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An Example of Learning Workflow
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Parametrization of Learning Worfklows
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Grid Search

Grid Layout Random Lavyout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

(Bergstra et Bengio, 2012)

26/03/2025 MVA - Deep Learning in Practice - Paris Saclay



Random Search
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Example with DeepHyper

http://tinyurl.com/deephyper-grid

26/03/2025 MVA - Deep Learning in Practice - Paris Saclay


http://tinyurl.com/deephyper-grid

Black-Box Optimization

@* = argmin f(6)
0cO

In General
The input space can be a mixed of Real, Discrete, Categorical parameters.
The output space is often mapped to real.

The function can be continuous, noisy, derivable.



Bayesian Optimization Framework

Find hyperparameters 8 to improve cost c = f(60) c* = min f(@)
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An Example of Bayesian Optimization
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Example with DeepHyper

http://tinyurl.com/deephyper-bbo
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http://tinyurl.com/deephyper-bbo

Sequential Bayesian Optimization Algorithm

Algorithm 1: Bayesian Optimization (a.k.a., Efficient Global Optimization (EGO))

Inputs : thetaSpace: a configuration space
nInitial: the number of initial hyperparameter configurations
f: a function that returns the cost of the learning workflow
Output: thetaStar the recommended hyperparameter configuration.
thetaArray, cogthznse Aew empty arrays of hyperparameter configurations and costs ;

model <+ Ne

1

2

3 while stopping criteria not valid do

4 if Length of thetadrray < nInitial then

5 | theta « Sample hyperparameter configuration from thetaSpace ;
6

7

8

9

else
Updaith thetaArray, costArray;
theta < Returns theta in thetaSpace th@uisition functiomfor current model ;

end
10 cost < Returns the cost of learning workflow f(theta) ;

1 thetaArray, costA tenate thetaArray with [theta] and costArray with [cost];
12 thetaStar pdate recommendatio

13 end
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Acquisition functions

e Lower Confidence Bound
aics (0; k) == pu(0) — k- o(6)

* Probability of Improvement

1(6;€) : = max(f(6°) — £(6) — &,0)
= max(f(6%) — u(0) — z - o(#) — &,0) with z ~ N(0,1)

ap (0;€) : =P (0 < I(6;¢))

e Expected Improvement
agi (0 &) := E [1(6;€)]
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Lower Confidence Bound

Acquisition function is based on uncertainty.

Lower-Confidence Bound
Surrogate g [Cox, 1992]

— “Most optimistic outcome”
aLCB(H; K) — ,u(@) — K- O-(H)
Simple, cheap, less flat

Next hyperparameters suggested have minimum LCB score

0* = mein a;cg (0; k)
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Randomized forests as model

Randomized
Decision Tree

Random-Forest
Surrogate g

Surrogate g is an ensemble of randomized decision trees.
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Other Seminal Surrogates

Gaussian Process [Eriksson, 2019],
Bayesian NN [Springenberg, 2016],
Random-Forest [Hutter, 2011] (temporal
complexity and parallelizable)

TPE -1



Randomized forests and uncertainty

Algorithms

Surrogate g
—
aLCB(H; K) — H(Q) — K- O-(H)
g%(0) = +

Randomization Effects

Bootstrapping | Feature

Split

Tree Bagging (TB) X

Random Space (RS) X
Random Forest (RF)

Extremely Randomized
Trees (ET)
Mondrian Forest (MF) X




Randomized Splits

Surrogate g
—
apce(8; k) = pu(l) —x -
o (0) =
Best Split dom Split

—40 —20 0 20 40 —40 —20 0 20 40

[1, Sec. 4.3.2] Hutter, Frank, et al. "Algorithm runtime prediction: Methods & evaluation." Artificial Intelligence 206 (2014): 79-111.
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Optimization of the Acquisition Function

* Depends on the surrogate model (e.g., can we have a gradient)?

e Zero, First, Second order...

Examples:

SGD

LBFGS

Genetic Algorithm

CMAES (Covariance Matrix Adaptation Evolutionary Search)



Neural Architecture Search
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Example of sensitive neural architecture

o poc earning rate ctivation egularization egularization rate roblem type
Epoch L] t Activat Regul t Regul t t Problem t
4|
001 ,644 0.03 v RelLU v None v 0 v Classification
DATA FEATURES + — 5 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.316
you want to use? you want to feed in? N @ iy 45 i M & i Training loss 0.321
4 neurons 5 neurons 3 neurons 4 neurons 2 neurons
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XZ D‘\ 7\\ ‘D-‘t\ \‘—_I‘---D !l :D—’ “‘ D ‘7 D/ i ’
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7 0
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larger. data, neuron and ! (‘)

https://plavground.tensorflow.org/
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https://playground.tensorflow.org/

Example of sensitive neural architecture

o Epech Learning rate
4
001,142 003

DATA FEATURES

Which dataset do
you want to use?

Which properties do
you want to feed in?
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https://plavground.tensorflow.org/
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Activation Regularization Regu
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+ - + - +
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Example of sensitive neural architecture

O Epoch Learning rate Activabon Regularization Ragularization rate Problem type
bl
001,442 0,03 - RelU - None - 0 - Classification .

DATA FEATURES + — 5 HIDDEN LAYERS OUTPUT
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you want to use? you want to feed in? gy @ i3, g o & i & e, g Training loss 0.146
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Example of sensitive neural architecture

Problem type

Epocch _earning rate Activabor gularization Raegularization rate
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https://plavground.tensorflow.org/
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The performance of
neural networks can be
very sensitive with respect
. to the “architecture” (i.e.
hyperparameters) of the
neural network.


https://playground.tensorflow.org/

Hyperparameter Optimization with Constraints

* A layeris active if the number of layer is large enough.

 The parameters of a layer change depending on its type (dense,

conv, batchnorm, dropout).

» Residual/skip connections can be created if input/output layers

exists.



Example with DeepHyper

http://tinvurl.com/deephyper-autodeuqg-reg
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http://tinyurl.com/deephyper-autodeuq-reg

Overfitting in Hyperparameter Optimization

* 3-way split of the data: Training, Validation, Test
* Training: for the weights of a neural network
] ) Development Data
 Validation: for the hyperparameters
* Test: generalization performance

* Overfitting in HPO would mean that validation score improves when
test score worsen.
* Generaly not observed...
 Similar to the problem of overfitting the test set for Cifar10/Imagenet

e Similar to the problem of development phase and final phase in machine
learning competitions (Kaggle)



Early discarding
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Interested to dive in?

https://github.com/deephyper/deephyper

26/03/2025 MVA - Deep Learning in Practice - Paris Saclay

27
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