Deep Learning in Practice

Guillaume Charpiat Matthieu Nastorg, Francesco Pezzicoli & Cyriaque Rousselot TAU team, LISN, Université Paris-Saclay / INRIA Saclay

... and guests!

G. Charpiat Deep Learning in Practice

Overview

- Course summary and organization
- Chapters overview

G. Charpiat Deep Learning in Practice

Context

- Deep learning: impressive results in the machine learning literature
- yet difficult to train, and still poorly understood; results = black-boxes missing explanations.
- Huge societal impact of ML today (assistance in medicine, hiring process, bank loans...)
 - \implies explain their decisions, offer guarantees?
- Real world problems: usually do not fit standard academic assumptions (data quantity and quality, expert knowledge availability...).
- This course: aims at providing theoretical insights and tools to address these practical aspects, based on mathematical concepts and practical exercises.

Organisation and evaluation

- Most courses: a lesson + practical exercises (to hand in within 2 weeks, and evaluated)
- Extras: a few guest talks

Schedule

```
8 classes of 3 hours, at CentraleSupelec (just next to ENS Paris-Saclay), January-March 2023; check the webpage for more up-to-date schedule.
```

Webpage & subscription: https://www.lri.fr/~gcharpia/deeppractice/

Prerequisite

- The introduction to Deep Learning course by Vincent Lepetit (1st semester), or any similar course
- Notions in differential calculus, Bayesian statistics, analysis, information theory

Overview

Links with other Deep Learning courses

- ▶ Introduction to Deep Learning (V. Lepetit) : prerequisite
- Fondements Théoriques du deep learning (F. Malgouyres & al)
- Modélisation en neurosciences et ailleurs (J-P Nadal)
- Apprentissage Profond pour la Restauration et la Synthese d'Images (A. Almansa & al)
- Deep learning for medical imaging (O. Colliot & M. Vakalopoulou)
- Object recognition and computer vision (Willow team & al)
- etc. (NLP, graphs...)

Outline

G. Charpiat Deep Learning in Practice

Deep learning vs. classical ML and optimization

- Going Deep or not?
 - Examples of successes and failures of deep learning vs. classical techniques (random forests)
 - Approximation theorems vs. generalization [3, 4]
 - Why deep: ex. of <u>depth</u> vs. layer size compromises (explicit bounds)
- Gap between classical Machine Learning and Deep Learning
 - Forgotten Machine Learning basics (Minimum Description Length principle, regularizers, objective function different from evaluation criterion) and incidental palliatives (drop-out, early stopping, noise)
- Hyper-parameters and training basics
 - + list of practical tricks

Interpretability

At stake: the example of medical diagnosis, and societal issues with black-box algorithms [5] Right for the Right Right for the Wrong Right for the Right Wrong Reasons Reasons

- Interpretability of neural networks
 - Analyzing the black-box
 - at the neuron level: filter visualisation, impact analysis
 - at the layer level: layer statistics...
 - at the net level: low-dimensional representation (t-SNE) + IB
 - by sub-task design: "explainable AI"
 - Adversarial examples & remedies
- Issues with datasets
 - Biases in datasets : 4 definitions of fairness
 - Getting invariant to undesirable dataset biases (e.g. gender in CVs / job offers matching)
 - Ensuring errors are uniform over the dataset
 - Differential privacy (database client protection)
- Visualization tools: grad-CAM

G. Charpiat

TAU team, INRIA Saclay / LISN - Université Paris-Saclay

A woman sitting in front of a A man sitting at a deak with

A man holding a teoris

A man holding a tennis

Overview

Architectures

- Architectures as priors on function space
 - Change of design paradigm
 - Random initialization
- Architecture zoo
 - Reminder (CNN, auto-encoder, LSTM, adversarial...)
 - Dealing with scale & resolution (fully-convolutional, U-nets, pyramidal approaches...)
 - Dealing with depth (ResNet, auxiliary losses) and mixing blocks (Inception)
 - Attention mechanisms
 - GraphCNN

Problem modeling: molecular dataset using graph-NN

TAU team, INRIA Saclay / LISN - Université Paris-Saclay

G. Charpiat Deep Learning in Practice

Overview

Small data, weak supervision and robustness

- Small data
 - Data augmentation / synthetic data
 - Multi-tasking
 - Transfer learning
- ► Few labeled examples: forms of weak supervision
 - Semi-supervision
 - Weak supervision
 - Self-supervision
 - Active learning
- Noisy data
 - Denoising auto-encoder
 - Classification with noisy labels
 - Regression with noisy labels
- Exploiting known invariances or priors
 - Permutation invariance: "deep sets" [8], applied to people genetics
 - Choosing physically meaningful metrics, e.g. optimal transport (Sinkhorn approximation)[9]
- Transfer learning

Guest talks (to be confirmed)

- Deep Reinforcement Learning by Olivier Teytaud (Facebook FAIR)
 - Crash-course about deep RL...
 - ... until alpha-0!
 - and more topics (evolutionary optimization...)

- Presentation of Therapixel by Yaroslav Nikulin
 - start-up in medical imaging (DL to detect breast cancer in scans)

Overview

Incorporating physical knowledge / Learning physics

Course by Michele Alessandro Bucci and Lionel Mathelin (Safran/LISN)

- Data assimilation
- Learning a PDE (equation not known)
- Incorporating invariances/symmetries of the problem
- Knowing an equation that the solution has to satisfy: solving PDEs!
- Deep for physic dynamics : learning and controlling the dynamics

Learning a dynamical system

TAU team, INRIA Saclay / LISN - Université Paris-Saclay

G. Charpiat Deep Learning in Practice

Overview

Generative models + Modeling tasks and losses

- Generative models
 - GAN, VAE (Variational Auto-Encoder), and Normalizing Flows
- Modeling tasks and losses
 - KL, optimal transport, MMD...
- ► GAN vs. VAE vs. NF

Guarantees? Generalization and formal proofs + Auto-DL

- Guarantees?
 - Generalization: double gradient descent and Neural Tangent Kernel
 - formal proofs of (very small) neural networks
- Auto-DeepLearning by Isabelle Guyon's group
 - Overview of recent approaches for automatic hyper-parameter tuning (architecture, learning rate, etc.): classical blackbox optimisation, Reinforcement Learning approaches, constrained computational time budget, self-adaptive architectures...
 - Presentation of the Auto-ML & Auto-DL challenges

G. Charpiat

To attend the course

- go see the website and subscribe to the course https://www.lri.fr/~gcharpia/deeppractice/
- install PyTorch, Jupyter and matplotlib
- See you... on Tuesday 24th of January

Biographies

- Guillaume Charpiat is an INRIA researcher in the TAU team (INRIA Saclay/LISN/Paris-Sud). He has worked mainly in computer vision, optimization and machine learning, and now focuses on deep learning. He conducts studies on neural networks both in theory (self-adaptive architectures, formal proofs) and in applications (remote sensing, people genetics, molecular dynamics simulation, brain imagery, weather forecast...).
- Matthieu Nastorg, Francesco Pezzicoli and Cyriaque Rousselot are PhD students in the TAU team, working on deep learning for physical systems (PDEs), on equivariant graph-NN for the glass problem, and on causality, respectively.

Overview

Bibl	iography
G. Charpiat	TAU team, INRIA Saclay / LISN - Université Paris

Deep Learning in Practice