Problem 1 (Gibbs’ inequality). Let \(p \) and \(q \) two probability measures over a finite alphabet \(\mathcal{X} \). Prove that \(\text{KL}(p \| q) \geq 0 \)

Hint: for a concave function \(f \) and a random variable \(X \), we have the Jensen’s inequality \(E[f(X)] \leq f(E[X]) \). \(\ln \) is a strictly concave function.

Problem 2 (Evidence Lower bound (ELBO)). Prove the following inequality

\[
- \ln p(D) \leq -E_{\theta \sim \beta} \left[\ln p(D|\theta) \right] + KL(\beta||\alpha)
\]

where \(D \) is a dataset, \(p(D) \) is the probability of the dataset, \(p(D|\theta) \) is the likelihood probability of the dataset given the model parameters \(\theta \), \(\beta \) is a distribution over the model parameters approximating the posterior distribution \(\pi(\theta) := p(\theta|D) \) and \(\alpha \) is the prior distribution over the model parameters.

(a) Write down the natural logarithm of the Bayes’ rule in an expanded form:

\[
\pi(\theta) = \frac{p(D|\theta)\alpha(\theta)}{p(D)}
\]

(b) Introduce a new density function \(\beta \) and rewrite the expression in terms of expectation w.r.t. \(\beta \)

(c) Use the Gibbs’ inequality and write down the ELBO

(d) Interpret the ELBO in a machine learning framework
Problem 3 (Entropy). Compute the differential entropy of the following distributions:

(a) univariate Normal distribution

\[\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right] \quad (3) \]

(b) multivariate Normal distribution

\[\mathcal{N}(x|\mu, C) = \frac{1}{\sqrt{(2\pi)^d |C|}} \exp \left[-\frac{1}{2} (x - \mu)^\top C^{-1} (x - \mu) \right] \quad (4) \]

where \(x, \mu \in \mathbb{R}^d \) and \(C \) is a covariance matrix (assumed to be symmetric positive-definite).

Problem 4 (Mutual information). We are interested in computing the mutual information between a multivariate Normal distribution \(\beta = \mathcal{N}(x|\mu, C) \) where \(x, \mu \in \mathbb{R}^d \) and a product of identical univariate Normal distributions \(\alpha = \prod_{i=1}^{d} \mathcal{N}(x_i|\mu, \sigma) \).

(a) Express the KL divergence in terms of entropy and expectation w.r.t. \(\beta \)

(b) Compute the exact expression of \(-\mathbb{E}_{x \sim \beta} \ln \alpha(x)\).

(c) Compute \(KL(\beta || \alpha) \)

(d) Suppose that \(\mu_i = \mu \) and \(C_{ii} = \sigma^2 \) for all \(i \). Simplify the previous expression.