Graph Cuts

Reminder:
Markov Random Fields (MRF)

1D: HMM (Hidden Markov Models)
Markov chain

\[
\begin{align*}
\sum_{t} V_t(x_t) + \sum_{t} D_t(x_t, x_{t+1})
\end{align*}
\]

- solve with dynamic programming

2D

- image = pixel grid + neighborhood in 2 classes
- local prior
 - For each pixel \(p \)
 - (based on its color, the texture around... local descriptor)

\[
\begin{align*}
\sum_{p} V_p(x_p) + \sum_{p \neq q} D_{pq}(x_p, x_q)
\end{align*}
\]

- MRF

\[
\begin{align*}
\Rightarrow \text{general case: NP-hard}
\end{align*}
\]

Max Flow

- Each edge \(= \text{pipe} \)
- maximum capacity
 - (unit: L/s)
- Maximum flow
 - (but can pour from "source" to "sink"?)

First Algorithm: Ford-Fulkerson

Flow (current)

Residual graph

Maximum Capacity

Path through edges not full yet

Also: Iteratively
- Find a path connecting source and sink in the residual graph

Back
Problem:

- saturate this path
 (i.e. add flow along this path until not possible to add more)

\[\text{Residual graph:} \quad \{ \text{edges not saturated}, \]
\[\quad \text{and reverse of edges with zero flow}\}

Core of graph:

- find a path connecting the source & the sink
- saturate it

Cornel

- centrality
- find a path connecting the source & the sink
- saturate it

Issue:

- complexity (in worst-case)

- on-saturate an already-saturated edge many many times
- it's not looking at "optimal paths"

Variation:

\[\text{Dinic (Dimic)} \]
\[\text{Edmonds-Karp} \]

Idea:

- don't pick a long path
- pick the shortest path

\[\Rightarrow \text{better worst-case complexity} \]
\[O(\text{trees}^3) \]

Moving other algorithms

- Push-Relabel

- in practice: Dijkstra/Kalantari heuristic for 2D image segmentation problem

Link between maximum flow & minimum cut

- **U:** all nodes reachable from the source
- **residual graph:**
 - from the source in the residual graph

\[U \text{ : all nodes reachable from the source} \]

- **partition of the graph:**
 - \(U \) & \(\overline{U} \)
 - Load of the graph

\[\text{Total flow} = \text{capacity of all edges from source} \]
\[\text{maximum flow} = \text{value of cuts} \]

1) All edges going out of \(U \) are saturated
2) Flow on edges going to \(U \) are 0

Because these edges are saturated

- Flow on edges going to \(U \) are 0
- Flow on edges going to \(\overline{U} \) are 0

Because these edges are saturated
Theorem

Best cut

- The cost of the best cut is given by the maximum flow solution.
- The cost of the best cut is equal to the maximum flow.

Image Segmentation as a Min-cut Problem

- **Image grid:** Each pixel is represented by a node.
- **Local preference for each pixel:**
 \[V_p(x_p) \]
- **Interaction between neighbors:**
 \[D_{ij}(x_p, x_q) \]

Conditions

\[V_p(x_p) = \begin{cases} +1 & \text{if } x_p = 0 \\ -2 & \text{otherwise} \end{cases} \]

Interaction between pixels -> clique with a,b

- **Positivity of all capacities:** Required by max-flow
 \[a, b > 0 \]

Sub-modularity:

- **M:**
 \[M_{ij} = \begin{cases} +10 & \text{if } x_p = 0, x_q = 1 \\ -1 & \text{otherwise} \end{cases} \]

- **M is submodular:**
 \[M_{ij} + M_{kl} \leq M_{ijkl} \]

- It can be more to be off-diagonal
 → choose different cliques for neighboring pixels

- Active construction → interaction terms are submodular.

Any MRF with submodular interaction matrix can be solved exactly by a graph cut

While: if not submodular: NP-hard in the general case.
IV. Multi-level energies

- proposed labeling: \(x \) (\(x_p \))
- criterion to optimize:
 \[\sum_p v_p(x_p) + \sum_{pq} \delta_{pq} (x_p, x_q) \]

\[\Rightarrow \text{con't apply the technique done} \]

1) \(x \)-expansion:

- sequence of binary problems
 - iteratively:
 - solve one class \(c \) (\(c(x) \))
 - binary problem:
 - given the current solution:
 - for each pixel: either keep the current choice or move to the other class \(c \)
 - the binary problem obtained needs to subdivide
 \[\Rightarrow \text{iteration matrix} \]
 \[\Rightarrow \text{matrix} \]

 \[\text{Supplementary info: } \delta_{pq}(x, y) = 0 \text{ if } y \]

 \[\Rightarrow \delta_{pq} \text{ is a distance between labels} \]
 \[- \delta_{pq}(a, b) \geq 0 \text{ if } a, b \]
 \[- \delta_{pq}(a, b) + \delta_{pq}(b, c) \geq \delta_{pq}(a, c) \]

2) \(a \)-\(b \) swap

- similar idea: sequence of binary problems
 - iteratively:
 - pick 2 classes \(c, \beta \)
 - binary problem: allow pixels with one of these 2 labels to move to the other one
 - conditions: binary classes to be submodular

\[\Rightarrow 2 \times 2 \text{ submatrix} \]
\[\Rightarrow \text{corners in the kernel} \]
\[\Rightarrow \text{constraint: weaker than for } x \text{-expansion} \]

Example of iteration matrix: Pitts model
\[\delta_{pq}(a, b) = \delta_{a=b} = \begin{cases} 0 & \text{if } a=b \\ 2 & \text{otherwise} \end{cases} \]

\[\Rightarrow \text{distances between labels} \]
How to set the problem

Image of a cow on grass

Interactive Segmentation by clicking mouse dues

Infinite links

Tsukada's construction

Cost of cutting line

Ty of receding sequence segmentation

Infinite links between any pixel p at time k and the same pixel at time k-1

A/B: needs pixel-wise registration of all images

Application: image → 5 levels of gray: 0, 0.3, 0.5, 1, 2, 3

Statistics on pixel colors

Histogram of background pixels in a set of segmented images

Intersection between pixels

Estimate the probability of a cut there

\[E[\|\text{color}(p) - \text{color}(q)\|^2] \]

Constraint that foreground can only shrink with time

Official worst-case complexity: cubic

Uses heuristics by BLK → fast

\[O(N^2) \] (frame)

\[O(N) \] (only cut)

Looks like a certain Renaissance