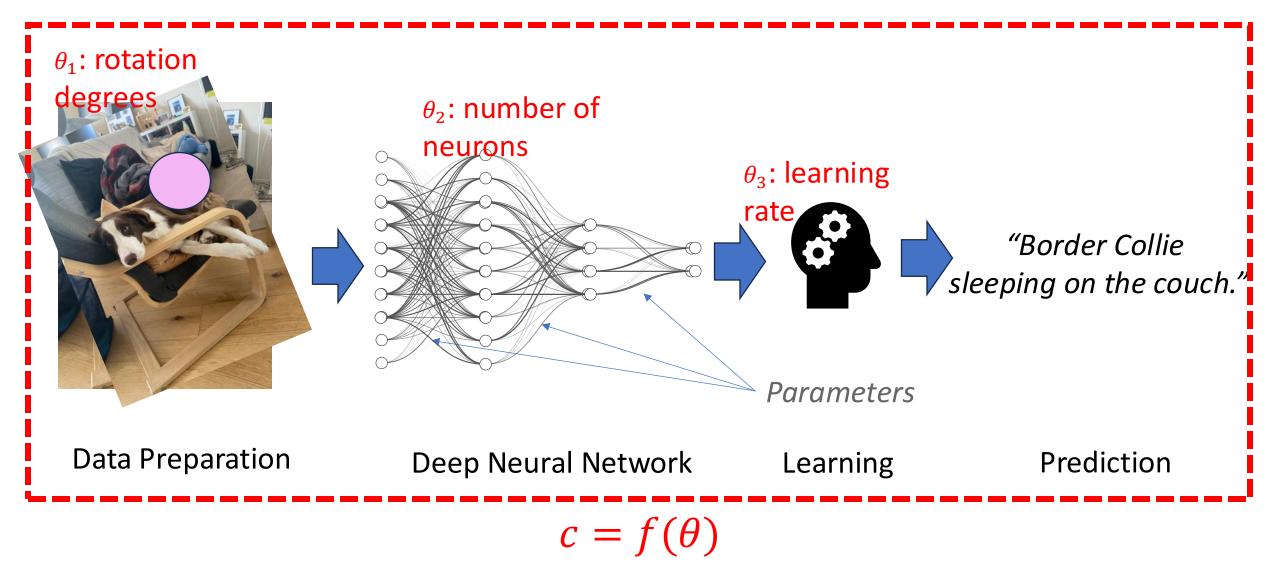
Deep Learning in Practice

Optimization of Learning Workflows

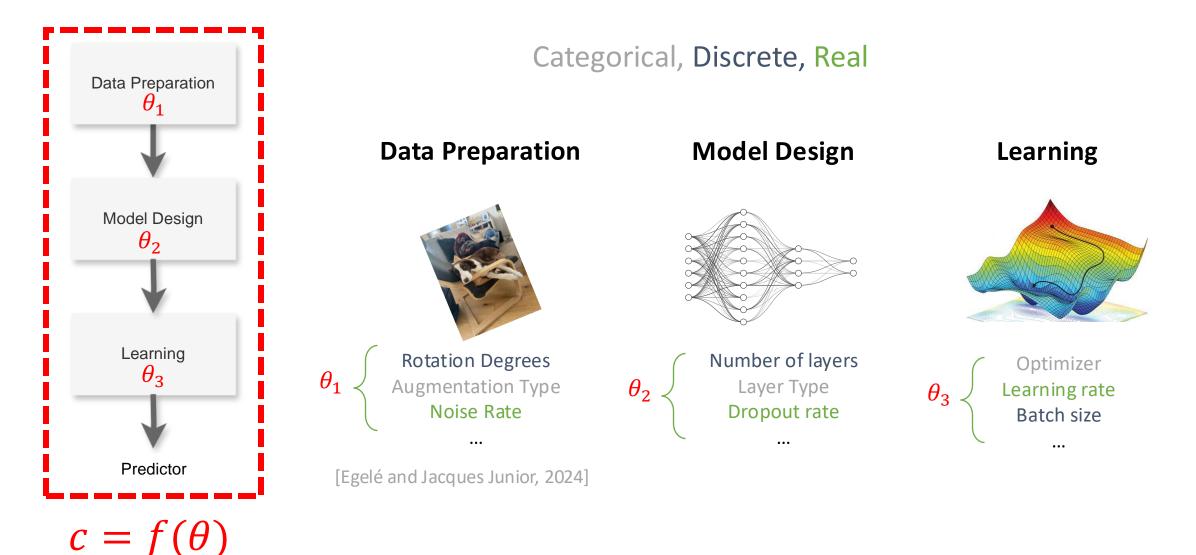
Hyperparameter Optimization, Neural Architecture Search, Ensemble

Romain Egele

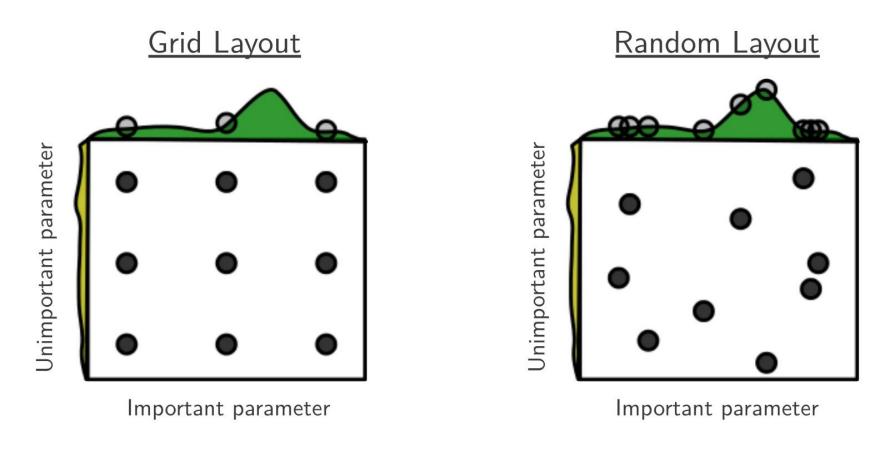
An Example of Learning Workflow



Parametrization of Learning Worfklows

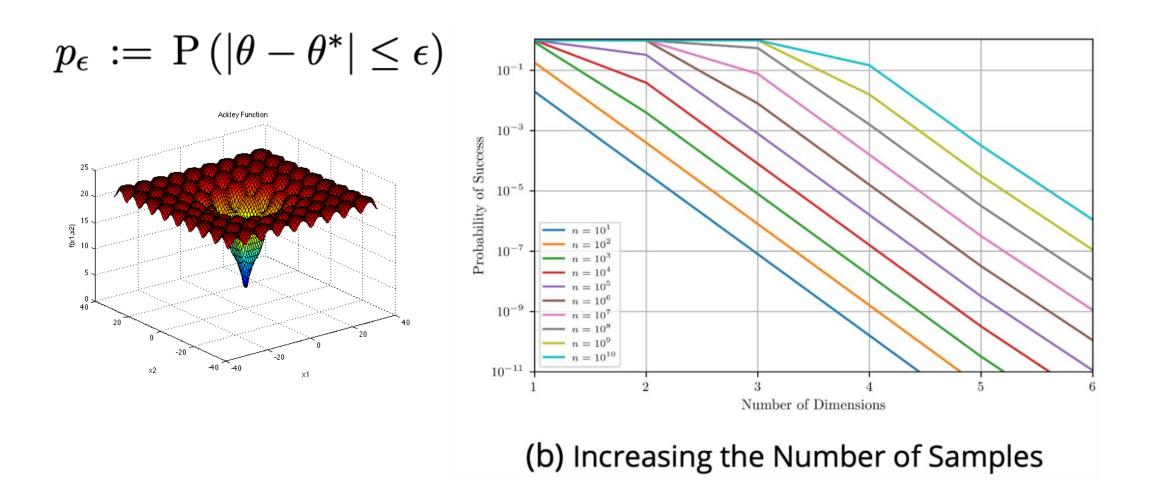


Grid Search



(Bergstra et Bengio, 2012)

Random Search



Example with DeepHyper

http://tinyurl.com/deephyper-grid

Black-Box Optimization

 $\Theta^* = \operatorname*{arg\,min}_{\theta\in\Theta} f(\theta)$

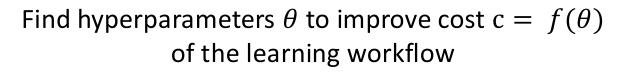
In General

The **input space** can be a mixed of Real, Discrete, Categorical parameters.

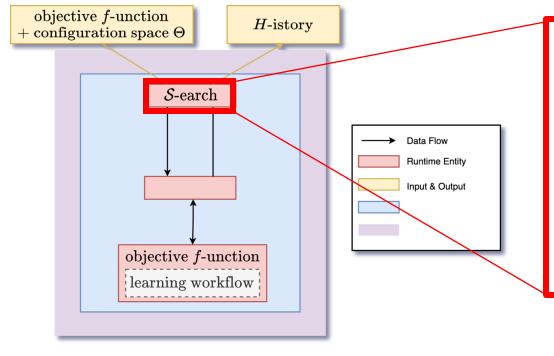
The **output space** is often mapped to real.

The **function** can be continuous, noisy, derivable.

Bayesian Optimization Framework



$$c^* = \min_{\theta} f(\theta)$$

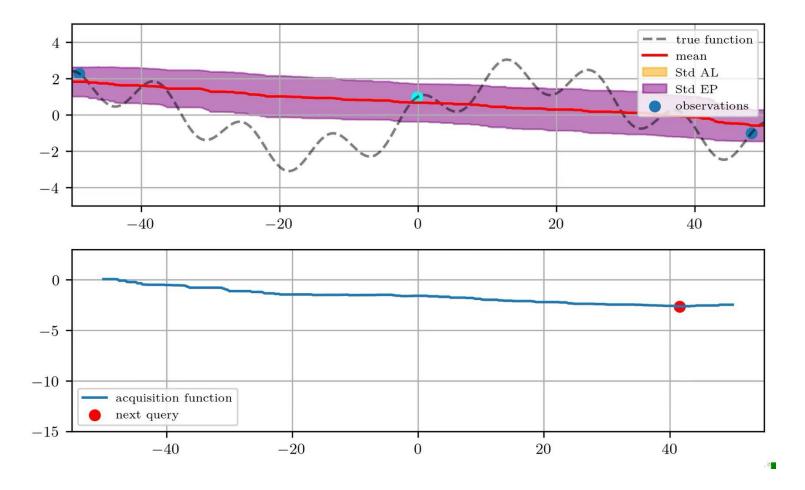


- 1. <u>Suggest</u> hyperparameters θ
- 2. <u>Evaluate</u> cost $c = f(\theta)$

3. Update g surrogate of
$$c = f(\theta)$$

Repeat

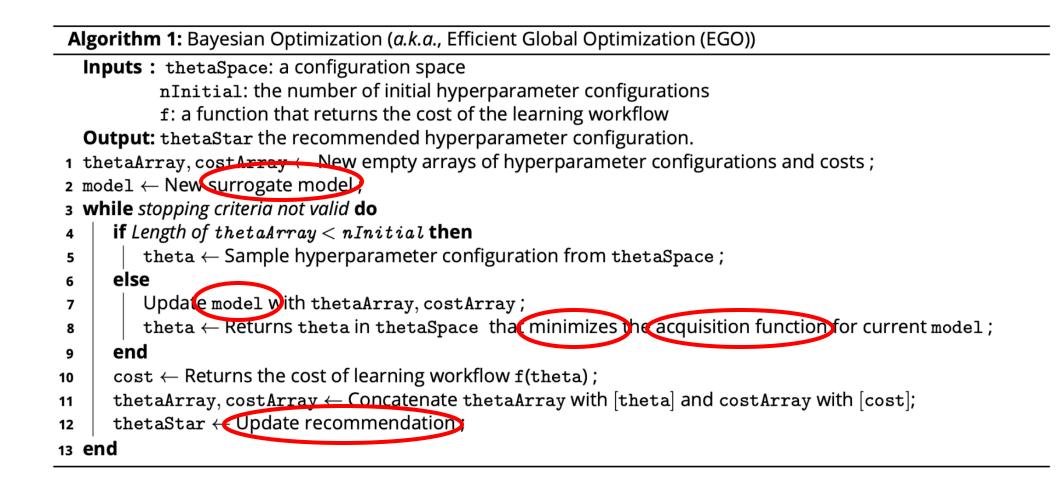
An Example of Bayesian Optimization



Example with DeepHyper

http://tinyurl.com/deephyper-bbo

Sequential Bayesian Optimization Algorithm



Acquisition functions

• Lower Confidence Bound

 $a_{\mathsf{LCB}}\left(\theta;\kappa\right) := \mu(\theta) - \kappa \cdot \sigma(\theta)$

• Probability of Improvement

$$\begin{split} I(\theta;\xi) &:= \max(f(\theta^{\circledast}) - f(\theta) - \xi, 0) \\ &= \max(f(\theta^{\circledast}) - \mu(\theta) - z \cdot \sigma(\theta) - \xi, 0) \quad \text{with} \ z \sim \mathcal{N}(0,1) \\ &a_{\mathsf{Pl}}\left(\theta;\xi\right) := \mathsf{P}\left(0 < I(\theta;\xi)\right) \end{split}$$

• Expected Improvement

$$a_{\mathsf{EI}}\left(\theta;\xi\right) := \mathbb{E}\left[I(\theta;\xi)\right]$$

Lower Confidence Bound

Acquisition function is based on uncertainty.

Surrogate
$$g$$

 $a_{LCB}(\theta; \kappa) = \mu(\theta) - \kappa \cdot \sigma(\theta)$

Lower-Confidence Bound [Cox, 1992]

"Most optimistic outcome"

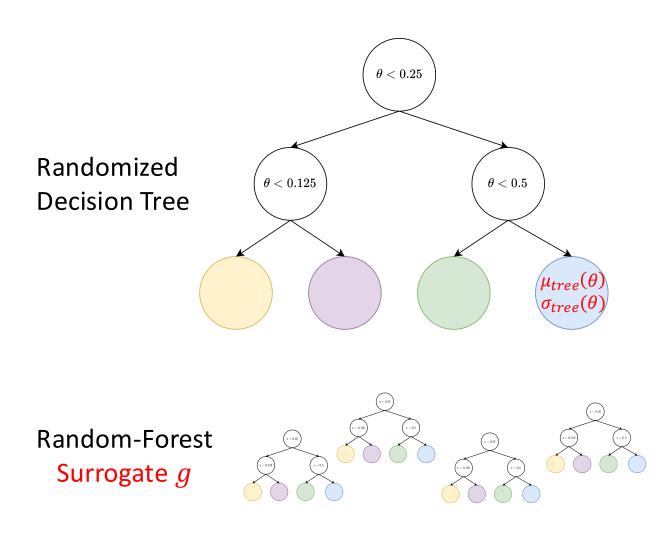
Simple, cheap, less flat

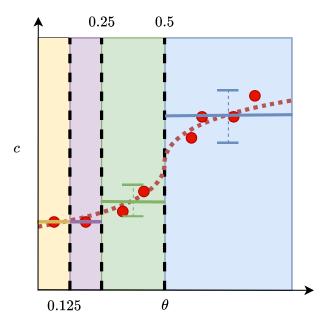
Next hyperparameters suggested have minimum LCB score

$$\theta^* = \min_{\theta} a_{LCB} \left(\theta; \kappa\right)$$

Randomized forests as model

Surrogate g is an ensemble of randomized decision trees.





Other Seminal Surrogates

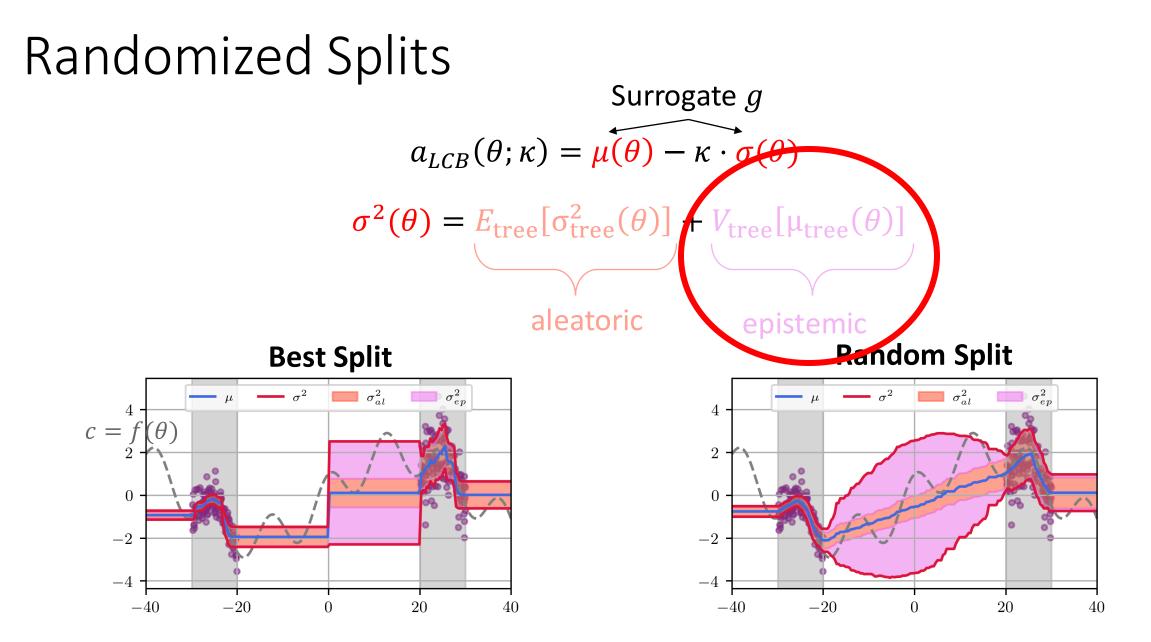
Gaussian Process [Eriksson, 2019], Bayesian NN [Springenberg, 2016], Random-Forest [Hutter, 2011] (temporal complexity and parallelizable) TPE [Bergstra, 2013]... 14

Randomized forests and uncertainty Surrogate g $a_{LCB}(\theta;\kappa) = \mu(\theta) - \kappa \cdot \sigma(\theta)$ $\sigma^{2}(\theta) = E_{tree}[\sigma^{2}_{tree}(\theta)] + V_{tree}[\mu_{tree}(\theta)]$ aleatoric epistemic

Randomization Effects

	Bootstrapping	Feature	Split
Tree Bagging (TB)	X		
Random Space (RS)		Х	
Random Forest (RF)	Х	Х	
Extremely Randomized Trees (ET)			x
Mondrian Forest (MF)		Х	X

Algorithms



[1, Sec. 4.3.2] Hutter, Frank, et al. "Algorithm runtime prediction: Methods & evaluation." Artificial Intelligence 206 (2014): 79-111.

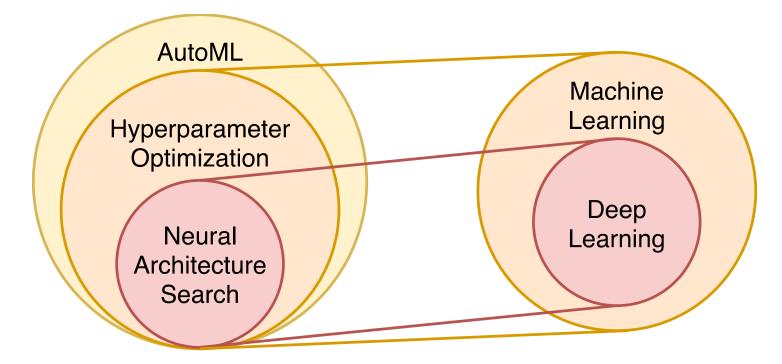
Optimization of the Acquisition Function

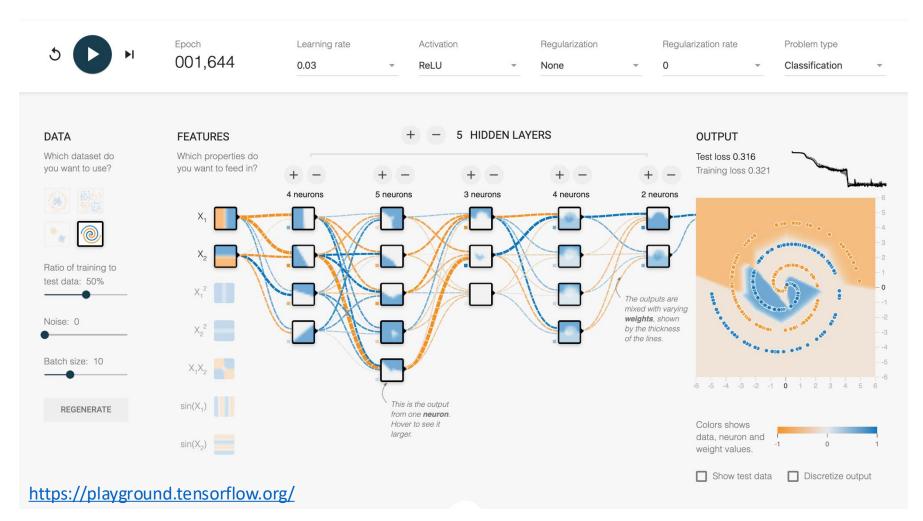
- Depends on the surrogate model (e.g., can we have a gradient)?
- Zero, First, Second order...

Examples:

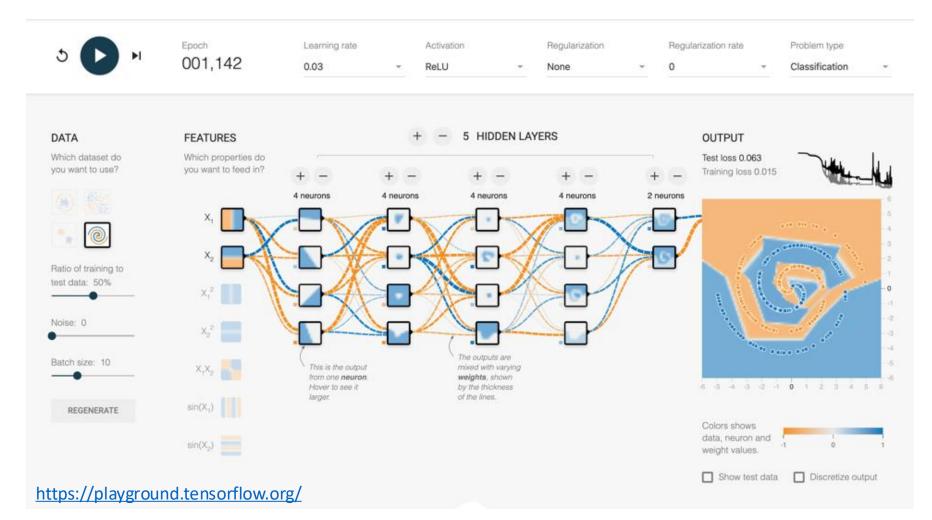
- SGD
- LBFGS
- Genetic Algorithm
- CMAES (Covariance Matrix Adaptation Evolutionary Search)

Neural Architecture Search

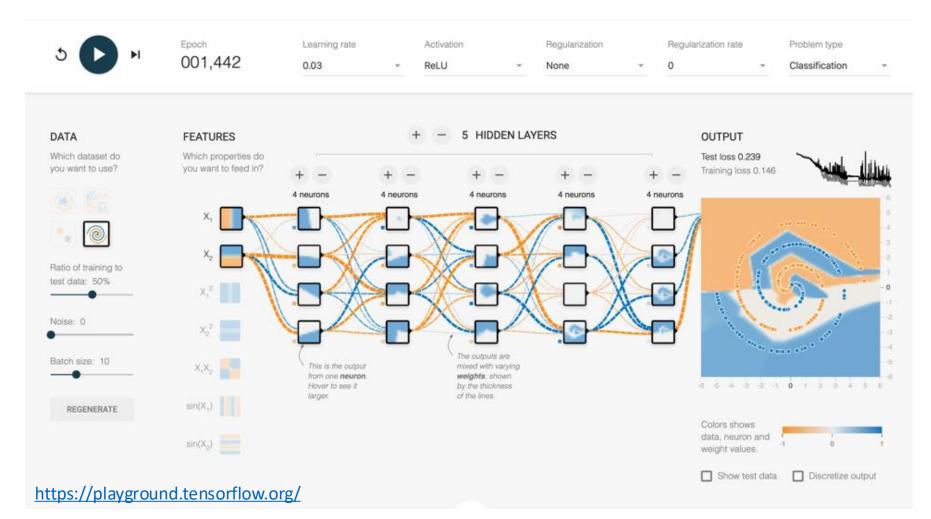




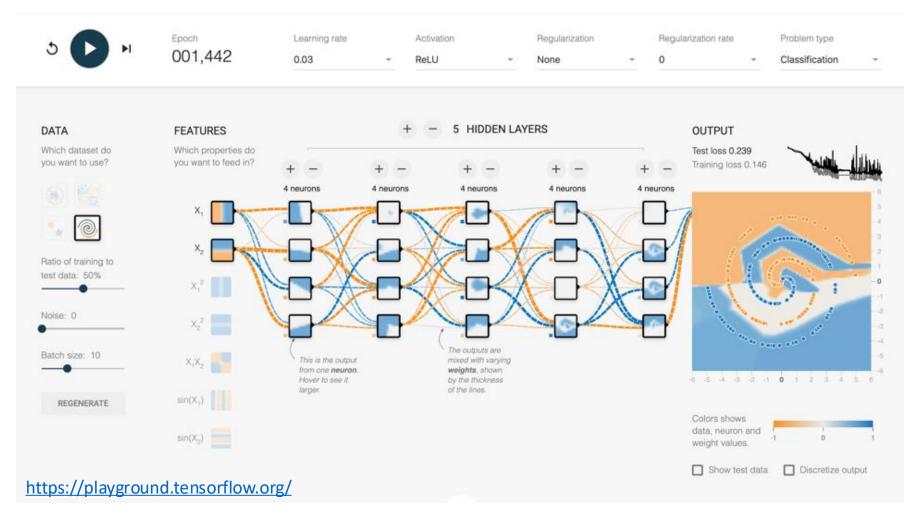
26/03/2025



26/03/2025



26/03/2025



The performance of neural networks can be very sensitive with respect to the "architecture" (i.e. hyperparameters) of the neural network.

Hyperparameter Optimization with Constraints

- A layer is active if the number of layer is large enough.
- The parameters of a layer change depending on its type (dense, conv, batchnorm, dropout).
- Residual/skip connections can be created if input/output layers exists.

Example with DeepHyper

http://tinyurl.com/deephyper-autodeuq-reg

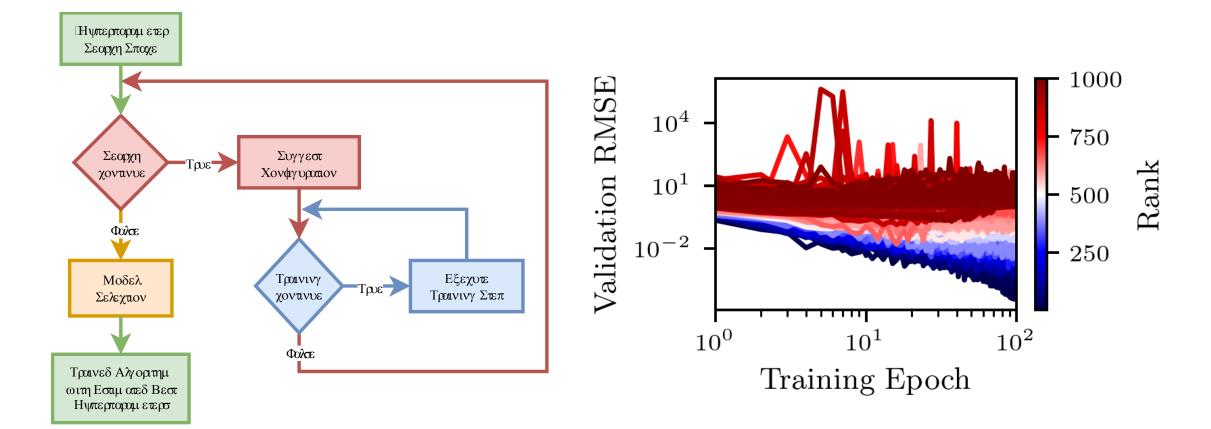
Overfitting in Hyperparameter Optimization

- 3-way split of the data: Training, Validation, Test
 - Training: for the weights of a neural network
 - Validation: for the hyperparameters
 - Test: generalization performance
- Overfitting in HPO would mean that validation score improves when test score worsen.

Development Data

- Generaly not observed...
- Similar to the problem of overfitting the test set for Cifar10/Imagenet
- Similar to the problem of development phase and final phase in machine learning competitions (Kaggle)

Early discarding



Interested to dive in?

https://github.com/deephyper/deephyper