subsets \(S\) of \(\text{Im}(A)\), for datasets \(D_1, D_2\) differing only by one element,

\[p(A(D_1) \in S) \leq e^\epsilon p(A(D_2) \in S) + \delta \]

\[(\forall \delta > 0) \]

Federated learning

any hospitals & medical task

No data transfer
- transfer parameters (encrypted)

\(g_1, g_2, \ldots, g_n \) from a generator model

\[\text{DNA} \]

\[\text{AATTS} \]

\[\text{min}_x d(x', x) \in \mathbb{R}^d \text{ real} \]

\[\text{Generated} \]