OPT13 - Information Theory TP1: Entropy*

Stella Douka ${ }^{\dagger}$ Guillaume Charpiat

March 8th, 2024

Problem 1 (Gibbs' inequality). Let p and q two probability measures over a finite alphabet \mathcal{X}. Prove that $\operatorname{KL}(p \| q) \geqslant 0$

Hint: for a concave function f and a random variable X, we have the Jensen's inequality $\mathbb{E}[f(X)] \leqslant f(\mathbb{E}[X])$. ln is a strictly concave function.

Problem 2 (Evidence Lower bound (ELBO)). Prove the following inequality ${ }^{1}$:

$$
\begin{equation*}
-\ln p(D) \leqslant-\mathbb{E}_{\theta \sim \beta}[\ln p(D \mid \theta)]+K L(\beta \| \alpha) \tag{1}
\end{equation*}
$$

where D is a dataset, $p(D)$ is the probability of the dataset, $p(D \mid \theta)$ is the likelihood probability of the dataset given the model parameters θ, β is a distribution over the model parameters approximating the posterior distribution $\pi(\theta):=p(\theta \mid D)$ and α is the prior distribution over the model parameters.
(a) Write down the natural logarithm of the Bayes' rule in an expanded form:

$$
\begin{equation*}
\pi(\theta)=\frac{p(D \mid \theta) \alpha(\theta)}{p(D)} \tag{2}
\end{equation*}
$$

(b) Introduce a new density function β and rewrite the expression in terms of expectation w.r.t. β
(c) Use the Gibbs' inequality and write down the ELBO
(d) Interpret the ELBO in a machine learning framework

[^0]Problem 3 (Entropy). Compute the differential entropy of the following distributions:
(a) univariate Normal distribution

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \tag{3}
\end{equation*}
$$

(b) multivariate Normal distribution

$$
\begin{equation*}
\mathcal{N}(x \mid \mu, C)=\frac{1}{\sqrt{(2 \pi)^{d}|C|}} \exp \left[-\frac{1}{2}(x-\mu)^{\top} C^{-1}(x-\mu)\right] \tag{4}
\end{equation*}
$$

where $x, \mu \in \mathbb{R}^{d}$ and C is a covariance matrix (assumed to be symmetric positive-definite).

Problem 4 (Mutual information). We are interested in computing the mutual information between a multivariate Normal distribution $\beta=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, C)$ where $\mathbf{x}, \boldsymbol{\mu} \in \mathbb{R}^{d}$ and a product of identical univariate Normal distributions $\alpha=\prod_{i=1}^{d} \mathcal{N}\left(x_{i} \mid \mu, \sigma\right)$.
(a) Express the KL divergence in terms of entropy and expectation w.r.t. β
(b) Compute the exact expression of $-\mathbb{E}_{x \sim \beta} \ln \alpha(x)$.
(c) Compute $K L(\beta \| \alpha)$
(d) Suppose that $\mu_{i}=\mu$ and $C_{i i}=\sigma^{2}$ for all i. Simplify the previous expression.

[^0]: *https://www.lri.fr/~ gcharpia/informationtheory/
 ${ }^{\dagger}$ styliani.douka@inria.fr
 ${ }^{1}$ Further information can be found at
 http://www.yann-ollivier.org/rech/publs/mdltalks.php

